
Concurrent CPU-GPU Task Programming using

Modern C++

Tsung-Wei Huang∗ and Yibo Lin†

∗Department of Electrical and Computer Engineering, University of Utah
†Department of Computer Science, Peking University

Abstract—In this paper, we introduce Heteroflow, a new C++
library to help developers quickly write parallel CPU-GPU
programs using task dependency graphs. Heteroflow leverages
the power of modern C++ and task-based approaches to enable
efficient implementations of heterogeneous decomposition strate-
gies. Our new CPU-GPU programming model allows users to
express a problem in a way that adapts to effective separation
of concerns and expertise encapsulation. Compared with existing
libraries, Heteroflow is more cost-efficient in performance scaling,
programming productivity, and solution generality. We have
evaluated Heteroflow on two real applications in VLSI design
automation and demonstrated the performance scalability across
different CPU-GPU numbers and problem sizes. At a particular
example of VLSI timing analysis with million-scale tasking,
Heteroflow achieved 7.7× runtime speed-up (99 vs 13 minutes)
over a baseline on a machine of 40 CPU cores and 4 GPUs.

I. INTRODUCTION

Modern parallel applications in machine learning, data

analytics, and scientific computing typically consist of a het-

erogeneous use of both central processing units (CPUs) and

graphics processing units (GPUs) [1]. Writing a parallel CPU-

GPU program is never an easy job, since CPUs and GPUs have

fundamentally different architectures and programming logic.

To address this challenge, the parallel computing community

has investigated many programming libraries to assist develop-

ers with quick access to massively parallel and heterogeneous

computing resources using minimal programming effort [2],

[3], [4], [5], [6], [7], [8], [9], [10], [11]. In particular, hy-

brid multi-CPU multi-GPU systems are driving high demand

for new heterogeneous programming techniques in support

for more efficient CPU-GPU collaborative computing [12].

However, related research remains nascent, especially on the

front of leveraging modern C++ to achieve new programming

productivity and performance scalability that were previously

out of reach [13].

The Heteroflow project addresses a long-standing question:

“how can we make it easier for C++ developers to write

efficient CPU-GPU parallel programs?” For many C++ de-

velopers, achieving high performance on a hybrid CPU-GPU

system can be tedious. Programmers have to overcome com-

plexities arising out of concurrency controls, kernel offloading,

scheduling, and load-balancing before diving into the real

implementation of a heterogeneous decomposition algorithm.

Heteroflow adopts a new task-based programming model using

modern C++ to address this challenge. Consider the canonical

saxpy (A·X plus Y) example in Figure 1. Each Heteroflow

task belongs to one of host, pull, push, and kernel tasks; a

host task runs a callable object on any CPU core (“the host”),

a pull task copies data from the host to a GPU (“the device”),

a push task copies data from a GPU to the host, and a kernel

task offloads computation to a GPU. Figure 1 explains the

saxpy task graph in Heteroflow’s graph language.
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Fig. 1: A saxpy (“single-precision A·X plus Y”) task graph using two
host tasks to create two data vectors, two pull tasks to send data to
a GPU, a kernel task to offload the saxpy computation to the GPU,
and two push tasks to push data from the GPU to the host.

g l o b a l vo id saxpy ( i n t n , i n t a , i n t ∗x , i n t ∗y ){
i n t i = b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;
i f ( i < n ) y [ i ] = a∗x [ i ] + y [ i ] ;

}

c o n s t i n t N = 65536 ;
v e c t o r <i n t> x , y ;

h f : : E x e c u t o r e x e c u t o r ;
h f : : H e t e r o f l o w G;

a u t o h o s t x = G. h o s t ( [ & ] ( ){ x . r e s i z e (N, 1 ) ; } ) ;
a u t o h o s t y = G. h o s t ( [ & ] ( ){ y . r e s i z e (N, 2 ) ; } ) ;
a u t o p u l l x = G. p u l l ( x ) ;
a u t o p u l l y = G. p u l l ( y ) ;
a u t o k e r n e l = G. k e r n e l ( saxpy , N, 2 , p u l l x , p u l l y )

. b lock x ( 2 5 6 )

. g r i d x ( (N+ 2 5 5 ) / 2 5 6 )
a u t o push x = G. push ( p u l l x , x ) ;
a u t o push y = G. push ( p u l l y , y ) ;

h o s t x . p r e c e d e ( p u l l x ) ;
h o s t y . p r e c e d e ( p u l l y ) ;
k e r n e l . p r e c e d e ( push x , push y )

. s u c c e e d ( p u l l x , p u l l y ) ;

a u t o f u t u r e = e x e c u t o r . run ( h f ) ;

Listing 1: Heteroflow code of Figure 1.

Listing 1 shows the Heteroflow code that implements the

saxpy task graph in Figure 1. The code explains itself. The

program creates a task dependency graph of two host tasks,

two pull tasks, one kernel task, and two push tasks. The kernel

task binds to a saxpy kernel written in CUDA [2]. The depen-



dency links form constraints that conform to Figure 1. Het-

eroflow provides an executor interface to perform automatic

parallelization of a task graph scalable to manycore CPUs

and GPUs. There is no explicit thread managements or fine-

grained concurrency controls in the code. Our design principle

is to let users write simple, expressive, and transparent parallel

code. Heteroflow explores a minimum set of core routines

that are sufficient enough for users to implement a broad set

of heterogeneous computing algorithms. Our task application

programming interface (API) is not only flexible on the user

front, but also extensible with the future evolution of C++

standards and heterogeneous architectures. We summarize our

contributions as follows:

• Programming model. We develop a new parallel CPU-

GPU programming model to assist developers with effi-

cient access to heterogeneous computing resources. Our

programming model allows users to express a problem with

effective separation of concerns and expertise encapsulation.

Developers can work at a suitable level of granularity for

writing scalable applications that is commensurate with their

domain knowledge.

• Transparency. Heteroflow is transparent. Developers need

not to deal with standard concurrency mechanisms such

as threads and fine-grained concurrency controls, that are

often tedious and hard to program correctly. Instead, our

system runtime abstracts these problems from developers

and tackles many of the hardest parallel and heterogeneous

computing details, notably resource allocation, CPU-GPU

co-scheduling, kernel offloading, etc.

• Expressiveness. We leverage modern C++ to design an

expressive API that empowers users with explicit graph con-

struction and refinement to fully exploit task parallelism in

their applications. The expressive power also lets developers

perform rather a lot of work without writing a lot of code.

Our user experiences lead us to believe that, although it

requires some effort to learn, most C++ programmers can

master our APIs and apply Heteroflow to their jobs in just

a few hours.

We have applied Heteroflow to two real applications, timing

analysis and cell placement, in large-scale circuit design au-

tomation and demonstrated the performance scalability across

different numbers of CPUs, GPUs, and problem sizes. We

believe Heteroflow stands out as a unique tasking library

considering the ensemble of software tradeoffs and architec-

ture decisions we have made. With that being said, different

programming libraries and frameworks have their pros and

cons, and deserve a particular reason to exist. Heteroflow aims

for a higher-level alternative in modern C++ domain.

II. MOTIVATION

Heteroflow is motivated by our research projects to develop

efficient computer-aided design (CAD) tools for very large

scale integration (VLSI) design automation. CAD has been

an immensely successful field in assisting designers in im-

plementing VLSI circuits with billions of transistors. It was

on the forefront of computing around 1980 and has fostered

many prominent problems and algorithms in computer science.

Figure 2 demonstrates a conventional VLSI CAD flow with a

highlight on physical design. Due to the ever-increasing design

complexity, the recent CAD community is driving the need for

hybrid CPU-GPU computing to keep tool performance up with

the technology scaling [14], [15].

Fig. 2: A typical VLSI design automation flow with a highlight on
the physical design stage. Heteroflow is motivated to address the
ever-increasing computational need of modern CAD tools.

A. Challenge 1: Vast and Complex Dependencies

Computational problems in CAD are extremely complex

and have many challenges that normal software developments

do not have. The biggest challenge to develop parallel CAD

tools is the vast and complex task dependencies. Before

evaluating an algorithm, a number of logical and physical

information must arrive first. These quantities are often depen-

dent to each other and are expensive to compute. The resulting

task dependency graph in terms of encapsulated function calls

can be very large. For example, a million-gate design can

produce a graph of billions of tasks and dependencies that

takes several days to accomplish [13]. However, such difficulty

does not prevent CAD tools from parallelization, but highlights

the need of new tasking frameworks to implement efficient

parallel decomposition strategies especially with CPU-GPU

collaborative computing [15].

B. Challenge 2: Extensive Domain Knowledge

Developing a parallel CAD algorithm requires deep and

broad domain knowledge across circuits, modeling, and pro-

gramming to fully exploit parallelism. The compute pattern

is highly irregular and unbalanced, requiring very strategic

collaboration between CPU and GPU. Developers often need

direct access to native GPU programming libraries such as



CUDA and OpenCL to handcraft the kernels with problem-

specific knowledge [2], [3]. Existing frameworks that provide

high-level abstraction over kernel programming always come

with restricted applicability, preventing CAD engineers from

using many new powerful features of the native libraries.

Our domain experience concludes that despite nontrivial GPU

kernels, what makes concurrent CPU-GPU programming an

enormous challenge is the vast and complex surrounding tasks,

most notably the resource controls on multi-GPU cards, CPU-

GPU co-scheduling, tasking, and synchronization.

C. Need for a New CPU-GPU Programming Solution

Unfortunately, most parallel CPU-GPU programming so-

lutions in CAD tools are hard-coded [14], [15]. Developers

are “heroic programmers” to handcraft every detail of a

heterogeneous decomposition algorithm and explicitly decide

which part of the application runs on which CPU and GPU.

While the performance is acceptable, it is too expensive to

maintain the codebase and scale to new hardware architectures.

Some recent solutions adopted directive-driven models such as

OpenMP GPU and OpenACC particularly for data-intensive

algorithms [6], [7]. However, these approaches cannot handle

dynamic workloads since compilers have limited knowledge to

annotate runtime task parallelism and dynamic dependencies.

In fact, frameworks at functional level are more favorable due

to the flexibility in runtime controls and on-demand tasking.

Nevertheless, most libraries on this front are disadvantageous

from an ease-of-programming standpoint [12]. Users often

need to sort out many distinct notations and library details

before implementing a heterogeneous algorithm [16]. Also, a

lack of support for modern C++ largely inhibits the program-

ming productivity and performance scalability [13], [17]. After

many years of research, we and our industry partners conclude

the biggest hurdle to program the power of collaborative

CPU-GPU computing is a suitable task programming library.

Whichever model is used, understanding the structure of an

application is critical. Developers must explicitly consider

possible data or task parallelism of their problems and leverage

domain-specific knowledge to design effective decomposition

strategies for parallelization. At the same time, the library run-

time removes the burden of low-level jobs from developers to

improve programming productivity and transparent scalability.

To this end, our goal is to address these challenges and develop

a general-purpose tasking interface for concurrent CPU-GPU

programming.

III. HETEROFLOW

In this section, we discuss the programming model and

runtime of Heteroflow. We will cover important technical

details that support the software architecture of Heteroflow.

Heteroflow aims to help C++ developers quickly write

CPU-GPU parallel programs and implement efficient

heterogeneous decomposition strategies using

task-based models.

— Heteroflow’s Project Mantra

A. Create a Task Dependency Graph

Heteroflow is object-oriented. Users can create multiple task

dependency graph objects each representing a unique parallel

decomposition in an application. A task dependency graph

is a directed acyclic graph (DAG) with nodes and edges

representing tasks and dependency constraints, respectively.

Each task belongs to one of the four categories: host, pull,

push, and kernel.

1) Host Task: A host task is associated with a callable

object which can be a function object, binding expression,

functor, or a lambda expression. The callable is invoked at

runtime by a CPU thread to run on a CPU core. Listing 2

gives an example of creating a host task. In most applications,

the callable is described in C++ lambda to construct a closure

inline in the source code. This property allows host task to

enable efficient lazy evaluation and capture any data whether

it is declared in a local block or flat in a global scope, largely

facilitating the ease of programming.

hf : : H e t e r o f l o w hf ;
a u t o h o s t = hf . h o s t (

[ ] ( ) { c o u t << ” t a s k r u n s on a CPU c o r e ” ; }
) ;

Listing 2: Creates a host task.

Each time users create a task, the heteroflow object adds a

node to its task graph and returns a task handle to users. A

task handle is a lightweight class object that wraps a pointer to

a graph node. The purpose of this extra layer is to provide an

extensible mechanism for users to modify the task attributes

and, most importantly, prevents users from direct access to the

internal graph storage which can easily introduce undefined

behaviors. Each node has a general-purpose polymorphic func-

tion wrapper to store and invoke different callables according

to a task type. A task handle can be empty, often used as a

placeholder when it is not associated with a graph node. This

is particularly useful when a task content cannot be decided

until a certain point during the program execution, while the

task storage needs preallocation at programming time. These

properties are applicable to all task types.

2) Pull Task: A pull task lets users pull data from the host

to the device. The exact GPU to perform this memory opera-

tion is decided by the scheduler at runtime. Developers should

think separately which part of their applications runs on which

space, and decompose them with explicit task construction.

Since most GPU memory operations are expensive compared

to CPU counterparts, Heteroflow splits the execution of a GPU

workload into three operations, host-do-device (H2D) input

transfers, launch of a kernel, and device-to-host (D2H) output

transfers, to enable more task overlaps. Pull task adopts this

strategy to help users manage the tedious details in H2D data

transfers. At the same time, it presents an effective abstraction

of which the scheduler can take advantage to perform various

optimizations such as automatic GPU mapping, streaming, and

memory pooling.

v e c t o r <i n t> d a t a 1 ( 1 0 0 ) ;
f l o a t ∗ d a t a 2 = new f l o a t [ 1 0 ] ;



a u t o p u l l 1 = hf . p u l l ( d a t a 1 ) ;
a u t o p u l l 2 = hf . p u l l ( da ta2 , 1 0 ) ;

Listing 3: Creates two pull tasks.

Listing 3 gives an example of creating two pull tasks to

transfer data from the host to the device. The first pull task

operates on a C++ vector of integer numbers and the second

pull task operates on a raw data block of real numbers.

Heteroflow employs the C++20 span syntax to implement the

pull interface. The arguments forwarded to the pull method

must conform to the constructor of std::span. In fact,

we have investigated many possible data representations and

decided to use span because of its lightweight abstraction

for describing a contiguous sequence of objects. A span can

easily convert to a C-style raw data view that is acceptable by

most GPU programming libraries [2], [3], [18]. Sticking with

C++ standard also keeps the core of Heteroflow portable and

minimizes the rate of change required for our data interface.

1 t e m p l a t e <typename . . . ArgsT>
2 a u t o P u l l T a s k : : p u l l ( ArgsT & & . . . a r g s ) {
3 g e t n o d e h a n d l e ( ) . work = [
4 t = S t a t e f u l T u p l e ( fo rward<ArgsT>( a r g s ) . . . )
5 ] ( A l l o c a t o r& a , c u d a S t r e a m t s ) m utab le {
6 a u t o h span = m ake span f rom tup le ( t ) ;
7 a u t o h d a t a = h span . d a t a ( ) ;
8 a u t o h s i z e = h span . s i z e b y t e s ( ) ;
9 a u t o d d a t a = a . a l l o c a t e ( h s i z e ) ;

10 cudaMemcpyAsync (
11 d da ta , h da ta , h s i z e , H2D, s
12 ) ;
13 } ;
14 r e t u r n ∗ t h i s ;
15 }

Listing 4: Implementation details of the pull task.

Listing 4 highlights the core implementation of the pull task

based on CUDA. 1 To be concise, we omit details such as error

checking and auxiliary functions. The pull task forms a closure

that captures the arguments in a custom tuple by which we en-

able stateful task execution (line 4). For instance, in Listing 1,

the change made by the host task host_x on the data vectors

must be visible to the pull task pull_x. The stateful tuple

wraps references in objects to keep state transition consistent

between dependent tasks. Maintaining a stateful transition is a

backbone of Heteroflow. Developers can carry out fine-grained

concurrency through decomposition and enforce dependency

constraints to keep the logical relationship between task data.

In terms of arguments, the runtime passes a memory allocator

and a CUDA stream to the closure (line 5). The allocator

is a pooled resource for reducing GPU memory allocation

overhead and the CUDA stream is a sequenced mechanism for

interleaving GPU operations [2]. A key motivation behind this

design is to support multi-GPU computing. Both the memory

allocator and stream are specific to a GPU context which is

decided by the scheduler at runtime. Finally, we create a span

from the stateful tuple and enqueue the data transfer operation

to the stream (line 6:12).

1While the current implementation is based on CUDA, our task interface
can accept other GPU programming libraries [3].

3) Push Task: A push task lets users push data associated

with a pull task from the device to the host. The code snippet in

Listing 5 creates two push tasks that operate on the pull tasks

in Listing 3. The arguments consist of two part, a source pull

task of device data and the rest to construct a std::span

object for the target. Similar to Listing 3, the first push task

operates on an integer vector and the second push task operates

on a raw data block of floating numbers. Push task is stateful.

Any runtime change on the arguments that were used to

construct a pull task will reflect on its execution context. This

property allows users to create stateful Heteroflow graphs for

efficient data management between concurrent CPU and GPU

tasks.

a u t o push1 = hf . push ( p u l l 1 , d a t a 1 ) ;
a u t o push2 = hf . push ( p u l l 2 , da ta2 , 1 0 ) ;

Listing 5: Creates two push tasks from the two pull tasks in

Listing 3.

1 t e m p l a t e <typename . . . ArgsT>
2 a u t o PushTask : : push ( P u l l T a s k p , ArgsT & & . . . a r g s ){
3 g e t n o d e h a n d l e ( ) . work = [
4 s r c =p ,
5 t = S t a t e f u l T u p l e ( fo rward<ArgsT>( a r g s ) . . . )
6 ] ( c u d a S t r e a m t s ) m utab le {
7 a u t o h span = m ake span f rom tup le ( t ) ;
8 a u t o h d a t a = h span . d a t a ( ) ;
9 a u t o h s i z e = h span . s i z e b y t e s ( ) ;

10 a u t o d d a t a = s r c . d e v i c e d a t a ( ) ;
11 cudaMemcpyAsync (
12 h da ta , d da ta , h s i z e , D2H, s
13 ) ;
14 } ;
15 r e t u r n ∗ t h i s ;
16 }

Listing 6: Implementation details of the push task.

Listing 6 highlights the core implementation of the push task

based on CUDA. The push task captures the argument list in

the same way as the pull task to form a stateful closure (line

5). The execution context creates a span from the target and

extracts the device data from the source pull task (line 7:10).

Finally, we enqueue the data transfer operation to a CUDA

stream passed by the scheduler at runtime (line 11:13). This

CUDA stream is guaranteed to live in the same GPU context

as the source pull task. In short, Heteroflow uses pull tasks

and push tasks to perform H2D and D2H data transfers. Users

explicitly specify the data to transfer between CPU and GPU,

and encode these tasks in a graph to exploit task parallelism.

They never worry about the underlying details of resource

allocation and GPU placement.

4) Kernel Task: A kernel task offloads computation from

the host to the device. Heteroflow empowers users with explicit

kernel programming using native CUDA toolkits. We never try

hard to develop another C++ kernel programming framework

that often comes with restricted applicability and performance

portability. Instead, users leverage their domain knowledge

with the highest degree of freedom to implement their ker-

nel algorithms, while leaving task parallelism to Heteroflow.

Listing 7 gives an example of creating two kernel tasks that



offload two given CUDA kernel functions to the device using

the pull tasks created in Listing 3. The first kernel task operates

on kernel1 with data from pull1. The second kernel task

operates on kernel2 with data from pull2. Both tasks

configure 256 CUDA threads in a block. Kernel functions

are not obligated to take any Heteroflow-specific objects. This

largely increases the portability and testability of Heteroflow,

especially for applications that heavily use third-party kernel

functions written by domain experts.

g l o b a l vo id k e r n e l 1 ( i n t ∗ da ta , i n t N ) ;
g l o b a l vo id k e r n e l 2 ( f l o a t ∗ da ta , i n t N ) ;

a u t o k1 = hf . k e r n e l ( k e r n e l 1 , p u l l 1 , 100)
. g r i d x (N/ 2 5 6 )
. b lock x ( 2 5 6 ) ;

a u t o k2 = hf . k e r n e l ( k e r n e l 2 , p u l l 2 , 1 0 ) ;
. g r i d (N/ 2 5 6 , 1 , 1 )
. b l o c k ( 2 5 6 , 1 , 1 ) ;

Listing 7: Creates two kernel tasks that operate on the two

pull tasks in Listing 3.

1 t e m p l a t e <typename F , typename . . . ArgsT>
2 a u t o Kerne lT ask : : k e r n e l ( F&& f , ArgsT & & . . . a r g s ) {
3 g a t h e r s o u r c e s ( a r g s . . . ) ;
4 g e t n o d e h a n d l e ( ) . work = [
5 k=∗ t h i s , f = fo rward<F>( f ) ,
6 t = S t a t e f u l T u p l e ( fo rward<ArgsT>( a r g s ) . . . )
7 ] ( c u d a S t r e a m t s ) m utab le {
8 k . a p p l y k e r n e l ( s , f , t ) ;
9 } ;

10 r e t u r n ∗ t h i s ;
11 }
12
13 t e m p l a t e <typename T>
14 a u t o Kerne lT ask : : g a t h e r s o u r c e s (T& & . . . t a s k s ) {
15 i f c o n s t e x p r ( i s p u l l t a s k <T>) {
16 ( g e t n o d e h a n d l e ( ) . a d d s o u r c e s ( t a s k s ) , . . . ) ;
17 }
18 }
19
20 t e m p l a t e<typename F , typename T>
21 a u t o Kerne lT ask : : a p p l y k e r n e l (
22 c u d a S t r e a m t s , F f , T t
23 ) {
24 c o n s t a u t o N = t u p l e s i z e <T> : : v a l u e ;
25 a p p l y k e r n e l ( s , f , t , make index sequence <N>{});
26 }
27
28 t e m p l a t e<typename F , typename T , s i z e t . . . I>
29 a u t o Kerne lT ask : : a p p l y k e r n e l (
30 c u d a S t r e a m t s , F f , T t , index sequence <I . . . >
31 ) {
32 a u t o& h = g e t n o d e h a n d l e ( ) ;
33 f<<<h . g r i d , h . block , h . shm , s>>>(
34 c o n v e r t ( ge t<I >( t ) ) . . .
35 ) ;
36 }

Listing 8: Implementation details of the kernel task.

Listing 8 highlights the core implementation of the kernel

task. The kernel method takes a kernel function written in

CUDA and the rest arguments to invoke the kernel (line 1:2).

The arity must match in both sides. A key difference between

Heteroflow and existing models is the way we establish data

connection – we use pull tasks as the gateway rather than

raw pointers. This abstraction largely improves safety and

transparency in scaling graph execution to multiple GPUs.

From the input argument list, we gather all relevant pull tasks

to this kernel (line 3 and line 13:18) and let the scheduler

perform automatic device placement. Similar to push and pull

tasks, we capture the argument list in a stateful tuple (line 6)

and use two auxiliary functions to invoke the kernel from the

tuple (line 20:36). All the runtime changes on the arguments

will reflect on the execution context of the kernel.

1 s t r u c t P o i n t e r C a s t e r {
2 vo id ∗ d a t a { n u l l p t r } ;
3 t e m p l a t e <typename T>
4 o p e r a t o r T∗ ( ) {
5 r e t u r n (T∗ ) d a t a ;
6 }
7 } ;
8
9 t e m p l a t e <typename T>

10 a u t o Kerne lT ask : : c o n v e r t (T&& a r g ) {
11 i f c o n s t e x p r ( i s p u l l t a s k <T>) {
12 r e t u r n P o i n t e r C a s t e r { a r g . d a t a ( ) } ;
13 }
14 e l s e {
15 r e t u r n fo rward<T>( a r g ) ;
16 }
17 }

Listing 9: Implementation details of the data connection

between a pull task and a kernel task.

Each argument in the kernel function must experience

another conversion (line 34 in Listing 8) before launching

the kernel. The purpose of this conversion is to transform the

pull task to the type of the corresponding kernel argument,

and to possibly conduct any sanity checks at both compile

time and runtime. Listing 9 highlights the core implemen-

tation of this conversion. The function convert evaluates

an argument at compile time (line 9:17). If the argument

is a pull task, it returns a cast of the internal GPU data

pointer to the target argument type (line 11:13). Otherwise,

it forwards the argument in return (line 15). The auxiliary

structure PointerCaster (line 1:7) is designed to operate

on plain old data (POD) pointers in support for conventional

GPU kernel programming syntaxes. The same concept apply

to custom data types depending on a compiler’s capability.

5) Add a Dependency Link: After tasks are created, the

next step is to add dependency links. A dependency link is

a directed edge between two tasks to force one task to run

before or after another. Heteroflow defines two very intuitive

methods, precede and succeed, to let users create task

dependencies. The two methods are symmetrical to each other.

A preceding link forces a task to run before another and a

succeeding link forces a task to run after another. Heteroflow’s

task interface is uniform. Users can insert dependencies be-

tween tasks of different types as long as no cycles are formed.

host1 pull1 kernel1

host2 pull2 kernel2

push1

push2

Fig. 3: A task graph of eight tasks and seven dependency constraints.



g l o b a l vo id k1 ( i n t ∗ vec1 ) ;
g l o b a l vo id k2 ( i n t ∗ vec1 , i n t ∗ vec2 ) ;

v e c t o r <i n t > vec1 , vec2 ;

h f : : H e t e r o f l o w hf ;
a u t o h o s t 1 = hf . h o s t ( [ ] ( ) { vec1 . r e s i z e ( 1 0 0 , 0 ) ; } ) ;
a u t o h o s t 2 = hf . h o s t ( [ ] ( ) { vec2 . r e s i z e ( 1 0 0 , 1 ) ; } ) ;
a u t o p u l l 1 = hf . p u l l ( vec1 ) ;
a u t o p u l l 2 = hf . p u l l ( vec2 ) ;
a u t o push1 = hf . push ( p u l l 1 , vec1 ) ;
a u t o push2 = hf . push ( p u l l 2 , vec2 ) ;
a u t o k e r n e l 1 = hf . k e r n e l ( k1 , p u l l 1 ) ;
a u t o k e r n e l 2 = hf . k e r n e l ( k2 , p u l l 1 , p u l l 2 ) ;

h o s t 1 . p r e c e d e ( p u l l 1 ) ;
h o s t 2 . p r e c e d e ( p u l l 2 ) ;
p u l l 1 . p r e c e d e ( k e r n e l 1 ) ;
p u l l 2 . p r e c e d e ( k e r n e l 2 ) ;
k e r n e l 1 . p r e c e d e ( push1 , k e r n e l 2 ) ;
k e r n e l 2 . p r e c e d e ( push2 ) ;

Listing 10: Creates dependency links to describe Figure 3.

Listing 10 gives an example of using the method precede

to describe the dependency graph in Figure 3. Users can

precede an arbitrary number of tasks in one call. The overall

code to create dependency links in Heteroflow is very simple,

concise, and self-explanatory. An important takeaway here

is that task dependency is explicit in Heteroflow. Our API

never creates implicit dependency links even though they are

obvious in certain graphs. Such concern typically arises when

creating a kernel task that requires GPU data from other

pull tasks. In this scenario, pull tasks must finish before the

kernel task and users are responsible for this dependency in

their graphs. Heteroflow delegates the dependency controls to

users so they can tailor graphs to their needs. With careful

graph construction and refinement, applications can efficiently

reuse data without adding redundant task dependencies. For

example, kernel2 in Figure 3 can access the GPU data of

pull1 as a result of transitive dependency (pull1 precedes

kernel1 and kernel1 precedes kernel2). Listing 10

implements this intent.

6) Inspect a Task Dependency Graph: Another powerful

feature of Heteroflow on the user front is the visualization

of a task dependency graph using the standard DOT format.

Users can find readily available tools such as Python Graphviz

and viz.js to draw a graph without extra programming effort.

Graph visualization largely facilitates testing and debugging

of Heteroflow applications. Listing 11 gives an example of

dumping a Heteroflow graph to the standard output.

hf . dump ( c o u t ) ;
c o u t << hf . dump ( ) ;

Listing 11: Dumps a Heteroflow graph to the standard output.

B. Execute a Task Dependency Graph

An executor is the basic building block for executing a

Heteroflow graph. It manages a set of CPU threads and GPU

devices to schedule in which list of tasks to execute. When

a task is ready, the runtime submits the task to an execution

context which can occur in either a physical CPU core or

a GPU device. In Heteroflow, a task is indeed a callable.

When users create a task, Heteroflow marshals all required

parameters along with unique placeholders for runtime argu-

ments to form a closure that can be run by any CPU thread.

Execution of a GPU task will be placed under a GPU context.

The scheduler manages all such details to ensure consistent

results across multiple GPUs. Listing 12 creates an executor

of eight CPU threads and four GPUs and uses it to execute

a graph one times, 100 times, and multiple times until a

stopping criteria is met. Users can adjust the number based

on hardware capability to easily scale their graphs across

different CPU-GPU configurations. All the run methods in

the executor class are non-blocking. Issuing a run on a graph

returns immediately with a C++ future object. Users can

use it to inspect the execution status of the graph or chain

up a continuation for asynchronous controls. The executor

class also provides a method wait_for_all that blocks

until all running graphs associated with the caller executor

finish. Heteroflow’s executor interface is thread-safe. Touching

an executor from multiple threads is valid. Users can take

advantage of this property to explore higher-level parallelism

without concerning about race in execution.

hf : : E x e c u t o r e x e c u t o r ( 8 , 4 ) ; / / 8 CPU t h r e a d s 4 GPUs
hf : : H e t e r o f l o w graph ;
a u t o f u t u r e 1 = e x e c u t o r . run ( g raph ) ;
a u t o f u t u r e 2 = e x e c u t o r . run n ( graph , 1 0 0 ) ;
a u t o f u t u r e 3 = e x e c u t o r . r u n u n t i l ( graph , [&] ( ) {

r e t u r n c u s t o m s t o p p i n g c r i t e r i a ( ) ;
} ) ;
e x e c u t o r . w a i t f o r a l l ( ) ;

Listing 12: Creates an executor to run a Heteroflow graph.

C. Scheduling Algorithm

Another major contribution of Heteroflow is the design of

a scheduler on top of our heterogeneous tasking interface.

Scheduler is an integral part of the executor for mapping

task graphs onto available CPU cores and GPUs. When an

executor is created with N CPU threads and M GPUs, we

spawn N CPU threads, namely workers, to execute tasks.

Unlike existing works [8], [19], we do not dedicate a worker

to manage a target GPU, since all tasks are uniformly rep-

resented in Heteroflow using polymorphic functional objects

(see Listings 4, 6, and 8). This largely facilitates the design

of our scheduler in providing efficient resource utilization

and flexible runtime optimizations, for instance, GPU memory

allocators, asynchronous CUDA streams, and task fusing.

Our scheduler design is motivated by [13]. When a graph is

submitted to an executor, a special data structure called topol-

ogy is created to marshal execution parameters and runtime

metadata. Each heteroflow object has a list of topologies to

track individual execution status. The executor also maintains

a topology counter to signal callers on completion. The

communication is based on a shared state managed by a pair of

C++ promise and future objects. The first step in scheduling is

device placement, mapping each GPU task to a particular GPU



device. An advantage of our programming model is implicit

data dependencies between a kernel and its pull tasks (see

line 3 in Listing 8), through which the scheduler can utilize

to place them under the right device. Based on this property,

we develop a simple and efficient device placement algorithm

using union-find and bin packing as shown in Algorithm 1.

The key idea is to group each kernel with its source pull tasks

(line 1:7) and then pack each unique group to a GPU bin with

an optimized cost (line 8:14). By default, we minimize the

load per GPU bins for maximal concurrency but can expose

this strategy to a pluggable interface for custom cost metrics.

Algorithm 1: DevicePlacement

1 foreach t ∈ tasks do

2 if t.type() == KERNEL then

3 foreach p ∈ t.source pull tasks() do

4 set union(t, p);

5 end

6 end

7 end

8 foreach t ∈ tasks do

9 if x ← t.type(); x == KERNEL or x == PULL

then

10 if r← set find(t); is set root(r) then

11 set bin packing with balanced load(t);

12 end

13 end

14 end

After device placement, the scheduler enters a work-stealing

loop where each worker thread iteratively drains out tasks from

its local queue and transitions to a thief to steal a task from a

randomly selected peer called victim. The process stops when

an executor is destroyed. We employ work-stealing because

it has been extensively studied and used in many parallel

processing systems for dynamic load-balancing and irregular

computations [20], [21]. When a worker thread executes a task,

it applies a visitor pattern that invokes a separate method for

each task type. Running a host task is trivial, but calling a

GPU task must be scoped under the right execution context.

Heteroflow provides a resource acquisition is initialization

(RAII)-style mechanism on top of CUDA device API to scope

the task execution under its assigned GPU device. Listing 13

gives the implementation details of invoking a pull task from

an executor. All GPU tasks are synchronized through CUDA

events (line 4 and line 6).

1 vo id E x e c u t o r : : invoke ( u n s i g n e d me , P u l l& h ) {
2 a u t o [ d , s , e ] = g e t d e v i c e s t r e a m e v e n t ( me , h ) ;
3 ScopedDeviceCo nt ex t c t x ( d ) ;
4 cudaE ven tRecord ( e , s ) ;
5 h . work ( g e t d e v i c e a l l o c a t o r ( d ) , s ) ;
6 cudaS t ream Wai tE ven t ( s , e , 0 ) ;
7 }

Listing 13: Implementation details of invoking a pull task.

While detailing the scheduler design is out of the scope of

this paper, there are a few notable items. First, each worker

keeps a per-thread CUDA stream to enable concurrent GPU

memory and kernel operations. Second, our executor keeps a

memory pool for each GPU device to reduce the scheduling

overhead of frequent allocations by pull tasks. We implement

the famous Buddy allocator algorithm [22]. Third, our work-

stealing loop adopts an adaptive strategy to balance working

and sleeping threads on top of available task parallelism. The

key idea is to ensure one thief exists as long as an active

worker is running a task. At the time of this writing, our

scheduler design might not be perfect, but it provides a proof

of concept for our programming model and fosters future

research opportunities for new algorithms.

IV. EXPERIMENTAL RESULTS

We evaluated the performance of Heteroflow on two real

VLSI CAD applications, timing analysis and standard cell

placement. Each application represents a unique computation

pattern. All experiments ran on a Ubuntu Linux 5.0.0-21-

generic x86 64-bit machine with 40 Intel Xeon Gold 6138

CPU cores at 2.00 GHz, 4 GeForce RTX 2080 GPUs, and 256

GB RAM. The timing analysis program is compiled by g++8.2

and nvcc CUDA 10.1 with C++14 standards -std=c++14

and optimization flags -O2. The placement program is com-

piled under the same environment. Both programs are derived

from our open-source projects, OpenTimer [23], [24], [25] and

DREAMPlace [26], that consist of complex domain-specific

algorithms with more than 10K lines of code over years of

development.

A. VLSI Timing Analysis

We applied Heteroflow to solve a VLSI timing analysis

problem. Timing analysis is a very important component in

the overall design flow (see Figure 2). It verifies the expected

timing behaviors of a digital circuit to ensure correct function-

alities after tape-out. Among various timing analysis problems,

one subject is to find the correlation between different timing

views. Each each view represents a unique combination of a

process variation corner (e.g., temperature, voltage) and an

analysis mode (e.g., testing, functional). Figure 4 shows the

number of required analysis views increases exponentially as

the technology node advances [23], [24]. Timing correlation

is not only important for reasoning the behavior of a timer but

also useful for building regression models to reduce required

analysis iterations.

Fig. 4: The required analysis views in terms of corners and modes
increase exponentially as the technology node advances.



In reality, there are many ways to conduct timing analysis

and correlation. In this experiment, we consider a representa-

tive three-step flow: a timer generates analysis datasets from

a circuit design across multiple views; a hybrid CPU-GPU

algorithm extracts timing statistics and generates regression

models for each dataset; a synchronization step combines all

assessed quantities to a concrete report. Figure 5 illustrates

a fractional task graph of two views. We use the open-

source tool, OpenTimer, to generate 1024 different timing

reports for a large circuit, netcard, of 1.5M gates [23], [24].

The correlation layer implements a CPU-based algorithm to

extract graph information (critical paths [27], [28], CPPR [29],

[30], [31]) and a GPU-based algorithm to perform logistic

regression with gradient descent. Part of CPU and GPU tasks

are dependent to each other. For demonstration purpose, we

pre-generate the analysis data and control the sample size such

that each analysis view takes approximately the same runtime.

timer

cpu-0-0 cpu-0-1 cpu-0-2 cpu-0-3

pullx-0 pully-0

cpu-1-0 cpu-1-1 cpu-1-2 cpu-1-3

pullx-1 pully-1collect-0

kernel-0

collect-1

kernel-1

sync

pullc-0test-0

combine-0

finalize-0

pushx-0 pushy-0

pullc-1test-1

combine-1

finalize-1

pushx-1 pushy-1

Fig. 5: A partial task graph of VLSI timing analysis for finding
correlation between two views. Each view implements a hybrid CPU-
GPU correlation algorithm.
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Fig. 6: Runtimes at different CPU-GPU numbers and problem sizes
for analyzing the circuit netcard (1.5M gates and 1.5M nets).

Figure 6 shows the overall runtime performance at different

CPU-GPU numbers and problem sizes. In general, we observe

a descent scaling when increasing the number of cores and

GPUs. The task graph requires 99 minutes to finish at the

lowest hardware concurrency of 1 core and 1 GPU. Using

all 40 cores and 4 GPUs is able to speed up the runtime by

7.7× finishing in 13 minutes. On the slice of 4 GPUs, the

runtimes are 51, 23, 18, 15, 14, and 13 minutes for 1, 8, 16,

24, 32, and 40 cores, respectively. The GPU counterparts at 40

cores are 36, 21, 15, and 13 minutes for 1, 2, 3, and 4 GPUs,

respectively. The lower side of Figure 6 shows the runtime

versus the problem size in terms of six different timing views,

32, 64, 128, 256, 512, and 1024. At any point, increasing the

number of CPUs or GPUs can all reduce the runtime. For this

particular workload, speed-up from multiple GPUs is more

remarkable than CPUs.

B. VLSI Placement

We applied Heteroflow to solve a VLSI placement problem,

a fundamental step in the physical design stage (see Figure

2). The goal is to determine the physical locations of cells

(logic gates) in a fixed layout region with minimal interconnect

wirelength. Modern placement typically incorporates hundreds

of millions of cells and takes several hours to finish. To

reduce the long runtime, recent work started investigating new

algorithms using the power of heterogeneous computing [26].

Among various placement techniques, detailed placement is an

important step to refine a legalized placement solution for min-

imal wirelength. Mainstream detailed placement algorithms

are combinatorial and iterative. A widely-used matching-based

algorithm is shown in Figure 7. The key idea is to extract

a maximal independent set (marked in cyan) from a cell set

and model the wirelength minimization problem on these non-

overlapped cells into a weighted bipartite matching graph.

The entire process is very time-consuming especially for large

designs with millions of cells. A practical implementation iter-

ates the following three steps: a parallel maximal independent

set finding step using Blelloch’s Algorithm [32]; a sequential

partitioning step to cluster adjacent cells; a parallel bipartite

matching step to find the best permutation of cell locations.

Figure 7(c) illustrates the process.

In the experiment, we implemented a hybrid CPU-GPU de-

tailed placement algorithm introduced by DREAMPlace [26].

Among these three steps, finding the maximal independent set

takes the most runtime. DREAMPlace developed a new accel-

eration algorithm that offloaded this step to GPU, and showed

40× speed-up over a CPU baseline using 20 cores [26]. The

other two steps have graph-oriented computation patterns and

are implemented on CPUs. Figure 8 shows a partial task graph

for the algorithm in two iterations. The algorithm normally

converges in 10-50 iterations. To enable task overlaps between

iterations, we flatten the task graph for a given iteration

number. The task graph in Figure 8 highlights the complexity

of the algorithm and dependent CPU-GPU tasks.

Figure 9 shows the runtime performance at different CPU-

GPU numbers and iterations, for placing a large circuit,

bigblue4, of 2.2M cells and 2.2M nets. It is observed that

increasing the number of CPU cores reduces the runtime. For
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find the best permutation of cell locations. (c) A practical three-step
iterative implementation of the algorithm.

instance, under 1 GPU it takes 58.41s and 14.02s using 1 core

and 40 cores, respectively. Maximum concurrency saturates at

approximately 20 cores. In this particular workload, perfor-

mance with 1 GPU is good enough. The runtime does not

benefit too much from adding more GPUs. We can clearly see

this property on the upper-right plot. Under 40 cores, it takes

14.02s and 13.61s for 1 GPU and 4 GPUs, respectively. In fact,

this property is generally true for most optimization algorithms

in VLSI CAD, as they are often irregular and dependent [15].

In terms of different problem sizes which is measured by the

iteration count used to construct the task graph, increasing

the number of CPU cores can reduce the runtime in most

scenarios. For example, the task graph of 5 iterations under 4

GPUs finishes in 6.35s and 1.44s using 1 core and 40 cores,

respectively. Due to the nature of the algorithm, such trend is

not observed on the GPU side.

V. RELATED WORK

Heterogeneous programming models have been extensively

developed in scientific communities and enabled vast success

in various problem domains [12]. CUDA, OpenCL, OpenGL,

C++ AMP, and Brook+ are popular GPU programming frame-

works that provide a rich set of low-level APIs for explicit

GPU managements [2], [3], [18], [33]. These libraries are

designed particularly for power users to implement vari-

ous optimization strategies specific to a GPU architecture.

Directive-based models such as hiCUDA, Ompss, OpenMPC,

and OpenACC provide high-level abstraction on GPU pro-

gramming by augmenting program information, for instance,

pullx
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Fig. 8: A partial task graph for the detailed placement algorithm of
two iterations. The number in a square bracket indicates the iteration
number.

1 8 16 24 32 40

10

20

30

40

50

60

Number of CPU Cores

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Runtimes across CPUs

4 GPUs

3 GPUs

2 GPUs

1 GPU

1 2 3 4

10

20

30

40

50

60

Number of GPUs
R

u
n

ti
m

e
(s

ec
o

n
d

s)

Runtimes across GPUs

40 CPU cores

32 CPU cores

24 CPU cores

16 CPU cores

8 CPU cores

1 CPU core

10 20 30 40 50

5

10

15

Problem Size (# iterations)

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Runtime vs Problem Size (40 cores)

4 GPUs

3 GPUs

2 GPUs

1 GPU

10 20 30 40 50

0

20

40

60

Problem Size (# iterations)

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Runtime vs Problem Size (4 GPUs)

40 Cores

32 Cores

24 Cores

16 Cores

8 Cores

1 Core

Fig. 9: Runtimes at different CPU-GPU numbers and problem sizes
for placing the circuit bigblue4 (2.2M cells and 2.2M nets).

guidance on loop mapping onto GPU and data sharing rules, to

designated compilers [4], [5], [6], [7]. These models are good

at loop-based parallelism but cannot handle well irregular task

parallelism [34]. Functional-level approaches such as StarPU,

SYCL, HPX, PaRSEC, QUARK, XKAAPI++, Unicorn, and

Taskflow are capable of concurrent CPU-GPU tasking [8],

[9], [10], [11], [19], [35], [16], [17], [36], [37]. The offered

graph description languages can be complex or expressive,

depending on the targeted applications. Other data structure-

driven libraries such as Thrust, VexCL, and Boost.Compute



provide C++ STL-style interfaces to program batch CPU-GPU

workloads [38], [39], [40]. For concurrent CPU-GPU tasking,

users are responsible for scheduling and concurrency controls

that are known difficult to program correctly.

CPU-GPU co-scheduling is a pivotal component of all

heterogeneous programming systems. The parallel comput-

ing community has a number of algorithms including static

mapping [41], dynamic work-stealing [20], [21], asymptotic

profiling [42], and other system-defined strategies [5], [8],

[10], [16]. Vendor-specific features such as CUDA Graph [2],

[43] and SYCL [9] offer asynchronous graph scheduling for

task parallelism but implementation details are unknown. On

the other hand, automatic GPU placement has been studied

in machine learning community [44], [45]. The goal is to

place operations in a deep neural network onto GPU devices

in an optimal way, such that the training process can complete

within the shortest amount of time. However, these algorithms

are problem-specific and require a unified tensor data structure

for performance modeling.

VI. CONCLUSION

In this paper, we have introduced Heteroflow, a new modern

C++ tasking library to help developers quickly write CPU-

GPU parallel programs and implement efficient heterogeneous

decomposition algorithms. We have evaluated Heteroflow on

two real design automation problems and shown performance

scalability across different CPU-GPU numbers and problem

sizes. At a particular VLSI timing analysis example, Het-

eroflow can reduce a baseline runtime from 99 minutes to 13

minutes (7.7× speed-up) on a machine of 40 CPU cores and

4 GPUs. Future work will focus on distributing our scheduler

based on [46] and incorporating a broader range of workloads,

including machine learning [47], [48] and engineering simu-

lation [49], [50], [51].
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