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ABSTRACT
Multi-Agent Path Finding (MAPF) is the problem of finding a set
of collision-free paths for multiple agents in a shared environment
while minimizing the sum of travel times. The current state-of-the-
art anytime algorithm for MAPF is based on Large Neighborhood
Search (LNS), called MAPF-LNS, which is a combinatorial search
algorithm that iteratively destroys and repairs a subset of collision-
free paths. In this paper, we propose Destroy-Repair Operation Par-
allelism for LNS (DROP-LNS), a parallel framework that performs
multiple destroy and repair processes simultaneously to explore a
larger searching space under a limited time budget. Unlike MAPF-
LNS, DROP-LNS is able to exploit parallelized hardware to improve
the solution quality. We extend DROP-LNS to two alternatives and
conduct experimental evaluations to compare the performance.
The results show that DROP-LNS significantly outperforms the
state-of-the-art.
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1 INTRODUCTION
A wide range of real-world applications can be formulated asMulti-
Agent Path Finding (MAPF) problem such as autonomous ware-
house [6] and unmanned aerial vehicles [1]. MAPF aims to find
a set of collision-free paths, each from an assigned start location
to a goal location, for multiple agents in a shared environment
while minimizing the sum of travel time [5]. However, solving
MAPF optimally is NP-hard, which limits the scalability of many
algorithms [7]. MAPF is based on a undirected and unweighted
graph, where 𝑘 agents navigate from their start vertices to their
goal vertices. At each discretized timestep, an agent is allowed to
move to an adjacent vertex or wait at its current vertex. A path
for an agent is a sequence of vertices indicating where the agent
is at each timestep, with the path cost being the total timesteps
for the agent to move from its start vertex to its goal vertex. The

objective of MAPF is to minimize the suboptimality ratio, defined
as sum of path cost/sum of individual shortest paths − 1.

Anytime algorithms are promising approaches to scalable MAPF.
In particular, Large Neighborhood Search (LNS) is the leading any-
time algorithm in solving MAPF (MAPF-LNS) [3]. Starting with a
feasible solution from any existing suboptimal MAPF algorithm,
MAPF-LNS iteratively selects a subset of agents, destroys their
paths, and repairs them while keeping the other paths fixed. How-
ever, the repairing operations can be time-consuming, and MAPF-
LNSmay struggle to improve its solution on large-scale instances. In
this work, we propose Destroy-Repair Operation Parallelism for LNS
(DROP-LNS), a parallel framework that performs multiple destroy
and repair processes simultaneously to explore a larger searching
space in a limited time budget. Unlike MAPF-LNS, DROP-LNS is
able to exploit parallelized hardware to improve the solution qual-
ity. We also evaluate different parallelism variants and show that
DROP-LNS trades off between productivity and synchronization to
achieve better performance, where the former describes the con-
current execution of tasks, and the latter describes the access to the
best-known solution to guide the search toward better quality 1.

2 DESTROY-REPAIR OPERATION
PARALLELISM FOR MAPF-LNS

DROP-LNS uses a main thread and a set of worker threads to par-
allelize the search. The core idea is to wrap pairs of destroy and
repair operations as tasks via the main thread and assign these tasks
to idle worker threads. DROP-LNS maintains shared variables that
can be modified by any thread, including the best-known solution
with the minimum SOC found so far, the weights for each destroy
heuristic, and a task queue with a fixed capacity. To avoid data
racing, DROP-LNS uses twomutexes to ensure that only one thread
can modify (1) the task queue and (2) any other shared variables at
a time, respectively, as shown in Figure 1.

DROP-LNS first uses the main thread to initialize a feasible so-
lution via LaCAM [4]. The main thread then fills the task queue

1This extended abstract is a short version of https://arxiv.org/abs/2402.01961
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Figure 1: Illustrative example of the DROP-LNS framework
with a main thread “M" and two worker threads “1" and “2".
Arrows are the actions from each thread.
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Figure 2: Conceptual timelines of parallelism variants. Black
blocks indicate the productivity, and red lines indicate the
idle time. Blue arrows indicate events where a worker thread
receives tasks, and purple dotted arrows indicate events
where a worker thread returns a solution.

with the fixed capacity of tasks until the time budget runs out. An
idle worker thread tries to access the task queue and, if successful,
pops a task from it. Before executing a task, the worker thread
tries to access and copy the shared variables to its private memory,
i.e., the best-known solution P and weights for destroy heuristics.
Then, it performs a pair of destroy and repair operations to the
copied best-known solution based on the copied weight of each
destroy heuristic, resulting in an updated solution, denoted as 𝑃new.
After the operations, the worker thread tries to access the shared
variables. If the updated SOC is lower than that from the shared
variables, then the best-known solution is replaced with the one
in the private memory. The weight value corresponding to the de-
stroy heuristic from the private memory is updated according to
the SOC difference between P and 𝑃new. That is, the worker threads
of DROP-LNS update the best-known solution asynchronously, as
illustrated in Figure 2a.

3 PARALLELISM VARIANTS OF MAPF-LNS
We also implement two parallelism variants: SYNC-LNS and DETA-
LNS. SYNC-LNS selects the same number of neighborhoods as the
worker threads and performs a pair of destroy and repair operations
individually on each worker thread. After all the worker threads
complete their own destroy and repair operations, SYNC-LNS up-
dates the best-known solution and the weight value by comparing
the solution with the lowest SOC and the selected destroy heuristic.
That is, it synchronizes solutions and weights at each iteration by
selecting the one with the lowest SOC, as illustrated in Figure 2b.
Inspired by [2] that processes LNS using four CPUs, DETA-LNS
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Figure 3: Average suboptimality ratios among all instances
with 300 agents solved by SYNC-LNS, DETA-LNS, and DROP-
LNS with 2, 4, 8, and 16 threads.
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Figure 4: Suboptimality ratios of instances solved by LaCAM*,
MAPF-LNS, and DROP-LNS. Instances are grouped by the
number of agents.

“detaches” one MAPF-LNS process individually on a worker thread
in parallel with equal weights of each destroy heuristic. When
the time budget runs out, it selects the solution with the lowest
SOC among all solutions generated by the worker threads. That
is, DETA-LNS never synchronizes solutions and weights until the
time budget runs out, as shown in Figure 2c.

4 EMPIRICAL EVALUATION
We use a 4-neighbor grid map of size 32× 32 from the MAPF bench-
mark suite [5]. DROP-LNS outperforms SYNC-LNS and DETA-LNS
while maintaining its performance as the number of threads in-
creases, and outperforms the state-of-the-art algorithms for any-
time MAPF, namely LaCAM* and MAPF-LNS, as shown in Fig-
ures 3 and 4 respectively. Please refer to our full paper in https:
//arxiv.org/abs/2402.01961 for more details.

5 CONCLUSION
In this work, we presented DROP-LNS, a parallel framework that
performs multiple destroy and repair operations concurrently to
explore more regions of the search space within a limited time
budget, while the currently best-known solution is updated asyn-
chronously to maintain the productivity of worker threads. The
empirical evaluations show that DROP-LNS outperforms state-of-
the-art anytime algorithms such as MAPF-LNS and LaCAM* in the
MAPF benchmark. Future work includes developing more sophisti-
cated mechanisms for synchronization and extensions to anytime
bounded-suboptimal algorithms and parallel algorithms using GPU.
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