
UI-Route: An Ultra-Fast Incremental Maze Routing Algorithm
Tsung-Wei Huang∗, Pei-Ci Wu†, and Martin D. F. Wong‡

∗twh760812@gmail.com, †peiciwu@gmail.com, ‡mdfwong@illinois.edu
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL, USA

Abstract—Grid-based maze routing is a fundamental problem in
electronic-design-automation (EDA) domain. A core primitive deals with
a large query set about route connectivity subject to incremental changes
on grid graph. Existing approaches pertain to batch processing, where
each route query is independently and repeatedly solved by a routing
procedure. Few researches so far discuss an efficient utilization of search
knowledge in incremental fashion, which could dramatically speed up
the search. Unfortunately, existing algorithms nearly rely on irregular
and highly divergent search space, imposing acceleration challenges on
refitting them to incremental version. Consequently, in this paper we
present UI-Route, an ultra-fast incremental maze routing algorithm in
grid environment. UI-Route is unique in breaking route equivalence,
proving that a huge amount of equivalent search efforts can be optimally
and incrementally eliminated. Equivalence breaking enables regularized
search space, delivering well-tabulated search knowledge through the
incremental processing. Moreover UI-Route is largely orthogonal to
many applications built upon maze routing and therefore can seamlessly
substitute for speedup. Experimental results on a set of modern circuit
benchmarks demonstrate that UI-Route achieves prominent speedup over
existing algorithms.

I. INTRODUCTION

Grid-based maze routing is a fundamental problem in electronic-
design-automation (EDA) domain [2], [8], [15]. Very common are
applications dealing with signal connectivity between electronic
components in order to design integrated circuits (ICs) or printed
circuit boards (PCBs). A coding primitive typically involves a critical
amount of subroutine calls of either route queries or incremental
updates onto grid graph. A high-quality maze router is definitely
positive to improve runtime bottleneck and tool scalability, especially
for modern circuit designs which are far more dense and complex
than last decades. Therefore, the goal in this paper is to revisit maze
routing by a new incremental algorithm we have developed as well
as a comparative investigation into existing algorithms under modern
circuit benchmarks [11], [14].

Maze routing has received extensive research interests over the last
decades [1], [3], [8], [13], [15]. Prior works focus on single routing
instance, being either complete and optimal variants of breadth-first
propagation (BFP) which often incur larger search space [4], [6],
[9], or families of depth-first line search (DFL) which instead trade
completeness or optimality for speedup [7], [10], [12]. Despite satis-
factory performance for single routing instance, very few researches
so far discuss an incremental processing in an efficient and compact
manner as required in real applications. Existing approaches mostly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

SLIP ’14, June 01 - 02 2014, San Francisco, CA, USA
Copyright 2014 ACM 978–1–4503–3053–4/14/06 $15.00.
http://dx.doi.org/10.1145/2633948.2633950

rely on batch processing, in which each problem instance is fed
as an independent input for the routing procedure. Unfortunately,
algorithmic families like BFP and DFL have irregular and highly
divergent search space, which imposes acceleration intractabilities on
refitting them to incremental version. As a result, blind accumulation
of duplicate search efforts is inevitable.

In this paper we present UI-Route, a new incremental maze
routing algorithm motivated by explicit breaking of route equivalence
on grid graph. Preserving the completeness and optimality, UI-
Route adopts equivalence breaking strategies to regularize the search
space. Regularized search space allows search knowledge to be well-
tabulated, offering not only fast reflection to environmental changes
but also huge savings from overlapped search efforts. A comparative
example in Figure 1 demonstrates 2804× and 331× reductions on
search efforts in terms of node expansions comparing UI-Route with
two popular algorithms – Lee’s algorithm and generic A* search [6],
[9]. We highlight three key features of UI-Route: 1) it is simple and
optimally efficient; 2) it implements incremental table lookup scheme
to avoid duplicate search efforts, thereby contributing to significant
speedup; 3) it is highly orthogonal to many applications built upon
maze routing and thus can substitute for solid speedup.

(a) Circuit image (b) Lee's algorithm

(c) A* search (d) UI-Route

Obstacle Search effort A specified maze route

Obstacle Search effort A specified maze route

(a) Lee's algorithm (b) A* search (c) UI-Route

Figure 1. Comparison of search efforts on a circuit map. (a) Lee’s algorithm
requires 1323321 node expansions. (b) Regular A* search requires 209969
node expansions. (c) UI-Route requires only 635 node expansions.

Our contributions are summarized as follows: Firstly, we explicitly
identify the route equivalence on grid graph and propose guidelines
for equivalence breaking. By approaching route equivalence, we
derive a compact and efficient incremental processing which speeds
up not only the search itself but the entire class in conjunction with
maze routing. Secondly, we prove the completeness and optimality of
UI-Route, standing out above many literatures that usually trade either
completeness or optimality for speedup. Thirdly, we run experiments
on a set of industrial circuits released from recent ISPD contests [11],
[14] and undertake an empirical analysis comparing UI-Route with
existing maze routing algorithms. Comparatively, UI-Route demon-
strates prominent speedup over existing algorithms. The experimental
result can be an indicator assisting researchers in optimizing runtime
bottleneck without loss of optimality.

II. INCREMENTAL MAZE ROUTING PROBLEM

Consider a two-dimensional (2D) grid graph G = {V,E}, where
V is the node set for grid entries and E is the edge set for neighboring
connections. Non-traversable nodes such as on-grid obstacles and
obstructions are also considered. In order to comply with most EDA
applications, Manhattan routing direction (i.e., vertical/horizontal) is
preferred. A maze route Rs→t = 〈S, vi, · · · , T 〉 is an ordered walk
starting at source node S and ending at target node T . The route
length is the number of edges connecting intermediate nodes along
the route. A non-traversable node or a non-reachable path has infinity
value. The problem input is a sequence consisting of three kinds of
requests: 1) Query(S, T) asks the shortest route from the source node
S to the target node T ; 2) Block(g) blocks a traversable grid node g;
3) Unblock(g) unblocks a non-traversable grid node g. The problem
formulation we defined in this paper is in fact online, i.e., prohibiting
input disclosure for possible preprocessing, in order to reach more
generality. An example of the incremental maze routing problem is
given in Figure 2.

(a) Initial grid graph

(b) Query: Maze route

 T

S

(c) Update: Block/Unblock

(d) Query: Maze route

 S
 T

(a) Query: Maze route

 T

S

(b) Update: Block/Unblock

(c) Query: Maze route

 S
 T

Figure 2. Incremental maze routing problem. (a) An initial grid graph. (b) A
query about the maze route. (c) Graph update via blocking and unblocking.
(d) A query about the maze route following the graph update.

We briefly highlight the necessities and difficulties of incremental
maze routing problem.

1) Practicality. Most real applications require incremental pro-
cessing, in which case having only one routing instance to be
solved is less likely to occur but rather a large data subject to
incremental changes on grid graph is designated.

2) Knowledge extraction. To achieve efficient incremental pro-
cessing, consistent and regular information must be extracted
from the search. We must be mindful that, as program pro-
gresses, such information might become more or less prolific.

3) Portability. To increase software portability, we are interested
in the ease of implementation which imposes the least restric-
tion on memory and computational requirements.

The goal of this paper is to represent the incremental processing
by a data structure that offers knowledge about optimal search space
and quick reflection to graph updates.

III. UI-ROUTE

In this section we begin to introduce UI-Route. The key of UI-
Route is to regularize the optimal search space by approaching route
equivalence. We first discuss the idea of generic A* search and
the explicit definition of route equivalence. Then we describe the
technical implementation of UI-Route in bottom-up fashion.

A. Generic A* search

A* search is a general graph search algorithm that finds a least-
cost route from a given source node to the target node [6]. A* search
is featured by its scoring function, f(x) = g(x) + h(x), applied
for evaluating the cost of a current visiting node x. Note g(x) is
the cost from the source node to the visiting node x, and h(x) is
the “estimated” (or predicted) cost from the visiting node x to the
target node. This concept is abstracted in Figure 3. Every time A*
search picks up a node with the the lowest score (lowest f(x)) for
expansion, i.e., exploring its neighbors for propagation. As a result,
A* search is sometimes called the best-first search, because each
expansion is prioritized on the route that is most likely to lead toward
the target node. Generally speaking, Dijkstra’s shortest path algorithm
is a special case of A* search in which h(x) is always equal to zero.

-

- - - - - - - - - -

 -

 3 5 7 9 11 13 - -

 2 5 8 11 14 16 T -

- - 1 2 5 8 11 14 16 -

- - S 2 5 8 11 13 14 -

2 2 2 2 2 2 2 2 2 3

 2

 1 2 2 2 2 2 1 3

 1 3 3 3 3 2 T 2

2 1 1 1 3 3 3 3 2 3

3 3 S 2 3 3 3 2 1 3

(a) Initial weighted grid

(c) Condition 2

- - - - - - - - - -

 -

 - - - - - - - -

 2 5 8 11 14 16 T -

- - 1 2 5 8 11 14 16 -

- - S 2 5 8 11 13 14 -

(b) Condition 1

- - - - - - - - - -

 -

 3 5 7 9 11 13 - -

 2 5 8 11 14 16 T -

- - 1 2 5 8 11 14 16 -

- - S 2 5 8 11 13 14 -

(d) Condition 3

Visiting node g1 Breaking node g2 Breaking node g3

- 4 5 6 7 8 9 10 11 -

- 3 - - - - T -

- 2 - - - - - -

- 1 - - - -

- S - - - - - -

- - - - - - - - - -

(d) Condition 3

- - - - - - - - -

- - - - - - T -

- 2 3 4 5 - - -

- 1 - - - -

- S - - - - - -

- - - - - - - - - -

(c) Condition 2

 T

S

(a) Initial grid

-- - - - - - - - -

- - - - - - T -

- - - - - - 11 -

- - - - 10 -

- S - - - - 9 -

- 1 2 3 4 5 6 7 8 -

(b) Condition 1

Visiting node g1 Breaking node g2 Breaking node g3

V TS

g(v) h(v)

Shortest length Estimated length

Figure 3. Concept of A* search.

A* search has twofold advantages. Firstly, since A* search adopts
BFP yet framing it in a smarter way, it guarantees to find a route
between any give source-target pair if one exists. Secondly, if h(x)
is admissible, meaning that it never overestimates the actual cost
from the current node to the target node, then A* search is optimal.
Therefore, for the Manhattan routing (i.e., only horizontal and vertical
connections allowed), h(x) is usually set as the Manhattan distance
from any visiting node to the target, because it is the smallest possible
distance between any two points in the Manhattan space.

B. Equivalent Routes and Equivalence Breaking

UI-Route is cored on approaching equivalent routes, selectively
expanding only certain nodes that break route equivalence. We refer
to these nodes as “breaking nodes,” terming their nature of breaking
route equivalence. We define the concepts of equivalent routes and
breaking nodes in the following.

Definition 1: Given two distinct grid nodes g1 and g2, two routes r1
and r2 from g1 to g2 are equivalent, if they have identical lengths.

Definition 2: Given two distinct grid nodes g1 and g2, we define g2
as a breaking node from g1, if g2 has at least one neighbor n such
that g2 is a must intermediate on the optimal route from g1 to n.

Figure 4 illustrates our definitions for equivalent routes and break-
ing nodes. In (a), all specified maze routes have identical lengths and
hence they are equivalent. In (b), the grid node marked by “B” is
one possible breaking node from the leftmost turning node. This is
because it has one neighbor, that is the target node below, whose
optimal route heading from the leftmost turning node must include
“B” as an intermediate. UI-Route is motivated by the two important
concepts, searching over only a small set of breaking nodes to reach
an optimal route.

C. Dimensional Extraction of Equivalence Breaking

Aforementioned concepts of equivalent routes and breaking nodes
are in fact offline definitions. They require knowledge of node pairs
and routes passing through to be given. Nonetheless, it is hard for
normal search routine to directly identify route equivalence, since
each expansion is reached by its neighbors piece-by-piece without any
advance knowledge. Therefore, a rephrased definition of equivalence
breaking is required.

2

(a) Symmetric routes

2 2 2 2 2 2 2 2 2 3
 2
 1 2 2 2 2 2 1 3
 1 3 3 3 3 2 T 2

2 1 1 1 3 3 3 3 2 3
3 3 S 2 3 3 3 2 1 3

(b) Breaking node B

2 2 2 2 2 2 2 2 2 3
 2
 1 2 2 2 2 2 B 3
 1 3 3 3 3 2 T 2

2 1 1 1 3 3 3 3 2 3
3 3 S 2 3 3 3 2 1 3

Both route costs = 16 Route cost prior B = 13

 T

S

B

 T

S

(a) Equivalent routes (b) Breaking node B

All route lengths = 12 Route length prior to B = 10

Figure 4. Illustration of definition 1 and definition 2. (a) Four equivalent
routes. (b) A breaking node from the leftmost turning node (red solid circle).

Definition 3 - Horizontal breaking: Given a node g and its present
search direction d in horizontal, the node gH is a breaking node from
g if node gH is reachable from g by heading along direction d and
is the nearest such node to satisfy one of the following conditions:

1) Condition 1. gH is blocked or out of boundary.

2) Condition 2. gH is traversable and at least one node g′H
vertically adjacent to the predecessor of gH (i.e., one step prior
to gH) is blocked, while the node g′′H horizontally adjacent to
g′H in the direction d is traversable.

Condition 1 exerts a sanity check in which no equivalence in-
formation can be further extracted. Condition 2 essentially supports
definition 2 for that gH is a must intermediate on the shortest route
heading from g to g′′H . In this regard, we are able to claim lemma 1,
which can be illustrated in Figure 5.

Lemma 1: There are totally six cases of horizontal breaking nodes
on any grid graph.

Case 3

B B

B B

Case 4 Case 5 Case 6

B B

B B

Case 1 Case 2

Figure 5. Six cases of horizontal breaking nodes (marked by “B”), where
cases 1-2 and cases 3-6 illustrate the condition 1 and condition 2, respectively.

Using definition 3 as primitives, we are able to tabulate the
horizontal breaking for quick information lookup and update. In
particular, successor is a pointer table referring each node to its
successive horizontal breaking node, while satellite is a sentinel table
for each breaking node to keep track of its furthest predecessor for
such breaking property to hold. An illustration is given in Figure 6,
with numbers in tables indicating the y coordinate values accordingly.
The numbers around the boundary denote the policy of our coordinate
system (i.e., x and y correspond to vertical and horizontal coordinates
in respective). In the earliest beginning, entries of successor and
satellite tables are respectively initialized as NIL and grid nodes of
respective entries.

Algorithm 1 presents the table lookup for horizontal breaking
nodes. Given a node n and its one-step predecessor p along horizontal
direction d, line 1 attempts to test whether a successive breaking node
from p has been recorded ever. If yes, line 2:7 further examines the
satellite field to verify the validity as it could be altered by graph
updates. Otherwise, lemma 1 is recursively applied to renew the table
(line 9 for cases 1–2 and line 10:15 for cases 3–6). On the basis of
horizontal breaking, we define vertical breaking to fulfill the concept
of equivalence breaking.

Definition 4 - Vertical breaking: A node gV is vertical breaking
from node g along vertical direction d′, if gV is the nearest node

(a) successor["→"][g].y

9 9 9 9 9 9 9 9 11 11

7 7 7 7 7 7 11 11

5 5 5 5 7 7 11 11

3 3 7 7 11 11

3 3 9 9 9 9 11 11

5 5 5 5 11 11 11 11 11 11

(b) satellite["→"][gH].y

 1

 1

 1 5

 1 5

 1 5

 1

9

9

9

9

9

5

(c) successor["←"][g].y

0 0 0 0 0 0 6 6 6 6

0 0 0 0 0 0 8 8

0 0 2 2 2 2 8 8

0 0 4 4 8 8

0 0 4 4 6 6 6 6

0 0 2 2 2 2 2 2 2 2

(d) satellite["←"][gH].y

 10

 10

 6 10

 6 10

 6 10

 10

6

6

2

2

2

2

0 ≤ y ≤ 11

1
 ≤

 x
 ≤

 6

0 1 2 3 4 5 6 7 8 9 10 111 2 3 4 5 6 7 8 9 10

1

2
3

4
5

6

1

2
3

4
5

6

Figure 6. UI-Route tabulates the horizontal breaking information via two
tables successor and satellite. Table successor records successive breaking
nodes while table satellite monitors the corresponding validity. (a)-(b) Right
direction. (c)-(d) Left direction.

from g such that there exists a horizontal breaking node by condition
2 from gV in either horizontal direction d (i.e., d′⊥d).

Algorithm 1: TableLookup (p, n, d)
Input: nodes p and n, and horizontal direction d
Output: the breaking node gH from node p along direction d

1 if successor[d][p] 6= NIL then
2 if d = “→ ” and satellite[d][successor[d][p]].y ≤ p.y then
3 return successor[d][p];
4 end
5 if d = “← ” and satellite[d][successor[d][p]].y ≥ p.y then
6 return successor[d][p];
7 end
8 end
9 successor[d][p]← n;

10 if n.traversable then
11 if n is a horizontal breaking node from p along d then
12 return n;
13 end
14 successor[d][p]← TableLookup(n, n.neighbor(d), d) ;
15 end
16 return successor[d][p];

D. Incremental Processing for Graph Update

We begin the incremental processing by presenting the reflection to
graph update. Without loss of generality, we deal with a single node as
multiple updates can be decomposed into independent unit changes.
We consider two kinds of updates, Block and Unblock, whereby a
node is requested to be blocked or unblocked. As both operations
are likely to affect the underlying structure of route equivalence,
the goal is to provide quick reflection to this change with minimal
tabular efforts imposed. We first introduce a subroutine, shrink, as
in Algorithm 2, in which a non-preemptive max/min operation is
applied to shrink the satellite field of a given horizontal breaking
node g down to y with respect to the direction d.

Blocking and unblocking operations alter the underlying structure
of horizontal breaking by three possible outcomes as sketched in
Figure 7. Each outcome can be identified by referring to the differ-
ence between prior satellite field and present graph as described in
Algorithms 3–4. Observing table satellite is one-to-one monitoring,
we avoid renewing table successor as this manner incurs more tabular
efforts, but rather shrink the satellite field of certain entries. In

3

G1

1
1
1

3
3
3

satellite1[→] G1' satellite1'[→]

(a) Original grid graph G1 (b) Block(2, 2)

1 2 3 1 2 30 4 1 2 3 1 2 30 4

G2

1

1

2

2

G2'

1 2 3 1 2 30 4 1 2 3 1 2 30 4

3
3
3

satellite1[←]

1 2 30 4
1
1
1

1 2 30 4

satellite1'[←]

3

3

1 2 30 4

satellite2[→] satellite2[←] satellite2'[→] satellite2'[←]

2

2

1 2 30 4

(c) Original grid graph G2 (d) Unblock(2, 2)

BB B B B B

(a) Consistent (b) Vanish (c) Cutoff

1 2 30 1 2 30 1 2 30 1 2 30 1 2 30 1 2 30
1
2
3

1
2
3

1
2
3

→ Block(3, 2) → Block(3, 2) → Block(3, 0)

B B B B B B

(d) Consistent (e) Vanish (f) Cutoff

1 2 30 1 2 301 2 30 1 2 30 1 2 30 1 2 30
1
2
3

1
2
3

1
2
3

→ Unblock(3, 1) → Unblock(3, 1) → Unblock(3, 1)

Figure 7. Three possible outcomes of horizontal breaking after unit graph
update. (a)-(c) Case of node blocking. (d)-(f) Case of node unblocking.

Algorithm 2: shrink(g, d, y)
Input: a grid node g, direction d, and y coordinate value

1 if g 6= NIL and d = “→ ” then
2 satellite[d][g].y ← min(g.y, max(satellite[d][g].y, y));
3 end
4 if g 6= NIL and d = “← ” then
5 satellite[d][g].y ← max(g.y, min(satellite[d][g].y, y));
6 end

particular, Algorithms 5–6 carry out constant time manipulation.
For convenience, dx(dy) denotes unit x(y) component of a diagonal
direction d and reverse(d) denotes the mirror of a given Manhattan
direction d. Algorithm 5 first blocks the satellite field of the blocked
node (line 3) and any possible horizontal breaking passing through
(line 4). The successor of this blocked node is no longer valid as
well (line 5). Then Algorithms 3–4 are in turn applied to examine
any change along with shrinkage performed if necessary (line 7:14).
Likewise, Algorithm 6 first resets the satellite and successor fields
of the unblocked node (line 2:5). The structural reflection to node
unblocking is similar to the one in Algorithm 5, except for an opposite
order of examination (line 6:13).

E. Route Query

Using Algorithms 1–6 as infrastructure, we develop the solution
to route query – finding the shortest maze route from a given source
node to a target node. Like most maze routing algorithms, the

Algorithm 3: vanish(v, u, d)
Input: grid nodes v and u, and direction d
Output: true if v is vanished from u along d or false otherwise

1 if satellite[d][v] = v then
2 return false;
3 end
4 if v is a horizontal breaking node from u along d then
5 return false;
6 end
7 return true;

Algorithm 4: cutoff(v, u, d)
Input: grid nodes v and u, and direction d
Output: true if v cuts off the successor of u along d or false otherwise

1 if satellite[d][v] 6= v then
2 return false;
3 end
4 if v is not a horizontal breaking node from u along d then
5 return false;
6 end
7 return true;

Algorithm 5: Block(g)
Input: a traversable node g

1 Block the node g;
2 for d ∈ {“→ ”, “← ”} do
3 satellite[d][g]← g;
4 shrink(successor[d][g], d, g.neighbor(d).y);
5 successor[d][g]← NIL;
6 end
7 for d ∈ {“↘ ”, “↙ ”, “↗ ”, “↖ ”} do
8 if vanish(g.neighbor(dx), g.neighbor(d), reverse(dy)) then
9 shrink(g.neighbor(dx), reverse(dy), g.y);

10 end
11 if cutoff(g.neighbor(d), g.neighbor(dx), dy) then
12 shrink(successor[dy][g.neighbor(dx)], dy , g.neighbor(d).y);
13 end
14 end

Algorithm 6: Unblock(g)
Input: a non-traversable node g

1 Unblock the node g;
2 for d ∈ {“→ ”, “← ”} do
3 satellite[d][g]← g.y;
4 successor[d][g]← NIL;
5 end
6 for d ∈ {“↘ ”, “↙ ”, “↗ ”, “↖ ”} do
7 if vanish(g.neighbor(d), g.neighbor(dx), dy) then
8 shrink(g.neighbor(d), dy , g.neighbor(d).y);
9 end

10 if cutoff(g.neighbor(dx), g.neighbor(d), reverse(dy) then
11 shrink(successor[reverse(dy)][g.neighbor(d)], reverse(dy), g.y);
12 end
13 end

route distance and trace information are recorded in tables dis and
pie, respectively. The key to establish a source-target connection is
augmenting another tabular field for the target node. To achieve this
goal, we introduce the following definition.

Definition 5 - Target breaking: The target node T belongs to both
horizontal breaking and vertical breaking.

Target breaking is in fact a volatile definition. Since different
route queries can have distinct target nodes, dedicated tabular field
is required for each unique target node. This scenario is realized
by Algorithm 7. Initiating from the target node T , the horizontal
breaking successor of each node all the way to the leftmost and
rightmost traversable nodes are redirected toward the target node, for
purpose of creating target breaking (lines 6 and 14). Two backup
storages (lines 5 and 13) are required for restoration when target
breaking is being removed (lines 8 and 16). Had tabular field of target
breaking been created, Algorithm 8 is applied to identify horizontal
breaking nodes for successive search expansions. Rather than starting
all over again, we adopt incremental search by calling Algorithm 1
to avoid duplicate search efforts on finding overlapped horizontal
breaking nodes among different route queries (line 1). This step
plays a pivotal role in speeding up the search, especially for frequent
routes passing similar or identical regions. Recalling graph updates
might result in incomplete satellite field, we need to renew such
coverage so that every horizontal breaking node explored from the
most recent search can be included (line 2:7). Finally, the horizontal
breaking node undertakes the relaxation procedure and is returned if
the corresponding distance label can be improved (line 8:14).

4

Algorithm 7: setTargetBreaking(T , f)
Input: the target node T and a command flag f

1 for d ∈ {←,→} do
2 g ← T ;
3 while g.traversable do
4 if f = “CREATE” then
5 backup[“successor”][d][g] ← successor[d][g];
6 successor[d][g] ← T ;
7 else
8 successor[d][g] ← backup[“successor”][d][g];
9 end

10 g ← g.neighbor(reverse(d));
11 end
12 if f = “CREATE” then
13 backup[“satellite”][d][T] ← satellite[d][T];
14 satellite[d][T] ← g.neighbor(d);
15 else
16 satellite[d][T] ← backup[“satellite”][d][T];
17 end
18 end

Algorithm 8: GetBreakingNode (p, n, d)
Input: nodes p and n, horizontal direction d
Output: horizontal breaking node from p along d

1 n← TableLookup(p, n, d) ;
2 if d = “→ ” and p.y < satellite[d][n].y then
3 satellite[d][n]← p;
4 end
5 if d = “← ” and p.y > satellite[d][n].y then
6 satellite[d][n]← p;
7 end
8 ∆y ← |n.y − p.y|
9 if !n.traversable or dis[p] + ∆y ≥ dis[n] then

10 return φ;
11 end
12 dis[n]← dis[p] + ∆y ;
13 pie[n]← d ;
14 return n;

The pesudocode of our search algorithm is presented in Algorithm
9, which is structured by generic A* framework. Prior to the search,
Algorithm 7 is called to create dedicated tabular field for the target
breaking (line 1). The priority queue is keyed on A* score and
Manhattan distance is our default heuristic estimation (line 3). The
major search loop (line 6:37) iteratively looks for a node with lowest
A* score from the priority queue and extracts it out for expansion
(line 7). Iteration stops when the target node is ever extracted out,
in which the optimal maze route has been found (line 8:11), or no
more queuing operations remained in which no path exists. During
each expansion, we attempt to identify breaking nodes, instead of
blindly picking up neighboring nodes, for successive expansions (line
14:32). If the present search direction is horizontal, we directly call
Algorithm 8 to attain horizontal breaking nodes (line 14:16). If the
present search direction is vertical, we incrementally apply Algorithm
8 for each vertical step until the first successful return of vertical
breaking by definition 4, or no further step can be proceeded (line
17:31). In the end of expansion, we perform queuing operations only
on breaking nodes to minimize the queuing efforts (line 33:35). Since
the target breaking is only active for this search, the corresponding
tabular field needs to be restored to previous values prior to the return
of route information (line 38:39).

Algorithm 9: Query(S, T)
Input: source node S and target node T
Output: shortest route Rs→t from source node S to target node T

1 setTargetBreaking(T , “CREATE”);
2 Initialize dis←∞, π ← NIL, Rs→t ← φ;
3 Priority queue Q keyed on min{g ∈ Q|dis[g] + Heuristic(g, T)};
4 dis[S]← 0;
5 Q.insert(S);
6 while Q 6= φ do
7 top ← Q.extract();
8 if top = T then
9 Rs→t ← backtrack route from T to S;

10 break;
11 end
12 for d ∈ {↑, ↓,←,→} do
13 n ← top.neighbor(d);
14 if d = “→ ”or“← ” then
15 Ψ← GetBreakingNode(top, n, d);
16 else
17 p← top;
18 while n.traversable and dis[p] + 1 < dis[n] do
19 dis[n] ← dis[p] + 1;
20 π[n] ← d;
21 r ← n.neighbor(“→ ”);
22 Ψ← Ψ∪ GetBreakingNode(n, r, “→ ”);
23 l← n.neighbor(“← ”);
24 Ψ← Ψ∪ GetBreakingNode(n, l, “← ”);
25 if Ψ 6= φ or n = T then
26 Ψ = Ψ ∪ n;
27 break;
28 end
29 p← n;
30 n← n.neighbor(d);
31 end
32 end
33 for g ∈ Ψ do
34 Q.enque(g);
35 end
36 end
37 end
38 setTargetBreaking(T , “REMOVE”);
39 return Rs→t;

F. Exemplification

The algorithmic procedure of UI-Route can be visualized in Figure
8. For concise illustration, we do not list the successor table as it can
be inferred by the satellite correspondences. The coordinate system
used in this exemplification is the same as Figure 6. We use solid
lines to suggest the explicit search expansion in which all nodes along
the line account for explorations of horizontal breaking nodes, and
draw dashed lines for implicit search where the horizontal breaking
successor is identified via table lookup. In the initial stage, all entries
of satellite table are initiated as the corresponding nodes. We can see
in (a)–(d) UI-Route begins with a fresh search, exploring all required
breaking nodes for the search expansion, meanwhile storing the
locations of horizontal breaking nodes into the table. The existence
of vertical breaking node is referred to any traversable horizontal
breaking node along either horizontal search direction. For example
in (b), the node below the source node is a vertical breaking node
from the source, since it has a horizontal breaking successor at (6,
5). The benefit of tabulating horizontal breaking is clearly exhibited
when dealing with the second route query in (e). As shown in (f)–
(h), the solution space to this query shares almost the same set of
horizontal breaking nodes with the previous query, whose locations
have been recorded and thus can be quickly identified by table
lookup for the subsequent search. In other words, the search routine

5

(a) Query(S, T)

 T

S

B B

 T
B B

S B B
B B

 2

 2 T

 2 5

 2 5

S 2 5

 2

9

 T

 5

 S 5

5
5
2
2
2
2

S

T

B B

S B

B T
B B

2

2
2 5

2 5
2 5

2

9

5
5

5
5
2
2
2
2

(b) Search expansion (c) satellite["→"][gH].y

C C
C

C C

C V
V

3

3
5

2 5
2 5

2

9

5

1
1
1
2
2
2

(d) satellite["←"][gH].y

(e) Query(S, T) (f) Search expansion (g) satellite["→"][gH].y (h) satellite["←"][gH].y

(i) Block(2, 2) & Block(6, 8) (j) Unblock(4, 4) (k) satellite["→"][gH].y (l) satellite["←"][gH].y

(m) Query(S, T) (n) Search expansion (o) satellite["→"][gH].y (p) satellite["←"][gH].y

S

T

S B B

B B T

B B

1 3

1 3
5

1 5
1 5

1

9
3
3

5

1
1
1
2
2
2

Obstacle Breaking node Horizontal breaking Vertical breaking C Cutoff V VanishImplicit search

Figure 8. Exemplification of UI-Route. (a) The first route query. (b) UI-Route begins with a fresh search, exploring vertical breaking nodes and horizontal
breaking nodes for search expansion. (c)–(d) During the search, the locations of horizontal breaking nodes explored for this search are stored in table. (e) The
second route query. (f) The second search routine performs implicit search on horizontal breaking nodes via table lookup to avoid duplicate search efforts.
(g)–(h) The table remains unchanged for no new horizontal breaking nodes introduced by this search. (i) Cutoff cases by blocking. (j) Vanish and cutoff
cases by unblocking. (k)–(l) Structural changes of underlying horizontal breaking are reflected by shrinking the satellite field. (m) The third route query.
(n) The search routine explores a few extra horizontal breaking nodes to obtain the shortest route. (o)–(p) Besides the prior tabular field, several entries are
incrementally renewed to cover newly found horizontal breaking nodes.

can incrementally jump over horizontal breaking nodes instead of
explicitly searching each of them all over again. This scenario is the
key for UI-Route to speed up the search, especially when similar
or identical routes passing through common region. An example of
graph update is shown in (i)–(l). We can see in (i) the blocked node
at (2, 2) introduces five cutoff cases on present grid graph, while
the blocked node at (6, 8) has no impact on the current satellite
field as a result of consistent case. On the other hand, the unblocked
node at (4, 4) vanishes, in addition to itself, the horizontal breaking
node passing through its diagonal corner at (3, 5). After applying
the shrink procedure, the satellite field of each affected horizontal
breaking node is reflected as (k) and (l). Notice that both successor
and satellite fields could be incomplete since UI-Route fills in the two
tables in incremental fashion. Only fields necessitated for solving a
given route query are involved in tabular manipulations. Finally, in
dealing with the third route query, a few horizontal breaking nodes are
additionally explored by the search routine along with an incremental
update of the corresponding tabular fields as shown in (m)–(p).

IV. COMPLETENESS AND OPTIMALITY OF UI-ROUTE

To prove the completeness and optimality of UI-Route, we claim
two key features: 1) the optimal route appears in the search space of

UI-Route; 2) once the target is expanded (i.e., extracted out of the
priority queue), UI-Route has found an optimal route. For the sake
of clarity, we decompose Theorem 1 into two sections by separating
completeness and optimality.

Theorem 1-1: UI-Route is complete.

Proof: The input grid graph we considered in this paper is
indeed a locally finite graph, which means there is only a finite
number of paths with finite length values thorough the entire search.
Specifically, the successor table stores the information that can be
exactly viewed as a segment set consisting of horizontal breaking
nodes. By travelling over these horizontal breaking nodes, we are
able to virtually visit all nodes during the search routine. This fact, as
well as definition 5, means that the target node must ever participated
in queuing operations during the entire search if at least one source-
target route exists. If not by assumption, there is at least one another
path after the search eventually ends, which contradicts the fact that
only a finite number of paths thorough the entire search. Therefore,
UI-Route guarantees to return a route if one exists.

Theorem 1-2: UI-Route is optimal.

6

Proof: Proving the optimality of UI-Route is equivalent to
showing that once a node is extracted out of the priority queue, UI-
Route has found its optimal route. Since our heuristic is scored on
Manhattan distance which is admissible for A* search, we shall focus
on ordinary search procedure without heuristic score involved. We
should be also aware that the distance between successive breaking
nodes is always shortest due to the path monotonicity. Therefore we
can narrow down the scope of proof on breaking nodes. Let vext be
the node immediately extracted out of the priority queue and vpri
be the node ever extracted out prior to vext. The prove is to show
dis[vext] is optimal. Assuming the dis[vext] is not optimal, then there
exists another path passing through vpri and at least one intermediate
node v′ (v′ 6= vpri) such that the total route cost to vext is less than
dis[vext]. In other words, dis[v′] should be less than dis[vext]. By
definitions 3–5, such an intermediate node must be a breaking node
that remains in the priority queue. However, this contradicts the min
property of priority queue since node vext had been extracted out
prior to node v′. Therefore by contradiction dis[vext] is optimal. As
our heuristic score is admissible, framing the above proof by A*
search has no impact on the optimality of UI-Route [6].

S g2 g1

g3 g5 g4

g6 T

S

g2

g18

g3 g4

g5

g6 T

3

5
1

3

4

2

Figure 9. A partial solution trace demonstrates the search space of UI-Route
is only optimal for source-target connection.

The proof is true on the basis of breaking nodes, rather than all
traversable nodes as ordinary occasion. To be more precisely, UI-
Route is only optimal for peer-to-peer shortest connection instead
of all intermediates. An example of solution fragment is shown in
Figure 9. In the normal case, the shortest route from source node S
to node g2 is 5, whereas in the search space of UI-Route it turns out
to be 11. The reason is that g2 is a horizontal breaking node from
g1 and g1 is in turn a horizontal breaking node from S. Another
identical case is the search passing from g4 to g5. It is fair to claim
that UI-Route casts off the conventional shortest path structure and
gains speedup by searching over a relatively small set of breaking
nodes that are effective enough to construct the optimal route. From
this point of view, the speedup is obvious.

V. EXPERIMENTAL EVALUATION

We implement UI-Route in C++ language on a 2.67GHz 64-bit
Linux machine with 8GB memory. Experiments are undertook on
industrial benchmarks released from recent ISPD contests [11], [14].
Each circuit benchmark is linearly scaled into a two-dimensional
grid graph with maximum dimension equal to 2048. For each circuit
benchmark, an input sequence consisting of block, unblock, and query
operations is extracted from the following procedure: We iteratively
and randomly generate a route query and apply Lee’s algorithm
to solve it. If any exists, the route returned is blocked as physical
obstruction. Otherwise, we loop backward and unblock the previous
route until the query can be resolved. Iteration ceases when a total of
1000 route queries have been solved. The experiment is meaningful
since it simulates an incremental procedure that is widely employed
in many EDA applications.

A. Baseline Algorithms

In order to perform a controlled analysis, we limit the score
of comparisons to batch processing using maze routing algorithms
from EDA domain. Considering the page restriction, we are unable
to report all state-of-the-art but rather three representative – Lee’s
algorithm [9], A* search [6], and Soukup’s algorithm [12], which
turn out to be the most stable and efficient in respective BFP and
DFL families according to our implementations [1], [4], [5], [6], [7],
[9], [10], [12]. In fact, Soukup’s algorithm is the fastest over all trials.
The performance gap between optimal and suboptimal algorithms is
clear enough by comparing with Soukup’s algorithm. We quantify
performance in terms of average and maximum speedup acquired
to solve one query in relative to Lee’s algorithm. The accumulated
runtime has similar acceleration trend which approaches to the
average speedup value when input query keeps feeding. Since UI-
Route carries constant time overhead per unit graph update, the time
is negligible. For Soukup’s algorithm, we measure the suboptimality
by relative error in percentage.

B. Performance Comparison

We begin by comparing UI-Route with A* search algorithm. As in
Table I, the incremental processing of UI-Route exhibits convincing
speedup across all benchmarks over existing algorithms. The largest
difference is observed on superblue12 where UI-Route reaches the
goal by 10.7× faster, while A* search only acquires 5.9× speedup.
We conclude that even though A* search can generally reduce the
search efforts, there remains a far performance gap between batch
processing and incremental counterpart. As most BFP variants, A*
search has worst case of virtually exploring all nodes in which
situation, nevertheless, extra priority queue operations overwhelmed
the algorithmic advantages (see Figure 10). From this point of view,
equivalence breaking and tabular strategies prevent UI-Route from
blind accumulation of duplicate search efforts but otherwise a small
set of breaking nodes. As consequence, UI-Route achieves relatively
stable and promising reduction on search efforts by at least two orders
of magnitude, outperforming A* search across all circuit benchmarks.

(a) Lee's algorithm

Obstacle Search effort A specified maze route

(b) A* search (c) UI-Route

(a) Lee's algorithm

Obstacle Search effort A specified maze route

(b) A* search (c) UI-Route

Figure 10. An example from superblue2 shows that the reduced search efforts
by A* search are unable to amortize the time spent on queuing operations
sufficiently, resulting in an inferior speedup by 0.36×.

Next, we compare UI-Route with Soukup’s algorithm. Unlike A*
search which is much slower than Soukup’s algorithm, UI-Route
demonstrates comparable performance margin or even faster in some
cases such as adaptec3 and superblue15. Despite superior speedup,
the greedy DFL process excludes Soukup’s algorithm from optimal
family. The maximum error could reach up to 254% in superblue10
which is not acceptable for many wirelength-driven applications [14].
On contrast, UI-Route proves that by equivalence breaking a huge

7

TABLE I
PERFORMANCE COMPARISON BETWEEN UI-ROUTE AND EXISTING MAZE-ROUTING ALGORITHMS.

Circuit Grid Size Space
A* search [6] Soukup [12] UI-Route

ASP MSP ARS MRS ASP MSP ARS MRS ARE MRE ASP MSP ARS MRS

adaptec1 2048×2048 51% 3.9 17.4 25 196 7.2 30.1 32242 330047 3 74 6.8 25.4 50210 351188
adaptec2 2048×2048 36% 2.8 7.9 18.5 277.6 4.5 15.7 7405 133194 3 90 4.8 15.5 17105 241327
adaptec3 2048×2031 37% 2.9 7.2 15 76 4.8 14.8 964 145261 6 110 5.5 17.3 6090 59829
adaptec4 2048×2034 50% 3.9 10.7 20 122 6.7 28.1 1696 148285 6 101 7.1 25.8 10854 85404

bigblue1 2048×2048 72% 6.0 23.1 43 527 11.0 38.1 172538 532998 1 94 10.6 36.8 162449 1080055
bigblue2 2048×2040 59% 3.1 23.2 14 74.8 4.6 35.1 437 133599 9 187 5.8 28.3 1087 33682
bigblue3 2048×2036 32% 2.9 10.0 17.7 200 4.4 22.2 3800 85670 3 64 4.7 19.9 6216 312364
bigblue4 2048×2038 60% 4.5 14.5 26 100 6.7 30.3 424 43841 4 50 6.2 23.8 832 12129

superblue1 1502×2048 44% 3.5 15.6 23 396 5.9 23.9 20507 373452 2 163 5.7 23.2 15209 400133
superblue2 2048×1417 32% 2.3 10.8 14 775 3.6 20.0 8612 177841 3 154 3.8 14.9 8240 200991
superblue4 2048×1843 52% 4.0 13.8 23 465 7.5 21.1 38056 604577 2 150 6.9 24.4 31061 741609
superblue5 1885×2048 40% 2.4 13.8 17 239 3.6 17.8 15354 230696 3 235 3.8 16.2 4326 97962
superblue10 2048×1349 37% 3.2 9.6 19 280 5.5 20.1 6408 134373 4 254 4.8 15.0 4163 122562
superblue12 2048×1407 78% 5.9 21.7 36 369 11.5 56.8 121501 3677116 0 106 10.7 48.3 92905 1003173
superblue15 2048×1321 62% 3.6 13.4 18 234 6.6 26.9 7788 302598 10 199 7.2 30.4 9436 175248
superblue18 2048×1546 62% 5.4 17.3 31 367 10.8 41.9 55326 349027 2 68 9.7 40.6 39264 704330

ASP/MSP: Avg/Max speedup of CPU time (times). ARS/MRS: Avg/Max reduction on search efforts (times). ARE/MRE: Avg/Max relative error of suboptimality (%).

amount of search efforts can be incrementally skipped without loss
of optimality.

VI. CONCLUSION

In this paper we have presented UI-Route to approach incremental
maze routing problem. Unlike conventional batch processing, UI-
Route performs incremental search via explicit equivalence breaking
to avoid blind accumulation of duplicate search efforts. The proposed
guidelines of equivalence breaking speed up not only the search itself
but the entire domain in conjunction with incremental maze routing.
UI-Route has several merits such as simplicity, coding ease, and most
importantly the theoretically-proved completeness and optimality.
Besides, UI-Route is highly orthogonal to many applications built
upon maze routing and therefore can easily substitute for solid
speedup. Experimental results on modern circuit benchmarks have
demonstrated prominent speedup of UI-Route over existing algo-
rithms. Finally, we briefly highlight several implementation details
and trials that are worth delivering as follow:

• Clever data structure matters. We have implemented two
different data structures, binary heap and bucket heap, for pri-
ority queue operations. The bucket heap supports relatively fast
queuing operations than binary heap since most computations
are done within local array access. We observe using bucket
heap that UI-Route is able to improve speedup by about 17%.
In other words, the time reported in this paper should be viewed
as a generous upper bound on a custom implementation.

• Hidden experiments. We have implemented a vast of algo-
rithms while hiding most of them from discussion for scope
efficiency. These implementations include open entries such
as JPS and Tree Cache released in 2012–2013 Grid-Based
Path Planning Competition (GPPC) [1]. However, these entries
require diagonal angles to be enabled and hence are less suitable
for most applications in EDA domain.

• Generalization to weighted grid graphs. We have attempted
to suit UI-Route with weighted grid graphs. We alter condition 2
by checking the cost value estimated so far to identify horizontal
breaking nodes locally. The entire algorithm functions correctly
while speedup is not remarkable. We reason that various cost
distributions might force equivalent routes to exhibit wild swings
in the near future, rather than simply a branch from present

visiting node as uniform environment. In this case, a non-
negligible amount of computation efforts are spent on identifying
breaking nodes. A more sophisticated cutoff strategy needs to
be invented in the future work.

REFERENCES

[1] GPPC 2013: Grid-Based Path Planning Competition, Moving AI Lab.,
http://movingai.com/GPPC/

[2] C. J. Alpert, D. P. Mehta, and S. S. Sapatnekar, “Handbook of
Algorithms for Physical Design Automation,” CRC Press, 2009.

[3] T. Cazenave, “Optimizations of Data Structures, Heuristics and Algo-
rithms for Path-finding on Maps,” IEEE symp. on CIG, pp. 27–33,
2006.

[4] F. O. Hadlock, “A Shortest Path Algorithm for Grid graphs,” Networks,
vol. 7, pp. 323334, 1977.

[5] D. Harabor and A. Grastien, “Online Graph Pruning for Pathfinding on
Grid Maps,” Prof. AAAI, 2011.

[6] P. E. Hart, N. J. Nilsson, B. Raphael, “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths,” IEEE Trans. on SSC, vol. 4,
pp. 100–107, 1968.

[7] D. Hightower, “A Solution to Line Routing Problems on the Continuous
Plane,” Proc. ACM/IEEE DAC, pp. 1–24, 1969.

[8] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, “VLSI Physical
Design: From Graph Partitioning to Timing Closure,” Springer, 2011.

[9] C. Y. Lee, “An Algorithm for Path Connection and its Application,”
IEEE Trans. on Electronic Computers, vol. 10, pp. 346–365, 1961.

[10] K. Mikami and K. Tabuchi, “A Computer Program for Optimal Routing
of Printed Circuit Connectors,” Proc. Int. Federation for Information
Processing, pp. 1475–1478, 1968.

[11] G.-J. Nam, “ISPD 2006 Placement Contest: Benchmark Suite and
Results,” Proc. ACM ISPD, pp. 167, 2006.

[12] J. Soukup, “Fast Maze Router,” Proc. ACM/IEEE DAC, pp. 100–102,
1978

[13] N. R. Sturtevant, “Benchmarks for Grid-Based Pathfinding,” IEEE
Trans. on CIAIG, vol. 4, pp. 144–148, 2012

[14] N. Viswanathan, C. J. Alpert, C. Sze, Z. Li, G.-J. Nam, and J. A. Roy,
“The ISPD-2011 Routability-Driven Placement Contest and Benchmark
Suite,” Proc. ACM ISPD, pp. 141–146, 2011.

[15] L.-T. Wang, Y.-W. Chang, and K.-T. Cheng, “Electronic Design Au-
tomation: Synthesis, Verification, and Testing,” Elsevier, 2009.

8

