
LibAbs: An Efficient and Accurate Timing Macro-Modeling
Algorithm for Large Hierarchical Designs

Tin-Yin Lai
Dept. of ECE, UIUC, IL, USA

tinyinlai@gmail.com

Tsung-Wei Huang
Dept. of ECE, UIUC, IL, USA
twh760812@gmail.com

Martin D. F. Wong
Dept. of ECE, UIUC, IL, USA
mdfwong@illinois.edu

ABSTRACT
The ever-increasing design complexity is driving the need of
fast and accurate macro-modeling algorithms to accelerate
the hierarchical timing. We introduce LibAbs, an effective
macro-modeling algorithm that efficiently supports high ac-
curacy, high compression rate, and multi-threading. LibAbs
applies tree-based graph reduction techniques to reduce the
model size with comparable accuracy values to the flat model
under multi-threaded environment. LibAbs outperforms ex-
isting tools including top winners from TAU 2016 macro-
modeling contest in terms of model size, accuracy, and run-
time on industry benchmarks. The in-context usage of our
abstracted model has also demonstrated promising perfor-
mance for timing-driven optimizations in large hierarchical
designs.

Keywords
Timing macro-modeling, Static timing analysis

1. INTRODUCTION
As design complexities continue to increase, timing anal-

ysis has been one of the most time-consuming tasks in the
optimization cycles recently. Hierarchical timing analysis is
one of the solutions to speed up the timing closure via pre-
computing timing in several parts of designs. In hierarchical
timing, a large design is partitioned into several manageable
sub-designs. These manageable sub-designs can generate
timing in shorter runtimes. By optimizing timing on these
sub-designs, the timer can reduce the computational space
in timing analysis on large designs. Timing macro-modeling
is an essential step in the hierarchical timing to optimize run-
time. A timing macro modeler, the engine of timing macro-
modeling, abstracts sufficient timing behavior of sub-designs
into macro models. A timing macro modeler is shown in
Figure 1. The timing of sub-designs can be efficiently re-
produced using macro models in the timing analysis of large
designs. A successful macro model is small, accurate, and
reusable. Hierarchical timing analysis with successful macro

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’17, June 18-22, 2017, Austin, TX, USA
c© 2017 ACM. ISBN 978-1-4503-4927-7/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3061639.3062274

models significantly accelerates the optimization cycles by
saving runtime on identical and duplicated sub-designs.

However, in prior works, macro models were unable to
capture accurate timing [2]. In [2], [3], and [4], they gen-
erated macro models based on a comparably straightforward
timing model without considering parasitic delay. To date,
timing macro-modeling in large hierarchical timing is still
an open problem. Academy and industry jointly held 2016
TAU timing contest [1] to seek for novel solutions. Accord-
ing to the published results from the TAU timing contest [1],
the top performers were unable to strike a balance between
model size and accuracy. Therefore, we provide a new algo-
rithm to address the problem in both accuracy and model
size.

 Macro model

Inp1

Inp2

Inp3
Inp4

Inp5

Inp1

Inp2

Inp3
Inp4

Inp5

Outp1

Outp2

Outp1

Outp2

LibAbs
 Timig macro

modeler

Figure 1: A timing macro modeler abstracts timing behavior
of a sub-design into a macro model to speed up the timing
analysis.

In this paper, we introduce LibAbs, a timing macro-modeling
algorithm, that efficiently supports:

• Industry standard format. LibAbs is compatible
with the industry standard format. Our macro model
can be integrated into the existing timing engine.

• Accuracy. Comparing with the timing in the original
flat circuit, LibAbs generates accurate macro models.

• High compression rate. LibAbs generates macro
models with small model size.

• Multi-threading. LibAbs supports multi-threading
to generate a macro model in parallel efficiently.

• Effective macro usage. To facilitate timing-driven
optimizations, our macro models reduce the total run-
time of both the in-context and out-context timing
analysis.

The above advantages confer LibAbs an accurate, effi-
cient, and high-quality macro modeler. Compared to the
original flat timing, the experimental results demonstrate
that the macro model generated by LibAbs is smaller by
33% while the performance margin in terms of accuracy is

kept within 0.3ps. In addition, in-context usage can speed
up to around ×3 with hundreds of operations.

The rest of the paper is organized as follows. In Section 2,
we formulate the problem. In Section 3, we show the theo-
ries and strategies of LibAbs. Our experimental results are
in Section 4. Finally, in Section 5, we conclude our accom-
plishments.

2. PROBLEM FORMULATION
We follow the rules of TAU 2016 timing contest [1].

Problem 1. The goal of timing macro-modeling is to cre-
ate a macro model from a given circuit design and the bound-
ary timing. The boundary timing includes primary input ar-
rival time, primary input slew, primary output required ar-
rival time, and primary output load. In the TAU contest [1],
the range of primary input slew is 0ps to 250ps and primary
output load is 0pf to 250pf . A macro model is capable of
reproducing the timing behavior at primary inputs and pri-
mary outputs. A macro model is written in the format of a
single cell in Liberty files.

As shown in Figure 2, the timing macro modeler generates
a library cell that represents a full netlist described in in-
put files. To validate accuracy, we use both full netlist and
macro model in the same parent-level circuit and compare
the timing on input/output ports using OpenTimer [5], the
golden timer in the TAU contest [1]. In addition, our macro
models also consider the parasitic delay and Common Path
Pessimism Removal (CPPR).

Figure 2: The flow of timing macro-modeling.

Hereafter, we first introduce input files in Section 2.1. Sec-
tion 2.2 describes the output files and evaluation part.

2.1 Input Files
Our input files follow the industry formats. A gate-level

netlist is defined in a Verilog (∗.v) file. Parasitic informa-
tion, provided in the Standard Parasitic Exchange Format
(∗.spef) file, describes resistor-capacitor (RC) trees on wires
for estimating the Elmore delay. An assertion (∗.timing) file
sets initial boundary timing, including arrival time and slew
at primary inputs; output load and required arrival time
at primary outputs. Liberty (∗ Early.lib and ∗ Late.lib)
files provide the Early and the Late timing information of
standard cells for hold tests and setup tests respectively.
Timing information in Liberty files includes delay, slew, and
setup/hold constraints in the form of Look Up Tables (LUTs).

2.2 Output Files and Evaluation
Output files are two liberty (Early and Late) files that

contain a single cell representing the macro model. For all
the primary inputs/outputs of the original netlist, there exist
corresponding primary input/output pins in this single cell.
Liberty files save timing information in 2-D LUTs.

For evaluating the accuracy, the original netlist is con-
nected with some additional gates to input ports and from
output ports. The assertion file provides input slew/arrival
time and output load/required time for OpenTimer to re-
port slack at both input and output pins, arrival time at
output ports. The output of OpenTimer is the golden tim-
ing report. Macro model connects to the same additional
gates at both input pins and output pins as well. We set
the same assertion file and report timing. Finally, we com-
pare the output timing report with the golden timing report.
We also compare the runtime and memory usage in the two
timing analysis.

3. ALGORITHM
In this section, we introduce the algorithm of LibAbs.

Overall program flow is shown in Figure 3.

Figure 3: LibAbs program flow.

In LibAbs, we first initiate an abstraction graph, Gabs,
from the original timing graph Gtiming. We use the term
abs-node and abs-edge to refer to the node in Gabs and the
edge in Gabs respectively. Secondly, to reduce the search
space and computational effort, we determine boundary tim-
ing on all the abs-nodes. Third, considering the boundary
timing, we abstract timing information path by path. Fi-
nally, we update LUT template for library syntax usage and
write out library files.

3.1 Abstraction Graph Construction
Based on a original timing graph, we construct a abstrac-

tion graph by merging timing arcs. We aim to merge timing
arcs with minimum accuracy loss. The merging of branch-
in/out arcs may induce accuracy loss. However, if a sub-
graph of a timing graph is a tree structure, there exists
a sub-abs-graph that consists of abs-nodes on a root and

leaves of the tree graph and abs-edges link root to each leaf
respectively. Furthermore, if the load capacitance value re-
mains fixed on each node, the abs-graph merges timing with
no accuracy loss.

The values of load capacitance on internal pins that are
not connected to the primary outputs are constants because
the sub-design circuit remains unchanged in the parent-level
optimization cycles. If we can find a sub-graph of a timing
graph which is a tree, we can accumulate delay and de-
rive slew with a given slew and fixed output loads trough
a unique path between a root and each leaf on each abs-
edge. This is suitable in both out-trees, the leaf pins are
in the fanout cone of a root pin, and in-trees, the leaf pins
are in the fanin cone of a root pin. However, in the netlist,
the number of branch-in is usually more than the number of
branch-out because most of the standard cells are equipped
with branch-in timing arcs, including NAND, AND, NOR,
OR, XOR, etc. Therefore, to minimize the model size, we
would like to find all the in-trees with deepest possible leaves,
maximal in-trees.

We are unable to annotate load capacitance on internal
pins in liberty files. However, load capacitance values vary
at timing arcs that are connected to the output ports, as the
macro block can be reused in different places of the design.
For wires that are only connected to a single output port,
load indices on LUTs can solve the problem. Some wires
connect to not only output ports but also cell pins. In this
case, load capacitance values on output ports vary, but in-
ternal cell pins are unaware of it. To solve this problem, we
connect all input pins of previous cells to the primary out-
puts and other internal cell pins. We call these abs-edges
primary output segments.

Timing graph is a Directed Acyclic Graph (DAG). The
problem is to partition a DAG into a forest of maximal in-
trees. By definition, in an in-tree, all nodes have less than
one output edge except the root. Therefore, the node with
multiple branch-out abs-edges must be the root of the in-
tree. To find the longest paths in the in-trees, we cut DAG
at multiple branch-out nodes. We found out that Depth
First Search (DFS) can complete this task. We will show
how LibAbs abstracts the timing graph into an abstraction
graph Gabs in Algorithm 1.

DFF

QD

Clk

NAND INVINVINVNAND

Primary
output segment

Abstraction graph G
abs

In-tree
A

B

E

F

O

I

Figure 4: An abstraction graph example. We construct Gabs

with 13 abs-edges and 12 abs-nodes including primary inputs
and primary outputs.

Figure 4 shows an example circuit. Originally, there are
20 edges in the timing graph. We construct Gabs as follows.
In this circuit, the blue part corresponds to an in-tree. We
connect leaves, i.e., the primary input A, the primary input
B, and Q pin of DFF, to the root pin, i.e., D pin of the DFF.
Next, the green part of the circuit shows a primary output
segment, where we connect the E pins and the F pin of the
NAND gate to the primary output O and the I pin of the
INV gate. In the end, there are only 13 abs-edges in Gabs.

Algorithm 1 Abstraction graph construction

Input: a timing graph Gtiming

Output: an abstraction graph Gabs

1: initialization
2: insert all primary inputs/outputs to Gabs

3: push all primary inputs in a queue
4: mark all primary inputs as visited
5: while queue not empty do
6: u← pop the top of queue
7: for all v ← descendant of u do
8: while number of v’s descendant ≤ 1 do
9: v ← descendant of v

10: end while
11: if v connects to primary output & cell pin then
12: insert an abs-edge from u to v into Gabs

13: for all n← branch-out nodes from v do
14: insert an abs-edge from v to n into Gabs

15: if n is not visited then
16: push n in queue
17: mark n as visited
18: end if
19: end for
20: else
21: v ← descendant of v
22: if v is not visited then
23: push v in queue
24: mark v as visited
25: end if
26: insert an abs-edge from u to v into Gabs

27: end if
28: end for
29: end while

The final Gabs of the circuit is shown as red dashed lines. In
addition to the input and output ports, 6 internal abs-nodes
are shown as red dots.

3.2 Boundary Timing Determination
Because of the design constraints, a macro model is usu-

ally used under certain boundary timing defined by a range
of input slew and output load. Based on the boundary tim-
ing, the macro modeler can reduce the search space by limit-
ing the size of LUTs in the following steps. According to the
TAU timing contest [1], the range of input slew is from 0ps
to 250ps and the range of output load is from 0pF to 250pF .
Therefore, we record both the minimum and the maximum
of slew and load on abs-nodes by setting the best and the
worst slew and load on all input/output ports. Properly
constraining the boundary timing is beneficial for reducing
the search space.

3.3 Timing Abstraction
In timing abstraction, LibAbs tabulates timing informa-

tion. In the first step of timing abstraction, we assign a set of
proper indices to each abs-edge. Secondly, we trace through
timing arcs on abs-edges to derive timing for every index
entry. Finally, we assign the timing into the corresponding
LUTs. The timing here includes delay values, slew values,
or constraint values.

3.3.1 Indices Initiation
Assigning indices is critical in timing macro-modeling. If

Algorithm 2 Determine boundary timing

Input: a timing graph Gtiming

Input: an abstraction graph Gabs

Output: an abstraction graph Gabs

1: set min input slew on Gtiming

2: set min output load on Gtiming

3: update timing on Gtiming

4: record min slew and min load on all abs-nodes
5: set max input slew on Gtiming

6: set max output load on Gtiming

7: update timing on Gtiming

8: record max slew and max load on all abs-nodes

Algorithm 3 Abstract timing

Data: an abstraction graph Gabs

1: for each abs-edge on Gabs do
2: initiate indices
3: for each index entry on LUTs do
4: infer timing
5: assign timing to LUTs
6: end for
7: end for

the indices values are not properly selected, distortion in
accuracy leads to an inaccurate timing model. For transition
tables and delay tables, two indices are slew on the source
pin and load on the sink pin. In constraint tables, two indices
are slew on the clock pin and slew on the data pin of a flip-
flop.

slew indices

Ti
m

in
g

min max

sample points

N
ew

 ti
m

in
g

min max

new slew indices

reproduce

A non-differentiable
function

Fixed load

No accracy loss

Figure 5: Sampling a non-differentiable function.

First, we select sets of indices on transition tables and de-
lay tables. In the timing analysis, timing on wires are con-
tinuous functions because parasitic delay and slew are based
on the Elmore delay model. Tabulating parasitic timing
is equivalent to sampling a smooth and differentiable func-
tions. However, the timer interpolates a LUT with a set of
slew and load on a cell arc. LUT is a non-differentiable func-
tion. Actually, except for the nonnon-differentiable points,
LUT is a linear function [1]. Therefore, if we sample on
non-differentiable points, we lose no accuracy. To avoid ac-
curacy distortion on timing, LibAbs selects slew indices that
are derived from the first cell arc from the source node be-
cause the slew indices from the first cell arc determine the
first set of non-differentiable points. If the first arc from the
source node is a wire, we have to find the first cell arc and
back propagate indices to the source node. The formula for
back propagating slew is derived from the Elmore delay if
load capacitance values remain constants:

slew indicessource =
√

slew indices2sink − impulse2 (1)

where the impulse is the impulse delay from the Elmore
model [1]. In addition, by utilizing the boundary timing

from Section 3.2, we bound indices to reduce the size of
LUTs.

Similarly, load indices are determined based on the last
cell arc to the sink node. If the last arc is not a cell arc, we
need to forward propagate load indices as well.

load indicessink = load indiceslast arc − total capwire (2)

We bound the load indices as well. For an internal pin, the
load is fixed.

sink

source

a
b

c d

e

1.0 2.0 3.0
5.6 5.7 5.8
7.2 7.3 7.4

4.0
5.0

4.0 5.0 6.0
6.0 6.1 6.2
8.6 8.7 8.8

8.0
9.0

(slew
min

, slew
max

)
= (1.2, 2.5)

(load
min

, load
max

)
= (8.2, 8.2)

1.2 1.93 2.5
 ...8.2

impulse = 0.5

abs-edge
abs-edge indicies

Figure 6: Initiate indices. Slew indices of the abs-edge, (1.2,
1.94, 2.5), are derived from b. Load indices, (8.2), are de-
rived from cell arc d.

For instance, in Figure 6, an abs-edge starts from a source
node to a sink node. We derive slew indices of this abs-edge
from cell arc b, (1.0, 2.0, 3.0). We back propagate slew
indices from Equation 1 and get slew indices (0.86, 1.94,
2.96). Finally, we insert the maximum and minimum slew
into slew indices and remove indices outside the boundary.
We remove 0.86 and 2.96 and insert 1.2 and 2.5 into slew
indices. Slew indices of the abs-edge are (1.2, 1.94, 2.5).
Load indices are derived from cell arc d and back propagate
load. However, load indices are bounded by 8.2 in this case
finally.

Two indices of a constraint table are slew from the clock
pin and the data pin of a flip-flop. A clock pin has two
branch-out abs-edges. A data pin of a flip-flop is the end
of timing path. Therefore, in Gabs, the abs-edge with con-
straint table copies indices from constants arcs and bound
slew indices by slew boundary on the clock pin and the data
pin.

3.3.2 Timing Inference
After indices have been decided, LibAbs infers timing

for every index entry of LUTs on each abs-edge by trac-
ing through cell arcs and RC arcs on abs-edges. However,
tracing through arcs on a given abs-edge with a sink node
and a source node is difficult because of the multiple branch-
out arcs from a source node and multiple branch-in arcs to
the sink node. Therefore, for implementation, we annotate
a directed node on an abs-edge to direct which branch-out
arcs to trace. The directed node is at the sink node of the
first arcs.

As we aim to create a single cell to model a circuit, there
are only two types of internal cell arcs: (1) combinational
arcs and (2) constraint arcs. We first discuss delay and slew
on combinational arcs. To propagate delay with a pair of
input slew and output load, we accumulate delay and update
current slew as we trace through timing arcs from the source
node to the sink node of an abs-edge. As we trace through
cell arcs, we interpolate the LUTs from the original standard
cell library to get delay and slew. We derive delay and slew

Table 1: Runtime and memory usage

Circuits # of Gates
Our work 1st of TAU contest 2nd of TAU contest

runtime memory runtime memory runtime memory
mgc edit dist 221539 13.51 s 1.68 GB 28 s 1.80 GB 67 s 4.02 GB

vga lcd 286413 18.65 s 2.27 GB 32 s 2.19 GB 75 s 4.55 GB
leon3mp 1534156 109.64 s 11.85 GB 317.5 s 14.67 GB 419 s 17.10 GB
netcard 1628325 117.31 s 12.49 GB 341 s 15.37 GB 1117 s 23.00 GB
leon2 1892057 136.66 s 14.97 GB 409.5 s 18.26 GB 926.5 s 32.35 GB

Table 2: Accuracy

Circuits
Our work 1st of TAU contest Compare 2nd of TAU contest Compare

avg. max. avg. max. avg. max. avg. max. avg. max.
mgc edit dist 0.052102 0.244141 0.043471 0.215088 83.43 % 88.10 % 0.058285 0.248535 111.87 % 101.80 %

vga lcd 0.005850 0.177490 0.005077 0.176269 86.80 % 99.31 % 0.008356 0.176758 142.84 % 99.59 %
leon3mp 0.018544 0.259522 0.015853 0.293701 85.49 % 113.17 % 0.391135 39.999390 2109.23 % 15412.72 %
netcard 0.019864 0.167968 0.026264 0.156250 132.22 % 93.02 % 0.069597 85.422486 350.36 % 50856.40 %
leon2 0.019837 0.167969 0.017137 0.140624 86.39 % 83.72 % 0.893399 190.153076 4503.65 % 113207.24 %

based on the Elmore delay and the parasitic wire information
given in .spef files. In constraint arcs, we derive slew from
a pair of given clock pin slew and data pin slew. We show
the detail in Algorithm 4.

Algorithm 4 Infer timing

Data: an abs-edge
Input: slew slewsource on source and load loadsink on sink
Output: delay and slew
1: u← the source node of the abs-edge
2: v ← the directed node of the abs-edge
3: e← the timing arc from u to v
4: delay ← 0
5: slew ← slewsource

6: while v! = sink of the abs-edge do
7: if e is a cell arc then
8: delay ← d + interpolated delay on e
9: slew ← interpolated slew on v

10: else if e is a RC arc then
11: delay ← d + delay derived from e
12: slew ← slew derived to v
13: end if
14: e← the next timing arc
15: v ← the sink node of e
16: end while

3.4 Update LUT Template
In timing analysis, the LUT template is an essential infor-

mation for timer, such as LUT name, size, and the range of
variables in indices. As we already tabulated timing in the
previous steps, we need to insert LUT templates in liberty
files. Therefore, we sweep through all the LUTs on abs-edges
and insert the corresponding LUTs templates.

3.5 Multi-threading
It is desired to utilize the power of many-core machines

to develop a parallel algorithm. LibAbs highly supports
multi-threading in timing abstraction which involves heavy
computations. In Section 3, the variables for inferring tim-
ing on abs-edges are independent to each other. There-
fore, multiple threads can spawn to deal with each itera-
tion of inferring timing on an abs-edge in a parallel manner
to improve the throughput. The higher throughput also
translates into higher speedup. With the support of multi-
threading, LibAbs generates macro models efficiently. In our
program, the multi-threading version with 8 threads com-
puting is more than ×4 faster than the single-threading ver-
sion. As shown in Algorithm 5, we apply multi-threading in
Algorithm 3.

Algorithm 5 Abstract timing with multi-threading

Data: an abstraction graph Gabs

1: #pragma omp parallel for
2: for each abs-edge on Gabs do
3: initiate indices
4: for each index entry on LUTs do
5: infer timing
6: assign timing to LUTs
7: end for
8: end for

4. EXPERIMENTAL RESULTS
We implement LibAbs in C++ language with OpenMP

3.1 as multi-threading library [6]. In the experiment, our
machine is equipped with Intel(R) Xeon(R) CPU E5-2660 @
2.20GHz with 8 cores and 128GB memory on Linux 64-bits
system [7]. Our benchmarks are from the 2016 TAU timing
contest [1]. We compare with the top-two performers from
the 2016 TAU timing contest [1].

4.1 Abstraction Runtime and Memory Usage
In the beginning, we compare the abstraction runtime and

memory usage with the top performers from the TAU timing
contest 2016 [1]. We collect runtime and memory data in the
average of twenty runs. Table 1 shows that runtime of the
2nd place team runs ×3.9 to ×9.5 slower than our work. In
addition, memory usage of the 2nd place team is ×1.4 to
×2.3 higher than our work. The macro modeler from the
2nd place team is not multi-threaded, and their throughput
is low. The experimental results of runtime and memory
usage show that our work is faster and more efficient in
memory usage compared to the top performers in the TAU
timing contest. It is expected that the new liberty files need
longer time for setting up in OpenTimer [5] because the
liberty file size is larger.

4.2 Accuracy
For testing accuracy, we experiment on the benchmarks

with *.timing1 and *.timing2 file to setup boundary timing
from the final evaluation of TAU 2016 and report (1) slack
at primary inputs, (2) slack at primary outputs, and
(3) arrival time at primary outputs. We estimate the
accuracy in error values by averaging over both slack and
arrival time from *.timing1 and *.timing2. A time unit in
the original circuit library is 1ps. In Table 2, our max er-
ror in all benchmarks are less than 0.26 ps with input slew
and output load in range of 0ps to 250ps and 0pf to 250pf

Table 3: Compression rate

Circuits
Original circuit Our work Compression rate 1st of TAU contest Compression rate
|N| |E| |N| |E| |N| |E| |N| |E| |N| |E|

mgc edit dist 581319 691863 95288 211461 16.39% 30.56% 355111 498788 46.24% 55.74%
vga lcd 768050 894826 129240 273016 16.83% 30.51% 2071117 2842994 49.70% 58.85%
leon3mp 4167632 4830700 753406 1525362 18.08% 31.58% 2565434 3510170 49.53% 58.75%
netcard 4458141 5264603 783831 1688054 17.58% 32.06% 307526 423687 52.90% 61.24%
leon2 5179094 5974414 949427 1894248 18.33% 31.71% 2071117 2842994 46.46% 54.00%

|N| = number of nodes on timing graph.
|E| = number of edges on timing graph.

respectively. Moreover, our average error in all benchmarks
are less than 0.06ps. Comparing to the 1st place team, our
model results in similar error values within 0.04ps. In the
benchmarks vga lcd and mgc edit dist, maximum error val-
ues of the 2nd place team are similar to our work. However,
in benchmark leon3mp, netcard, and leon2, the max error
values result in ×154.13 to ×1132.07 more error than our
work. The macro model from the 2nd place team is not ac-
curate. Our macro models, on the other hand, are accurate
and reliable to be used in large hierarchical designs.

4.3 Compression Rate
Compared to the original circuit, our tool compresses model

size into less than 33% in the number of edges and 19% in
the number of nodes. Our work largely reduces model size.
The results of the compression rate also show that our macro
model is about ×3 smaller than the macro model from 1st

place team in the number of nodes. In our experiment, our
new model needs about ×1.5 to ×2 for timer setup time
than the original circuit. However, due to the smaller model
size, we can reduce the runtime of timing propagation by
70%. Our macro models are highly compressed to speed up
the timing analysis in parent-level designs.

4.4 Macro Usage
To alleviate the design turnaround, the macro models are

frequently used in the inner loops of timing-driven opti-
mization procedures. In fact, macro models can be timed
in both out-context usage (isolated) and in-context usage.
Macro models have to handle a critical amount of incre-
mental changes in the parent-level circuits. It suffices to
experiment the in-context usage of a macro model since the
out-context usage can be covered by the in-context usage.
We change input and output boundary timing over hun-
dreds of operations in this experiment. The total runtime
is shown in Figure 7. It can be observed that by using our
macro models, the total runtime on all benchmarks can be
substantially reduced to one-third of the flat timing. To sum
up, the above experiments have demonstrated the promis-
ing performance of our algorithm in terms of accuracy, high
compression rate, and effective macro usage.

5. CONCLUSIONS
Our algorithm, LibAbs, provides an efficient method to

abstract timing of a design and generate an accurate macro
model with a high compression rate. The macro models gen-
erated by LibAbs reproduce accurate timing with accuracy
loss within 0.3ps. Compared to the original timing anal-
ysis, the model size of our generated macro model is 32%
comparing to the original timing analysis. According to our
experimental results, LibAbs outperforms the top perform-
ers from the 2016 TAU contest.

Operation size
0 200 400

R
u
n
ti
m

e
(s

)

0

500

1000
vga lcd total rumtime (s)

Operation size
0 200 400

R
u
n
ti
m

e
(s

)

0

2000

4000

6000
leon3mp total rumtime (s)

(a) vga lcd (b) leon3mp

Operation size
0 200 400

R
u
n
ti
m

e
(s

)

0

2000

4000

6000
netcard total rumtime (s)

Operation size
0 200 400

R
u
n
ti
m

e
(s

)

0

2000

4000

6000
leon2 total rumtime (s)

(c) netcard (d) leon2

Figure 7: Runtime of timing analysis: × is our new timing
model and ∗ is the original flat circuit.

6. ACKNOWLEDGMENTS
This work is sponsored by the National Science Founda-

tion under Grant CFF-1320585 and CFF-1421563. The au-
thors acknowledge the TAU 2016 Timing Contest commit-
tees for the discussion , and team iTimerM for their binary.

7. REFERENCES
[1] “TAU Contest 2016,” TAU Contest 2016 [Online].

Available: https://sites.google.com/site/taucontest2016/.
[Accessed: 21-Sep-2016].

[2] A. J. Daga, L. Mize, S. Sripada, C. Wolff, and Q. Wu,
“Automated timing model generation,” In Proceedings of
the 39th annual Design Automation Conference - DAC
’02, pp. 146-151.

[3] C. W. Moon, H. Kriplani, ”Timing model extraction of
hierarchical blocks by graph reduction,” In Proceedings of
the 39th annual Design Automation Conference- DAC
’02, pp. 152-157.

[4] S. V. Venkatesh, R. Palermo, M. Mortazavi, and K.
A. Sakallah. “Timing abstraction of intellectual property
blocks.” In Proceedings of Custom Integrated Circuit
Conference - CICC ’97, pp. 99-102.

[5] T.-W. Huang and M. D. F. Wong, “OpenTimer: A
high-performance timing analysis tool,” 2015 IEEE/ACM
International Conference on Computer-Aided Design -
ICCAD ’15, pp. 895-902.

[6] L. Dagum and R. Menon, “OpenMP: an industry
standard API for shared-memory programming,” IEEE
Computational Science and Engineering, vol. 5, no. 1,
pp. 46 - 55, 1998.

[7] “Illinois Campus Cluster,” Illinois Campus Cluster
[Online]. Available: https://campuscluster.illinois.edu/.
[Accessed: 21-Sep-2016].

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

