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ABSTRACT

Path-based timing analysis (PBA) is a pivotal step to achieve
accurate timing signoff. A core primitive extracts a large
set of paths subject to path-specific or less-pessimistic tim-
ing update. However, this process in nature demands a very
high computational complexity and thus has been a ma-
jor bottleneck in accelerating timing closure. Therefore, we
introduce in this paper a fast and scalable PBA framework
with MapReduce — a recent programming paradigm invented
by Google for big-data processing. Inspired by the spirit
of MapReduce, we formulate our problem into tasks that
are associated with keys and values and perform massively-
parallel map and reduce operations on a distributed system.
Experimental results demonstrated that our approach can
easily analyze million nodes in a single minute.

Categories and Subject Descriptors

J.6 [Computer-aided design (CAD)]: Timing analysis;
D.1.3 [Parallel programming]: Distributed computing
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1. INTRODUCTION

Static-timing-analysis (STA) is a crucial step in verifying
the expected timing behaviors of an integrated circuit [6].
During the STA, both graph-based timing analysis (GBA)
and path-based timing analysis (PBA) are used. GBA per-
forms linear scan on the circuit graph and estimates the
worst timing quantities at each endpoint. GBA is very fast
but the results are pessimistic. Hence, PBA is often per-
formed after GBA to remove unwanted pessimism. Starting
from a negative endpoint, a core PBA procedure peels a set
of paths in non-increasing order of criticality and applies
path-specific timing update to each of these paths [7]. How-
ever, path peeling is a computationally expensive process.
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The high runtime demand severely restrains the capability
of PBA during timing signoff.

Unfortunately, current literature still lacks for novel ideas
of fast PBA [12]. As pointed out by 2014 TAU timing analy-
sis contest, algorithms featuring multi-threaded or massively-
parallel accelerations are eagerly in demand [9]. Howbeit,
parallel PBA has been reported as a tough challenge pri-
marily because a path can be prototypically various. For
instance, a path can exhibit arbitrary lengths and span dif-
ferent logical cones and physical boundaries. Computations
in this way are typically hard to be issued in parallel. Al-
though a few prior works claimed to have a solution, the
results are usually compromised with accuracy [5, 11].
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Figure 1: The execution flow of a MapReduce job.

As a consequence, we introduce in this paper an ultra-fast
PBA framework with MapReduce. The concept of MapRe-
duce is shown in Figure 1. A MapReduce program applies
parallel map operations to input tasks and generates a set
of temporary key/value pairs. Then parallel reduce opera-
tions are applied to all values that are associated with the
same key in order to collate the derived data properly [8].
Users only need to provide desired map/reduce functions
while parallelization details are encapsulated in a MapRe-
duce library [1, 2]. This programming paradigm inspires us
to rethink the PBA problem as “map” operations followed by
“reduces”. Specifically, we cast the PBA problem into tasks
with keys and values that are sandwiched around massively-
parallel map and reduce operations.

Our contributions are summarized as follows. 1) We suc-
cessfully investigated the applicability of MapReduce to ac-
celerate PBA. Our framework is very general in gaining
massively-parallel computations, imposing no physical and



logic constraints. 2) Our framework increases the produc-
tivity as designers can focus on timing-oriented turnaround,
leaving all hassle of parallelization details to the MapReduce
library. 3) We have seen a substantial speedup from the ex-
perimental results. On a large distributed system, millions
of cells can be easily analyzed in a few minutes. These fea-
tures all add up to faster design cycle. Our work can be
beneficial for the speedup of the signoff timing closure, on
which up to 40% of the design flow are typically spent.

2. PATH-BASED TIMING ANALYSIS

PBA has gained much attention in deep submicron era
due to its capability of configuring features such as clock-
reconvergence-pessimism removal (CRPR) and advanced-
on-chip-variation (AOCV) derating for less-pessimistic tim-
ing reports [9, 10]. Since most of these features are path-
specific, a core yet computationally expensive building block
of PBA is to peel a path set from each endpoint and recom-
pute the timings path-by-path. By analyzing the path with
reduced pessimism, many timing violations can be waived
which in turn tells better timing signoff. Because of this
crucial benefit, studies in accelerating PBA are in demand
especially when we move to many-core era. Simply put, the
following aspects are in particular of interests.

e Performance is the top concern. A substantial runtime
saving will make a breakthrough in timing signoff.

e Modern circuits are complex. Practical parallelization
must scale up with the growth of the circuit size.

e The framework needs to be general and flexible, im-
posing least constraints and complexity.

e Adequate granularity control is necessary in order to
effectively organize computations at a massive scale.

e Orthogonality should be featured. Compromised solu-
tions to the design methodology are discouraged.

The above issues all combine to challenges in the develop-
ment of parallel PBA algorithms. If the PBA runtime can
be significantly improved, designers are able to utilize PBA
on a larger set of paths and perform their analyses earlier
in the design closure flow. As a result, researchers must
continue to provide viable parallel solutions along with the
rapid evolution of the computational power.

3. PROBLEM FORMULATION

The circuit network is input as a directed-acyclic graph
G = {V, E}, where V is the pin set of circuit elements and F
is the edge set specifying pin-to-pin connections. Each edge
e is associated with a tuple of earliest and latest delays. A
path is an ordered sequence of nodes or edges and the path
delay is the sum of delays through all edges. In this paper,
we are in particular emphasizing on the data path, which is
defined as a path from either the primary input pin or the
clock pin of a launching flip-flop (FF) to the data pin of a
capturing FF. A test is defined w.r.t. an FF as hold or setup
check on any data paths captured by this FF. Considering
a test set 1" as well as a positive integer k, the following two
tasks are essential for PBA [7, 9].

Task 1 — Sweep report: The program is asked to sweep
all tests and output the top k critical paths for each test.

Task 2 — Block report: The program is asked to report
the top k critical paths across all tests.

4. MAPREDUCE FRAMEWORK

In this section we discuss our PBA framework with MapRe-
duce. We first brief the MapReduce programming paradigm
and then detail each step of our framework.

4.1 MapReduce Programming Paradigm

Since being first introduced by Google in 2004, the MapRe-
duce programming paradigm has been widely applied to
many domains such as data mining, database system, and
high-performance computing [8]. The spirit of a MapReduce
program lies in “keys” and “values” which are generated and
manipulated by user-defined functions “mapper” and “re-
ducer”. A key and a value are simply bytes of strings of ar-
bitrary length which are logically associated with each other
and thus can represent generic data types. The MapReduce
library automatically schedules parallel map and reduce op-
erations linking mapper and reducer to handle the input
data on a distributed system. State-of-the-art libraries for
this purpose such as Apache Hadoop and MR-MPI from
Sandia National Lab. are readily available [1, 2].

Algorithm 1: CanonicalForm(D, mapper, reducer)

Input: input data D, user-defined mapper and reducer
1 {M | <tmp_key : tmp_value>} + Map(D, mapper) ;
2 {C | <unique_key : value_list>} « Collate(M);
3 {R| <key : value>} + Reduce(C, reducer);
4 return R

A canonical MapReduce program is presented in Algo-
rithm 1. The first is the map step, which takes a set of
data and converts it into another set of data produced by
the function mapper, where individual elements are repre-
sented as temporary key/value pairs. The collate step aggre-
gates across temporary key/value pairs where each unique
key appears exactly once and the corresponding value is a
concatenated list of all the values associated with the same
key . The reduce step then takes a single entry from the
aggregated key/value pairs and creates a new key/value pair
which stores the output generated by the function reducer.
Parallelism is evident since function calls by map and re-
duce are independent to each other and can be executed on
different processors simultaneously. In general, map and re-
duce are intra-process operations while collate involves inter-
process communication because of aggregation.

4.2 Formulation of Task Graphs

In order to develop a MapReduce program, computations
that can be issued to parallel map and reduce operations
must be exploited from our problem. Considering a test t,
we observe: 1) every data path captured by this testing FF
reaches the same endpoint; 2) the source pins from where a
path originates is prototypically consistent, being either the
primary input pins or the clock pin of a launching FF. The
first feature implies that paths feeding the same endpoint
belong to the same test. By tagging each path with a key
indicating the corresponding test index, the program can
keep track of the test to which a path belongs. The second

1In some articles the collate is absorbed into the reduce step.



feature implies that paths are wrapped in a multi-source
single-target graph. This motivates us to decompose a test
into several task graphs with regard to different and smaller
groups of source pins.

@ Launching FF @ Capturing FF @ Combinatorial block

(a) Circuit graph (b) Groupmg (c¢) Task graphs

Figure 2: An example formulation of the task graphs.

We define g; for each test ¢ as a set of task graphs g; =
{9,937, ..., gt} and Gr as a union set of all task graphs. De-
riving from a test ¢, a task graph g is a subgraph spanning
all connectivities from a subset of source pins to the data
pin of this test. Under the same test, the source pins cor-
responding to different task graph are mutually disjointed.
We associate each task graph with a key indicating the test
index to which this task graph belongs. An example is illus-
trated in Figure 2. We can see three task graphs are derived
from the tests on capturing FFs 5, 7, and 8, respectively.
Notice that a task graph is indeed a portion of the original
circuit graph. Every edge of the task graph comes with the
same delay values as the original circuit graph.

3
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Figure 3: Granularity control of the task graph.

The granularity control of the task graphs is an important
factor as it arises performance concern such as process com-
munication and computation load. We define L-way parti-
tion as a partition of each test into L task graphs such that
each task graph has roughly even size on the corresponding
set of source pins. Figure 3 shows an example of 1-way, 2-
way, and 3-way partitions of the test on FF 7 from Figure
2. While discovering a suitable granularity level tends to
be case-dependent, we consider in this paper only the case
where the number of tests is less than the number of avail-
able computing cores. Assuming P cores are available in
such the case, up to P task graphs are generated from each
test in order to balance the computation load. We should
be mindful that dividing a test into multiple task graphs
facilitates the parallelism but also gives rise to process com-
munication because of data merging afterwards.

The generation of task graphs is presented in Algorithm
2. We first identify all source pins of a given test t through
a backtrace starting at the data pin d of this test (line 1:2).
The number of task graphs being generated is determined
by a comparison between the number of input tests and
the number of available computing cores (line 3:8). Then
we iteratively group a set of source pins S¥ in accordance to
the specified number of task graphs and perform depth-first-
search (DFS) to induce the corresponding task graph (line
9:15). Each induced task graph is assigned a key indicating
its test index and is emitted as a key/value object in the end
of each iteration (line 14).

Algorithm 2: Generator(t)

Input: a test ¢ )
Output: a set of task graphs g+ = {g}, 92, ..., g} }

d + data pin of the test t;
S4 < source pins obtained through a back traversal at d;
P < number of available computing cores;
L+ 1;
if |T| < P then

| L =P;
end
num_src < [|Sq|/L];
for i < 1 to L do

S « {num_src frontmost elements in Sg};

11 Sq < Sg \ Sé;
12 gi « subgraph induced from Sé to d;
13 keylgi] + t;
14 Emit make_pair(t, gi);
15 end
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Based on the knowledge constructed so far, we deliver a
high-level sketch of our MapReduce-based PBA framework.
The map operation is responsible for 1) the generation of
task graphs from each test and 2) the path extraction from
each task graph. Because of the granularity control, a test
might be broken into several task graphs that are distributed
to different processors during the map operations. Collate
method is required in order to reorganize paths to their right
places. Eventually, the reduce operation peels out a desired
path set and emits it as the final solution. We conclude this
section by the following lemma.

LEMMA 1. Every path exactly and uniquely exists in one
task graph.

4.3 Mapper and Reducer Functions

Based on the definition of task graphs, we develop the
function calls for map and reduce operations. As presented
in Algorithm 3, our mapper function takes an arbitrary task
graph and extracts the top-k critical paths (line 1). We leave
this extraction process as a black box for user preferences.
In this paper, the optimal path ranking algorithm by [10] is
used as our default engine. Then it iterates through each
path and performs path-specific update according to user-
configured features such as CRPR and AOCYV (line 3). Each
iteration ends with an emission of a key/value pair where the
value is a path string and the key is being either 1) the key
of the input task graph if sweep is the task objective (line
5:6) or 2) a nominal number instead (line 7:9).

Any key/value pair emitted by our mapper is in fact a
solution fragment, where the key indicates the test index to
which the value of a path string belongs. It can be inferred



Algorithm 3: Extracter(g;)

Input: an arbitrary task graph gi
Output: an emitted set of key/value pairs

P «+ top k critical paths extracted from gi;
foreach path p; € P do
pg < update p; according to user-configured features;
value < make_string(p});
if sweep is the task objective then
| key < keylgil;
else
| key < —1;
end
Emit make_pair(key, value);
end
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that after calling the collate method, there are two possible
outcomes: either paths that belongs to the same task graph
are aggregated together or all paths are put in a single group,
depending on the task objective. Eventually, our reducer
takes each unique key/value pair and peels out the final
top-k critical paths from the path set stored in each value
list. This implementation is given in Algorithm 4.

Algorithm 4: Peeler(r)

Input: an unique key/value pair r
Output: an emitted key/value pair

key < r.key;

P <+ paths parsed from r.value;

sort P in non-increasing order of criticality;
P’ < {k frontmost elements in P};

value + make_string(P’);

Emit make_pair(key, value);

O Gk W

LEMMA 2. There are either |T'| or O(P|T|) mapper calls
on a distributed cluster with P computing processors.

PrOOF. The execution of each benchmark has two possi-
ble conditions, either the number of tests is greater the num-
ber of computing processors or the number of tests is less
than the computing resources. For the former case, each test
is processed by an independent mapper function and thus
there are totally |T'| mapper calls. For the later case where
the number of tests is less than the available core count, each
test is decomposed into O(P) task graphs. Hence, there are
totally O(P|T'|) mapper calls. [

LEMMA 3. There is only one reducer call for block report
while there are |T| reducer calls for sweep report.

PRrROOF. For block report, the key/value pairs emitted by
the extractor all have the same key value (i.e., -1). There-
fore, the collate operation produces only one key/value pair
for the following reduce operation. On the other hand, the
intermediate key values for sweep report adhere to the test
indices of the task graphs. Therefore, the collate operation
produces a total of |T| distinct key/value pairs for the fol-
lowing reduce operation. [

4.4 Main Program

The main program of our PBA framework is shown in
Algorithm 5. The first two lines perform map operations
that call Algorithm 2 to generate a set of task graphs. Us-
ing the task graphs as input, the next three lines follow the

canonical form of a MapReduce program, where map oper-
ations call Algorithm 3 to perform path extraction on each
task graph, and reduce operations call Algorithm 4 to peel
out the final solution. Prior to the function return, paths
are parsed from the output values of our reducer (line 6:15).
Each path is conventionally tagged with the corresponding
test index which can be retrieved from the key value (line
10).

Algorithm 5: MapReducePBA(G)

Input: a circuit graph G, a test set T’
Output: an analyzed path set

D + Map(T, Generator) ;
G < task graphs parsed/read from D;
M «+ Map(Gr, Extracter) ;
C « Collate(M);
R <+ Reduce(C, Pecler);
if sweep is the task objective then
P ¢;
foreach pair r in R do
P, + paths parsed from r.value;
Tag P, with the test index t retrieved from r.key;
P+ PUP;;
end
return P
end
P < paths parsed from the value in R;
return P
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THEOREM 1. The proposed framework is correct.

PrOOF. Lemma 1 has shown the exactness and unique-
ness of every path. Proving the correctness of our framework
is equivalent to showing that the path set from the input of
a reducer contains the top-k critical paths for the corre-
sponding test. Recalling that the input of our reducer is an
unique key/value pair. The key indicates the test index and
the value is a concatenated list of values with each value
storing the top-k critical paths of a task graph generated
from this test. It is obvious by set properties that the top-k
critical paths for this test must be a subset of the path set
stored in the value list. Since our reducer is in fact a sorting
process, the output is the value that stores the final top-k
critical paths for this test. Notice that for block report the
test index is nominal while this fact has no impact on the
truth of this proof. [

S. DATA MANAGEMENT

Efficient data management is crucial to a MapReduce pro-
gram. We discuss in this section some technical details and
data management through our implementations.

5.1 Data Locality

Exploiting the data locality is an important principle to
efficient MapReduce programs. Improving the data local-
ity can reduce the network overhead during the execution,
which in turn tells better runtime performance. In order to
improve the data locality, each processor stores a replicate
of the circuit graph in its own local memory. Despite higher
memory demand, accesses to the circuit graph such as gen-
eration of task graphs and extraction of critical paths are
reached in hand without extra data passing which is nor-
mally time-consuming.



5.2 Storage Efficiency

The communication load is a non-negligible cost for a
MapReduce program in particular during the collate opera-
tion. Passing long values of paths gives rise to the problem
of frequent memory allocation which is typically time con-
suming. In order to minimize the communication load, ex-
plicit path traces are stored in the memory of each individual
machine. Each path is tagged with an unique index which
is used to represent the storage address and machine num-
ber or the temporary file name. Paths are passing through
these indices during collate operation and the final recovery
of path traces is done by indexing back to these tags.

5.3 Hidden Reduce

Another way to alleviate the communication overhead is
to avoid unnecessary data passing during the collate oper-
ation. Within a same processor, a reduce operation before
the collate call is pre-applied to those path sets having the
same key label. We term this reduce operation as “hidden
reduce” because it is implicitly processed after each mapper
call of path extraction. In other words, multiple data with
the same key label in a each processor are merged first so
as to reduce the amount of data passing. It is obvious by
Theorem 1 the optimality of the final solution is not affected
by this hidden reduce operation.

6. EXPERIMENTAL RESULTS

Our program is implemented in C++ language on a 64-
bit linux operating system. The C++ based MR-MPI API
is used as our MapReduce library [2]. Evaluation is taken
on an academic computer cluster which has over 500 com-
pute nodes. Each compute node is configured with 16 Intel
2.60GHz cores and 128GB RAM. The network infrastructure
uses 384-port Mellanox MSX6518-NR FDR InfiniBand in or-
der to offer high speed interconnect between clusters. Access
to the compute nodes for running a program is done via a
script submission specifying the number of process cores or
threads to be used.

Table 1: Statistics of the benchmarks from 2014 TAU
timing analysis contest [9].
Circuit | [V] [ E|

| 17 [ 1O | # Tests | # Paths |

combo5 | 2051804 | 2228611 | 432 | 164 79050 19227963
combo6 | 3577926 | 3843033 | 486 | 174 128266 19227963
combo7 | 2817561 | 3011233 | 459 | 148 109568 19227963

|V]: # of pins. |E|: # of edges. |I|: # of primary inputs.
|O|: # of primary outputs. # Tests: # of setup/hold tests.
# Paths: maximum # of data paths per test.

Experiments are undertaken on the three largest bench-
marks, combo5, combo6, and combo7 from 2014 TAU timing
analysis contest [9]. Each of the three testcases is created
by combining a set of industrial circuits (e.g., vga_led, sys-
temcde2, aes_core, des_perf, usb_funct, wb_dmav, system-
caes, and tv80) that were already open-source to academia.
combob is the combination of circuits vga_lcd, usb_funct,
des_perf, tv80, wh_dmav, and systemcaes. combo6 is the
combination of circuits vga._lcd, aes_core, des_perf, usb_funct,
systemcde2, and tv80. combo?7 is the combination of circuits
vga_led, tv80, aes_core, systemcaes, and vga_lcd. Statistics
of these testcases are summarized in Table 1. All testcases
are million-scale circuit graphs and the number of tests could
reach up to 128266 in combo6.

6.1 Baseline Setting

We configure CRPR as the baseline application in our
PBA framework. CRPR is an important step during the
signoff timing cycle. Without CRPR, signoff timing ana-
lyzer reports worse violation than the true timing proper-
ties owned by the physical circuits. The 2014 TAU timing
analysis contest has addressed this issue in order to moti-
vate novel ideas for fast and accurate path-based CRPR [9].
The optimal path ranking algorithm proposed by the first-
place winner, UI-Timer, is applied to our path extractor [10].
In order to enable CRPR, the third line of Algorithm 3 is
implemented as follows: For each path being iterated, the
common clock segment is found by a simple walk through
the corresponding launching clock path and the capturing
clock path. The path slack is then adjusted by the amount
of pessimism on the common segment.
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Figure 4: Impact of CRPR on path slacks.

Figure 4 illustrates the impact of CRPR on path slacks of
the hold test from a subcircuit block of the testcase combo6.
It can be observed that the values of path slacks are in
general increased after the clock network pessimism was re-
moved. The number of failing tests was able to be reduced
from 642 to less than half [10]. Another evidence which can
be discovered from Figure 4 is the path-specific property of
the clock network pessimism. The most critical path prior
to CRPR is not necessarily reflective of the true counter-
part after CRPR. Such a fact reveals the necessity of PBA
in order to peel out the true critical path. More knowledge
about CRPR can be referred to [9].

6.2 Performance Characterization

We begin by discussing the generic performance of our
MapReduce-based PBA. Evaluation is undertaken through
cross combinations of path count (i.e., k) and core count in
running our program. We request 1 to 10 compute nodes
with each configured by 10 cores. That is, the core count
varies from 10 to 100 using 10 as the scaling interval. A
special case with only 1 core is also evaluated in order to
demonstrate the baseline without any parallelism. The path
count starts at 1 and varies from 10 to 100 using 10 as the
scaling interval. A total of 121 combinations of path count
and core counts are executed for each benchmark.

The number of key/value pairs processed on each circuit
benchmark is illustrated in Figure 5. It can be observed
that for each circuit graph the number of key/value pairs
processed by map and reduce operations grows as the path
count increases. Notice that the path count is the only factor
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Figure 6: Performance characterization of our MapReduce-based PBA on circuit benchmarks combo5, combo6, and
combo7 under block report and sweep report. Within a single minute, all tests can be accomplished using approximately
40 cores, 100 cores, and 80 cores, for combo5, combo6, and combo7, respectively.
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Figure 5: Bar chart of the number of key/value pairs
processed on each circuit benchmark.

that contributes to the growth of the number of key/value
pairs since the construction of key/value pairs is dedicated
to paths. The largest number appears in the report of
100 paths path, in which the program generated 3953344
key/value pairs for combob, 7114972 key/value pairs for
combo6, and 6696880 key/value pairs for combo7. In gen-
eral, the more the number of key/value pairs is, the higher
the runtime and memory storage the program demands.
The overall performance of our MapReduce-based PBA
is shown in Figure 6. The left two columns of plots show
the runtime value and memory usage of our program un-
der block report, while the right two columns show the
plots under sweep report. We first discuss the runtime per-
formance of our program. In a rough view, the runtime
scales down drastically as the core count increases. Us-
ing only a single core without any parallelism, the program
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Figure 7: Runtime reduction versus core count.

took up to (i.e., among all path settings) 14.03 (13.92) min-
utes, 37.76 (39.53) minutes, and 27.41 (27.07) minutes to
accomplish block (sweep) reports for combo5, combo6, and
combo7, respectively. It can be seen that the runtime sig-
nificantly goes down when MapReduce begins distributing
works across processors. Even using only 10 processors, the
runtime values can be significantly reduced to 2.92 (2.91)
minutes, 8.22 (8.24) minutes, and 4.63 (5.55) minutes under
block (sweep) reports of combo5, combo6, and combo7, re-
spectively. The slope of the runtime reduction can be clearly
seen in the sliced 2D plot fixing path count to 100 in Fig-
ure 7. Within a single minute, all tests can be accomplished
using approximately 40 cores, 100 cores, and 80 cores, for
combob, combo6, and combo7, respectively.

Figure 8 discovers the runtime portions taken by map op-
erations, collate operations (i.e., process communication or
“Comm” for short), and reduce operations. We measure the
runtime portion as an average value across all different set-
tings of path counts and core counts. We have observed that
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Figure 8: Runtime portion of map operations, reduce
operations, and process communication.

reduce operations spend the least amount of time (< 1%)
comparing to the others since it involves only string parsing
and value sorting. On the other hand, the time spent on
map operations occupies the majority of the entire runtime.
This is because map operations are responsible for the gen-
eration of task graphs and the extraction of critical paths,
which are relatively expensive computations. For all bench-
marks, more than 90% of the entire runtime is taken by map
operations. The rest portion of the runtime is occupied by
the collate operation, from which we can see about 4-5% of
the entire runtime is spent on the process communication.
In fact, without applying the trick mentioned in Section 5.2,
the process communication burdens the entire runtime by
over 20%.

Next we discuss the memory cost of our program. The
amount of memory usage is measured by the peak moment
during the execution across all processors (i.e., including the
master processor). Generally speaking, the amount of mem-
ory usage grows as the increase of either path count or core
count, which can be seen in Figure 6. The peak memory us-
age we observed are approximately 15GB, 22GB, and 21GB
for combo5, combo6, and combo7, all under sweep report
with 100 cores and 100 paths, respectively. We provide two
extra sliced plots from the sweep report in Figure 9 to show
clearer memory cost in terms of the growth of 1) core count
with path count fixing to 100 and 2) path count with core
count fixing to 100. As the path count or the core count
increases, the amount of memory usage grows gradually ex-
cept for the sharp spot at 10-core level where the distributed
MapReduce begins taking effect.

To sum up, the experimental results have demonstrated
the performance of our PBA framework with MapReduce.
It is highly scalable as we have seen a significant runtime
reduction as the core count grows. Even in the first level at
which only 10 cores are involved in parallelism, the runtime
is decreased by 75-86% across all runs. From the storage
point of view, the memory consumption of our approach is
fairly reasonable. At the highest peak we have observed
in running combo6 with 100 cores and 100 paths, the to-
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Figure 9: Memory usage in terms of path count and
core count.

tal amount of memory demanded by our program is about
22GB. In other words, the average amount of memory usage
per processor is less than 1GB. These evidences have justi-
fied the practical viability of our approach. The substantial
speedup we have obtained is beneficial for the discovery of
a way to fast timing closure.

6.3 Competence over Multi-Threading

We evaluated in this section the competence of our ap-
proach over the implementation using multi-threading, an-
other popular type of parallel programming with shared-
memory model. The inherent architecture of a multi-threaded
program is distinct from that of distributed computation
such as the MapReduce programming environment we dis-
cussed in this paper. In multi-threaded programming, mul-
tiple threads or processors can operate independently on a
stand-alone machine but share the same memory resources.
The memory bandwidth of the machine typically dominates
the entire runtime performance. As a result, the scalability
of multi-threaded computation is typically not as decent as
the one of distributed computation. Several libraries for us-
ing shared memory such as OpenMP and POSIX are reach-
able in the public domain [3, 4].

We refit our MapReduce program to the multi-threaded
version by replacing the mapper calls and reducer calls with
parallel for loop (e.g., #pragma omp statement) using the
API from OpenMP 3.0 [3]. In our cluster each compute node
is configured with 16 Intel 2.60GHz cores and 128GB RAM
in a stand-alone machine. Up to 16 threads or 16 processors
can be concurrently executed using either multi-threaded
computation or distributed MapReduce operations. Due to
the architectural limitation of multi-threading, evaluations
are undertaken in a single compute node using different core
counts from 1 to 16. The performance differences between
multi-threading and MapReduce are interpreted in terms of
runtime values and memory usage, as illustrated in Figure
10. For page efficiency, we discuss only the experiment of
block report with the single-most critical path.

The competence of MapReduce over multi-threading is
clearly demonstrated by the runtime plot in Figure 10. In
comparison to multi-threading, our MapReduce program ob-
tains higher runtime speedup (i.e., over multi-threading)
and better scalability as core count grows up. The largest
difference we observed was in combo6 with 2 cores, where
our MapReduce program accomplished all tests by 32 min-
utes faster than the multi-threaded implementation. Similar
trends can also be discovered in other two cases. The rea-
son for having our MapReduce program perform worse at
the level of 1 core comes from the redundant overhead of
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Figure 10: Performance comparison between MapReduce and multi-threading.

key/value processing because of the null parallelism. Never-
theless, such negative margins are solely less than 3 minutes.

It is expected that our MapReduce program consumes
higher memory requirements than the multi-threaded imple-
mentation. The distributed computation of MapReduce re-
quires an individual block of memory to be allocated for each
processor. As shown in the memory comparison in Figure
10, the memory cost of our MapReduce program is linearly
proportional to the growth rate of the core count. On the
other hand, the amount of memory usage in multi-threading
is relatively constant regardless of the increase of core count.
Despite less memory cost by multi-threading, the perfor-
mance of concurrent access to the same global memory block
is limited by the memory bandwidth. It can be clearly seen
in Figure 10 the process throughput grows poorly compared
to the curve achieved by distributed MapReduce. As a con-
sequence, the runtime performance of multi-threading is not
as promising as distributed MapReduce even in a stand-
alone machine.
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8. CONCLUSION

In this paper we have presented a fast PBA framework
with MapReduce. We have achieved a success in accel-
erating PBA by a substantial order of magnitude in com-
parison to non-MapReduce implementations such as single
core and multi-threading. The experimental results have

demonstrated the pronounced performance of our approach
whereby million-scale circuit graphs can be quickly and cor-
rectly analyzed within a few minutes on a distributed com-
puter cluster.
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