
A Distributed Timing Analysis Framework for Large
Designs

Tsung-Wei Huang
Dept. of ECE, UIUC, IL, USA
twh760812@gmail.com

Martin D. F. Wong
Dept. of ECE, UIUC, IL, USA
mdfwong@illinois.edu

Debjit Sinha
IBM Systems, Poughkeepsie,

NY, USA
debjit.sinha@us.ibm.com

Kerim Kalafala
IBM Systems, Poughkeepsie,

NY, USA
kalafala@us.ibm.com

Natesan Venkateswaran
IBM Systems, Poughkeepsie,

NY, USA
natesan@us.ibm.com

ABSTRACT

Given ever-increasing circuit complexities, recent trends are
driving the requirement for distributed timing analysis (DTA)
in electronic design automation (EDA) tools. However, DTA
has received little research attention so far and remains a
critical problem. In this paper, we introduce a DTA frame-
work for large designs. Our framework supports (1) general
design partitions in distributed file systems, (2) non-blocking
IO with event-driven loop for effective communication and
computation overlap, and (3) an efficient messaging interface
between application and network layers. The effectiveness
and scalability of our framework has been evaluated on large
hierarchical industry designs over a cluster with hundreds of
machines.

1. INTRODUCTION
As design complexities continue to grow larger, the need

to efficiently analyze circuit timing with billions of transis-
tors across multiple modes and corners is quickly becom-
ing the major bottleneck to the overall chip design closure
process [9]. In order to alleviate long runtimes, designers
break down the design into several hierarchical partitions or
boxes, apply macro-modeling (abstraction) to each hierar-
chical box, and run multi-threaded timing analysis (MTA)
on a single machine [7]. However, it has been reported that a
complete MTA on a design with 2 billion transistors can con-
sume 400GB memory. Building such a high-end computer
is costly and unscalable to the ever-increasing design com-
plexities. As a result, trends are shifting toward distributed
timing analysis (DTA).

Nevertheless, very little research have been done on DTA.
State-of-the-art distributed systems such as Hadoop MapRe-
duce, Cassandra, Shark, Mesos, and Spark are mainly de-
veloped for big-data applications [1, 11]. Nonetheless, big-
data applications have many distinctive characteristics com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16, June 05-09, 2016, Austin, TX, USA

c© 2016 ACM. ISBN 978-1-4503-4236-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2897937.2897959

pared to timing analysis. First, big-data applications are
data-intensive whereas timing analysis is more computation-
driven. Second, parallelism is natural in big-data processing.
Large data sets can be arbitrarily broken down to indepen-
dent pieces followed by massively parallel MapReduce op-
erations. However, timing analysis is highly iterative and
loop-dependent, making it hard to integrate with MapRe-
duce paradigm. Besides, these systems mainly work on
functional or Java virtual machine (JVM) languages such as
Scala, Java, and R. Implementations using high-performance
C/C++ are ill-supported.

0

20

40

60

80

C++ Python Java Scala Spark

GraphX

Runtime comparison on arrival time propagation

Runtime (s)

1.5s
9.5s 10.68s

68.45s

7.4s

Industrial circuit graph

(2.5M nodes and 3.5M edges)

(4 cores)
(1 core) (1 core) (1 core) (1 core)

Figure 1: The need of specialized DTA framework.

The real problem is that most EDA tools are developed
based on high-performance C/C++. A benchmark for lan-
guage performance and system model on computing the ar-
rival time from an industry circuit is shown in Figure 1. It is
observed that C++ is faster than mainstream big-data lan-
guages such as Python, Java, and Scala. Compared to the
well-known Spark GraphX, a big-data model for distributed
graph processing [10], the performance gap raises a big ap-
plicability concern. These evidences have convinced a need
of specialized DTA framework. Consequently, we introduce
in this paper a DTA framework for large designs. Key fea-
tures of our framework are highlighted as follows:

• General design partitions: Our framework is devel-
oped for general design partitions. Logical, physical,
or hierarchical design partitions are all stored in a dis-
tributed file system.

• Multi-program-multi-data (MPMD) paradigm:
Our framework follows theMPMD paradigm. Through
a common communication interface, designers can cre-
ate customized codes for different partitions.

• Non-blocking socket IO: Our framework is devel-
oped using C/C++ socket library. We configure non-
blocking transmission control protocol (TCP) channels
so as to overlap communication and computation.

• Event-driven environment: Our framework is event-
driven. Data updates are executed asynchronously in
response to user-registered callbacks. The event loop
also enables persistent in-memory processing.

• Efficient messaging interface: Our framework is
message-efficient. The overhead between structured
data serialization and TCP byte stream de-serialization
is leveraged using scalable Protocol Buffer [3].

We have evaluated our framework on a commodity clus-
ter with hundreds of machines and successfully performed
DTA on large industry designs. Experimental results have
demonstrated the scalability and effectiveness of our frame-
work.

2. PROBLEM FORMULATION
The input is a set of partitions broken from a flat design

across different logical cones, physical locations, or hierar-
chical boundaries (chip, unit, macro). Each design partition
file acts as a black box to others and contains a directed
acyclic timing graph. Multiple partitions are implicitly con-
nected together through a top-level design file. An example
of two-level hierarchical partitions is shown in Figure 2. The
top-level design has three primary inputs PI1, PI2, and PI3,
and one primary output PO1. It connects to two hierarchical
macros M1 and M2 through their primary inputs M1:PI1,
M1:PI2, M2:PI1, and M2:PI2, and primary outputs M1:PO1
and M2:PO1, respectively. In addition, a set of timing as-
sertion files specifying the initial timing condition on source
ports (PI1, PI2, PI3, and PO1) is also given.

TOP level

M1

Hierarchy M2

PI1

PI2

PI3
Hierarchy M1

PO1

M1:PI1

M1:PI2

M1:PO1

M2:PI1

M2:PI2

M2:PO1

M2

I1

G1
H1

Figure 2: Example of two-level hierarchical partitions.

Objective: Given a set of design partition files and timing

assertions, develop a distributed timing framework over a

network cluster and perform distributed timing analysis.

3. FRAMEWORK
The overview of our DTA framework is shown in Figure

3. The input is a set of design partitions and timing asser-
tions. Files are stored in distributed file system such as gen-
eral parallel file system (GPFS), andrew file system (AFS),
and/or hadoop distributed file system (HDFS). Our frame-
work has one program for server and multiple programs for
clients. Each program performs the timing analysis on one
design partition. Communications are handled indirectly
through the server program. Programs are launched on mul-
tiple machines through a network cluster manager such as

LSF, Mesos, Helix, Zookeeper, and OpenLava, that supports
remote job execution [1, 5, 11].

Figure 3: Overview of our DTA framework.

3.1 Distributed Storage and Cluster Manager
To avoid complete copies of the data set on machines, the

input files are stored in a distributed file system. A dis-
tributed file system offers location-independent addressing
that is shared by being simultaneously mounted on a clus-
ter of multiple machines. It aims for transparency in that
users access the system in the same way as a local file sys-
tem. Multiple data sets live together and can be accessed
by any machines. Besides, our framework requires a cluster
manager to work with the distributed file system. Each ma-
chine node runs application programming interface (API)
offered by the cluster manager to manage and configure ser-
vices such as remote job execution and status query over
cluster nodes. Our framework is not restricted to certain
distributed file systems and cluster managers. The common
features such as distributed file mounting, remote job exe-
cution, and machine status query offered by the state of the
art are sufficient for our development.

3.2 Software Architecture
The software architecture of our framework follows the

multiple-program multiple-data (MPMD) paradigm. We de-
fine a communication group as one server program along
with multiple client programs. Forming a communication
group is particularly useful for the standard design partition
flow. The server program works on the top-level design while
client programs handle other design partitions. Our archi-
tecture can be easily extended to recursive partitions (i.e., a
partition spawns child partitions and so on in a tree manner)
by creating a new communication group for each additional
layer of partitions. The server program can be viewed as
a communicator, dealing with all timing exchanges among
partitions based on TCP socket send/receive calls. Both
server and client programs perform the real tasks on timing
propagations. Through a common communication interface,
designers can customize or safely evolve their timing routines
for individual partitions.

Figure 4 presents an example of the server-client model for
the hierarchical partitions in Figure 2. Server is responsible
for the top-level design and two clients are required for hier-
archical macros M1 and M2. Besides, server maintains the
mapping between each boundary pin and the corresponding
client so that up-to-date timing can be delivered to the cor-
rect host. For instance, server starts propagating the timing

Server (TOP)

Client 1 (M1) Client 2 (M2)

Boundary pin Client

M1:PI1, M1:PI2, M1:PO1 Client1

M2:PI1, M2:PI2, M2:PO1 Client2

Exchange

boundary timing
Exchange

boundary timing

Connect

to server

Connect

to server

Boundary pin

mapping

Figure 4: Server-client model for the two-level hierar-

chical partitions in Figure 2.

from primary input PI1 and stops at the hierarchical pri-
mary input M1:PI1. The up-to-date timing is then sent to
the client 1 for further propagation and so on.

3.3 Non-blocking IO and Event Loop
Network latency is typically at least ten times higher than

in-memory reference [2]. This can cause performance degra-
dation if the program is blocked by waiting for communi-
cation. It is desirable that communication can be executed
autonomously by an intelligent non-blocking controller. A
non-blocking send/receive call initiates a send/receive re-
quest but does not complete it. The call returns immediately
to the user’s program, leaving the communication taken over
by another light-weight thread from operating system (OS)
kernels. Computation can run simultaneously while wait-
ing for the send/receive to complete. This implies a need of
an extra procedure polling the communication status from
the perspective of program development. However, the net-
work speed is hardware-dependent and it might end up with
nothing but a waste of time on polling.

Figure 5: Event-driven environment in our framework.

Jobs are persistent in memory through event loops.

Non-blocking socket IO enables overlap of computation

(comp) and communication (comm).

In contrast to actively polling the communication sta-
tus, event-driven programming is a more favorable solu-
tion. Figure 5 presents the event-driven environment in our
framework. Our framework applies the open-source package,
libevent, as the event engine [2]. We define callbacks for var-
ious socket events such as new connection online, message
send/receive, and connection offline. Applications then dis-

patch the program into an event loop and these callbacks are
autonomously invoked by an event handler. Designers can
terminate the programs through special events such as inter-
active query, time-out, and signal interrupt. As a byproduct
of the event loop, jobs are persistent in memory, which is
an important feature for computation-driven timing appli-
cations.

3.4 Efficient Messaging Interface
Reducing the messaging overhead is pivotal especially con-

sidering the conversion between structured data (e.g., class,
pointer, random memory access) in application level and un-
structured TCP byte stream in the communication world.
Structured data need serialization before message send and
unstructured TCP byte stream needs de-serialization after
message read. Apparently, hand-crafting and hard-defining
this infrastructure is error-prone and inflexible. Instead,
we employ the widely-used tool, protocol buffer, from big-
data community [3]. Protocol Buffer is Google’s language-
neutral and extensible mechanism for message serialization
and de-serialization. It compiles user-defined message for-
mat into C++ classes that offer heavily-optimized methods
(e.g., compression, decoding) for data conversion. The con-
cept is illustrated in Figure 6.

Structured message format

(.proto)
Google Protocol Buffer

(open-source compiler)

enum KeyType {PIN_NAME}

enum ValueType {AT, SLACK}

message Key {

 optional KeyType type = 1;

 optional string data = 2;

}

message Value {

 optional ValueType type = 1;

 optional string data = 2;

}

C++/Java/Python

source code generator

.cpp/.h class methods

ParseFromArray(void*, size_t)

SerializeToArray(void*, size_t)

Derived packet struct

header_t header

void* buffer

Message wrapper

Figure 6: Integration of Google’s protocol buffer into

our messaging interface for data conversion between

application-level development and socket-level streams.

As shown in Figure 6, we define key and value for our
application. A key and a value are simply bytes of strings
of arbitrary length which are logically associated with each
other and thus can represent generic timing data. For in-
stance, a key can be the pin name and the value stores the
corresponding timing numeric such as arrival time and slack.
However, simply using key-value data is not sufficient since
non-blocking socket IO might invoke the callback wherever
the message is incomplete (e.g., every 4K bytes received)
due to the network C10K issue [2]. In order to handle the
data appropriately, we wrap the data into a packet which
contains, in addition to the data field, a header indicating
the message size. It is the task of the receiver to inspect
the header and determine when the length of byte stream is
enough for processing the data.

4. DISTRIBUTED TIMING ALGORITHM
In this section, we develop a distributed timing algorithm

based on our framework. We shall discuss the flow of the

server program and client programs, and the callbacks cor-
responding to different events. Due to the space restriction,
we focus on the generic concept of timing propagation.

4.1 Server Program
The main body of the server program is presented in Al-

gorithm 1. Algorithm 1 takes three arguments, the input
data D, the host H of the server program, and user data U

for callback convention, and generates the timing analysis
report. It first parses the timing graph from the input data
D and initiates a TCP server socket binding to host H (line
1:2). Then an event base B is created (line 3). An event
base holds a set of events and polls to determine which events
are active [2]. We add a listener event to B to note the call-
back AcceptClientConnection (in Algorithm 2) for any new
TCP client connections (line 4). Finally, the event base is
dispatched and the program enters an event loop (line 5).

Algorithm 1: Server(D, H , U)

Input: input data D, host H, user data U
Output: timing analysis report

1 G← parse timing graph(D);
2 S ← create TCP server socket(H);
3 B ← create event base();
4 add listener event(B, S, U , AcceptClientConnection);
5 dispatch event base(B);

Algorithm 2: AcceptClientConnection(L, U)

Input: listener L, user data U

1 B ← get event base(L);
2 S ← get socket info(L);
3 add socket read event(B, S, ServerReadCallback, U);

Algorithms 2 and 3 present the two callbacks in server’s
program. Algorithm 2 is invoked when a new client connec-
tion arrives. An event callback of message read is created for
the new client socket (line 3). The detail of read callback is
given in Algorithm 3. It iterates each complete packet over
the TCP byte stream M (line 2) and de-serializes the data
into key-value pairs Ω (line 3). At each iteration, the pro-
gram branches in response to different packet types, which
can be either the notice of a new boundary pin where we
build the mapping to the corresponding client identity (line
5:8), or timing update at boundary pins in which we main-
tain a candidate set ∆ of pins for timing propagation (line
16:20). In the former case, the source ports are added to
the candidate set ∆ when all required clients are online (line
9:14). Then, we carry out the timing propagation from the
candidate set and return a set Θ of key-value pairs where the
key k indicates a boundary pin at which this timing prop-
agation stops and the value stores up-to-date timing (line
23). Finally, each of these key-value pairs is sent to the
corresponding client (line 24:28).

4.2 Client Program
The main body of the client program is given in Algorithm

4. In a rough view, the procedure is identical to the counter-
part of server except the callback for being connected sends
server a packet registering the identity of each boundary pin
in the design (line 4 in Algorithm 4 and line 4:8 in Algorithm
5). This step is necessary for server program to keep track

Algorithm 3: ServerReadCallback(S, M , U)

Input: socket descriptor S, message M , user data U

1 ∆← φ;
2 foreach complete packet i ∈M do
3 Ω← deserialize data(i);
4 switch i.type do
5 case BoundaryRegistration
6 foreach key-value pair (k, v) ∈ Ω do
7 map boundary pin to socket(k, S);
8 end
9 if all clients are online then

10 foreach source port r in top-level design do
11 v ← initial timing assertion(r);
12 ∆← ∆ ∪ {make kv pair(r, v)};
13 end
14 end
15 end
16 case UpdateBoundaryTiming
17 foreach key-value pair (k, v) ∈ Ω do
18 ∆← ∆ ∪ {(k, v)};
19 end
20 end
21 endsw
22 end
23 Θ← propagate timing and get new boundary pins(∆);
24 foreach key-value pair (k, v) ∈ Θ do
25 j ← serialize data(k, v);
26 c← get boundary pin client socket(k);
27 send packet(c, j, UpdateBoundaryTiming);
28 end

of the mapping between a boundary pin and its client iden-
tity. As presented in Algorithm 6, the read callback in client
program resembles the procedure in Algorithm 3. From the
view point of client, there is no need of branch for boundary
pin registration. We only maintain a candidate set of pins
received from server for timing propagation. After timing
propagation, boundary pins with up-to-date timing values
are packeted and sent to the server (line 12:16).

Algorithm 4: Client(D, H , U)

Input: input data D, server host H, user data U
Output: timing analysis report

1 G← parse timing graph(D);
2 S ← create TCP client socket(H);
3 B ← create event base();
4 add connect event(B, S, U , Connect);
5 dispatch event base(B);

Algorithm 5: Connect(L, U)

Input: listener L, user data U

1 B ← get event base(L);
2 S ← get socket info(L);
3 add socket read event(B, S, ClientReadCallback, U);
4 ∆← Φ;
5 foreach boundary pin p in the design do
6 ∆← ∆ ∪ make kv pair(r, NULL);
7 end
8 send packet(S, serialize data(∆), BoundaryRegistration);

4.3 Timing Propagation
We have presented our framework and developed the pro-

gram architecture for distributed timing. Although design-

Algorithm 6: ClientReadCallback(S, M , U)

Input: socket descriptor S, message M , user data U

1 ∆← φ;
2 foreach complete packet i ∈M do
3 Ω← deserialize data(i);
4 switch i.type do
5 case UpdateBoundaryTiming
6 foreach key-value pair (k, v) ∈ Ω do
7 ∆← ∆ ∪ {(k, v)};
8 end
9 end

10 endsw
11 end
12 Θ← propagate timing and get new boundary pins(∆);
13 foreach key-value pair (k, v) ∈ Θ do
14 j ← serialize data(k, v);
15 send packet(S, j, UpdateBoundaryTiming);
16 end

ers can customize their timing routines (in particular, line
23 in Algorithm 3 and line 12 in Algorithm 6), processing
the timing propagation exhibits high similarities to finding
the shortest and the longest paths in a graph [7, 8]. In this
regard, we introduce two techniques that are generically use-
ful for the development of timing propagation based on our
framework.

4.3.1 Frontier Propagation

The timing graph is given as a directed acyclic graph.
Maintaining the topological ordering of the graph during
the timing propagation is a common and important way to
correct results [7]. We refer to this topologically-ordered
propagation as frontier propagation. Since our framework
is non-blocking and asynchronous, frontier propagation can
start moving forward whenever a new timing update arrives
at a boundary pin, and stop at the pin with at least one
incoming arc that has not experienced the frontier propa-
gation. An illustrative example of forward propagation is
shown in Figure 7. The arrival of up-to-date timing at pin
F:o invokes the callback to push frontier propagation for-
ward until pin I:o due to the waiting for message at pin
U:o. If resources are available, advanced techniques such as
pipelined frontier propagation proposed by [8] can be applied
as well.

I:a

I:b

I:oF:o

U:o

K:a

L:a

Fully-updated Semi-updated Non-updated

K:o

Non-updated

fanout cone B

A

F

C D

E

Frontier

propagation

ends at I:o L:o

U:o waits for

message

Message arrives at F:o G

Figure 7: Frontier propagation follows the topological

ordering of the timing graph.

4.3.2 Speculative Propagation

It can be observed in Figure 7 that the network delay
might result in resource un-utilization (thread waiting for
work). This is because there is no active events at the mo-
ment frontier propagation stops and the main thread be-
comes idle. To enable further overlap of communication and
computation, an un-utilized thread can continue to perform

speculative propagation from the pin at which frontier prop-
agation stops. The concept of speculative propagation is
shown in Figure 8. Speculative propagation aims to find
the dominant minimum or maximum paths (i.e., slew, de-
lay, arrival time, etc.) earlier, which can potentially reduce
a significant amount of computation efforts on frontier prop-
agation and thus speed up the entire process. Nonetheless,
the duration of being spare is in fact non-deterministic due
to the unpredictable network traffic. The degree of being
speculative must be carefully restrained to prevent runtime
from being overwhelmed by speculative works. A viable so-
lution is to iteratively inspect the event base by the time
speculative propagation starts. If an active event exists,
the speculative propagation ceases and returns the program
back to the event handler. Otherwise, we perform specu-
lative propagation for only one level and repeat the same
procedure for the next iteration.

I:a

I:b

I:oF:o

U:o

K:a

L:a

Fully-updated Semi-updated Non-updated

K:o

Speculative

propagation B

A

F

C D

E

Frontier

propagation

ends at I:o L:o

U:o waits for

message

Message arrives at F:o GSpare thread

Figure 8: Spare thread performs speculative propaga-

tion in order to gain advanced saving of frontier work.

5. EXPERIMENTAL RESULTS
Our program is implemented in C++ language on a 64-bit

linux operating system. We use POSIX socket library and
libevent package for our event-driven network program-
ming [2], and our messaging interface is built upon flexible
protocol buffer [3]. Evaluation is taken on a computer
cluster which has over 500 compute nodes. Each compute
node is configured with 16 Intel 2.60GHz cores and 64GB
RAM. The network infrastructure uses 384-port Mellanox
MSX6518-NR FDR InfiniBand with gigabit ethernet con-
trol network and the disk system was configured to GPFS.
Accessing to the compute nodes for running a program is
done via a script submission to the network cluster manager
which is designed based on the Torque resource manager
with the Moab workload manager for running distributed
jobs [4].

5.1 Benchmark Suite
We evaluate our framework based on a set of realistic

benchmarks, including open-source designs used in recent
timing community [6] and large hierarchical designs gener-
ated by an industry standard timer. The benchmark statis-
tics are summarized in Table 1. These design statistics are
reported from a flat point of view. All benchmarks are
million-scale circuits in terms of the size of the timing graph.
Each benchmark consists of several partitions and one top-
level graph that hooks up the entire design. Initial timing
assertions are applied to the source ports of the top-level
graph.

5.2 Performance
The overall performance of our framework is listed in Ta-

ble 1. In order to alleviate the uncertainty of network delay,

Table 1: Benchmark statistics and overall performance of our framework.

Circuit |G| |N | |V | |E| |P | L
W/o speculation W/ speculation

cpu mem msg usage cpu mem msg usage

DesignA 2.2M 1.1M 7.3M 12.4M 250 436 63s 1.6GB 0.7MB 17.3% 76s 1.7GB 1.6MB 64.2%

DesignB 14.5M 9.3M 39.0M 117.0M 37 3216 392s 2.9GB 2.0MB 9.1% 346s 3.1GB 5.7MB 73.1%

DesignC 23.3M 11.3M 76.9M 107.0M 30 2023 478s 4.7GB 2.3MB 19.5% 473s 4.8GB 8.1MB 57.8%

DesignD 42.7M 20.8M 128.1M 178.4M 50 5741 1239s 5.1GB 4.9MB 20.1% 1107s 5.1GB 9.7MB 69.4%

|G|: # of gates. |N |: # of nets. |V |: # of nodes. |E|: # of edges. |P |: # of partitions. L: # of levels. cpu: runtime.
mem: peak memory on a program. msg: amount of message passing. usage: avg cpu utilization on a program.

we present for each design the average values on ten runs
of complete timing analysis (arrival time and required ar-
rival time propagations, endpoint slack calculation, etc.). It
can be seen that the our framework is highly efficient and
effective in terms of runtime values. For instance, it uses
less than a half hour to reach the goal on large designs such
as DesignB, DesignC, and DesignD. The result can scale
to hundreds of partitions (see DesignA). We observed the
non-blocking event-driven feature of our framework achieves
effective overlap of communication and computation, and
quick response to message update. From the memory per-
spective, the peak usage for a single program is only about
5GB in DesignD.

Time axis
0 100 200 300 400 500

A
v
g
.
c
p
u
 u

s
a
g
e
 (

%
)

0

20

40

60

80

100
W/o speculation

Time axis
0 100 200 300 400 500

A
v
g
.
c
p
u
 u

s
a
g
e
 (

%
)

0

20

40

60

80

100
W/ speculation

Figure 9: Average cpu utilization over time across all

machines.

We next discuss the performance difference between im-
plementations with and without speculative propagation.
While the effectiveness of speculative propagation highly de-
pends on network traffic and the graph topology, it can be
seen in DesignB the total runtime is speeded up by 11.2%
compared to the non-speculative counterpart. Being specu-
lative is in particular beneficial for design with long chain of
partition dependencies, which can be implicitly reflected on
the number of levels in the graph. As a result, higher uti-
lization of thread also translates into increased cpu usage,
as shown in Figure 9.

Figure 10: Runtime profile of our framework.

An in-depth view of the runtime profile is illustrated in

Figure 10. It is expected that timing propagation consumes
the majority of the runtime by about 54.4%. Initialization
(data loading and client-pin mapping), event polling on non-
blocking socket IO, and data streaming (serialization and
de-serialization) take about 23.0%, 7.1%, and 3.2%, respec-
tively. The time spent on message passing, which in fact
is hardware-dependent, occupies approximately 12.3%. In a
rough overview, the ratio of computation to communication
is about 87.7% to 12.3%.

6. CONCLUSION
In this paper, we have presented a distributed timing

analysis framework for large designs. Our framework is
built around five elements: general design partitions in dis-
tributed file systems, multiple-programs multiple-data pro-
gramming paradigm, non-blocking socket IO, event-driven
environment, and flexible messaging interface. We have de-
veloped algorithms for distributed timing as well as generic
propagation schemes on the top of our framework and eval-
uated the performance on industry designs with millions of
gates and hundreds of hierarchical partitions. In the fu-
ture, we plan to explore fault tolerance, distributed thread
scheduling, and distributed common path pessimism removal.

7. REFERENCES
[1] Apache Hadoop, https://hadoop.apache.org/

[2] Libevent, https://libevent.org

[3] Protocol Buffer,
https://developers.google.com/protocol-buffers/

[4] Adaptive Computing,
http://www.adaptivecomputing.com/

[5] OpenLava, http://www.openlava.org

[6] J. Hu, G. Schaeffer, and V. Garg, “TAU 2015 Contest:
Incremental Timing Analysis and Incremental CPPR,”
Proc. IEEE/ACM ICCAD, 2015

[7] J. Bhasker and R. Chadha, “Static Timing Analysis for
Nanometer Designs: A Practical Approach,” Springer,
2009.

[8] T.-W. Huang and Martin D. F. Wong, “OpenTimer: A
High-Performance Timing Analysis Tool,” Proc.
IEEE/ACM ICCAD, pp. 895–902, 2015.

[9] O. Levitsky, “Sign Off Quality Hierarchical Timing
Constraints: Wishful Thinking or Reality?” TAU
workshop, 2014.

[10] R. Xin, J. Rosen, M. J. Franklin, and I. Stoica, “GraphX:
a resilient distributed graph system on Spark”, ACM
GRADES, 2013

[11] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.
McCauley, M. J. Franklin, S. Shenker, and I. Stoica,
“Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing,”NSDI, 2012

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

