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Abstract—Computer-aided design (CAD) tools typically incor-
porate thousands or millions of functional tasks and dependencies
to implement various synthesis and analysis algorithms. Effi-
ciently scheduling these tasks in a computing environment that
comprises manycore CPUs and GPUs is critically important be-
cause it governs the macro-scale performance. However, existing
scheduling methods are typically hardcoded within an application
that are not adaptive to the change of computing environment.
To overcome this challenge, this paper will introduce a novel
reinforcement learning-based scheduling algorithm that can learn
to adapt the performance optimization to a given runtime (task
execution environment) situation. We will present a case study
on VLSI timing analysis to demonstrate the effectiveness of our
learning-based scheduling algorithm. For instance, our algorithm
can achieve the same performance of the baseline while using only
20% of CPU resources.

Index Terms—Reinforcement Learning, Task Scheduling

I. INTRODUCTION

Computer-aided design (CAD) tools typically incorporate
thousands or millions of functional tasks and dependencies
to implement various synthesis and analysis algorithms [1]–
[21]. For instance, [4] describes timing analysis algorithms
in a top-down task graph where each task represents a
function and each edge represents a functional dependency.
Efficiently scheduling these tasks in a computing environment
that comprises manycore central processing units (CPUs)
and graphics processing units (GPUs) is critically important
because it governs the macro-scale performance [22]–[32].
However, existing scheduling solutions either resort to general-
purpose heuristics (e.g., work stealing [33]–[36]) or a custom
scheduling method (e.g., hardcoded [37]). These solutions
are typically not adaptive to the change in the computing
environment and often consume large scheduling resources
due to the randomness involved in dynamic load balancing.

Recent advances in machine learning have inspired us to
design a new scheduling framework that learns to interact
with a computing environment [38]. Despite exciting progress
in learning-based scheduling solutions, most of them target
independent job batches in a high-performance computing
(HPC) cluster. These solutions are not suitable for CAD
problems where the goal is to find a resource-efficient schedul-
ing plan for running dependent tasks using minimal CPU
resources. This type of scheduling plan is very important
because many CAD task graphs are much larger and more
complex than conventional HPC workloads. For instance, a
timing propagation task graph can compose up to 500M tasks
and 700M dependencies to complete a full-timing analysis of
a large design [4], [5]. Due to the sparsity, we may just use a
few CPU cores to optimally complete the task graph, which in
turn improves the resource utilization and the overall system
throughput performance.

To this end, we introduce in this paper a resource-efficient
task-scheduling system by harnessing the power of reinforce-
ment learning. We summarize our technical contributions
below:

• Scheduling Algorithm. We have introduced a reinforce-
ment learning-based task scheduling algorithm to adapt
the performance optimization to the computing environ-
ment. With our scheduling algorithm, applications are
able to schedule tasks with few execution contexts while
achieving a comparable runtime performance to existing
solutions.

• Generalizability. We apply our RL-based scheduling al-
gorithm to schedule a wide range of task graphs and show
its superior performance. Surprisingly, our experimental
results show that the RL-based scheduling policy learned
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Fig. 1: Illustration of our task scheduling system. Gray rectangles denote the workloads of workers. (a) A task graph. (b) The
task scheduler. (b) The scheduler asks Agent for task A’s action. Agent suggests W1. (d) W1 has A in its queue. (e) The
scheduler asks Agent for task B’s action. Agent suggests W1. (f) W1 has B in its queue. (g) The scheduler asks Agent for
task C’s action. Agent suggests W0. (h) W0 has C in its queue. A’s data is transferred to W0.

from limited classes of task graphs, can generalize well
to a wide range of diverse task graphs. Therefore, our
RL-based scheduling algorithm provides a ‘universal’
scheduling solution to multi-core systems.

• Extensible State Representations. We have introduced
an easy-to-extend state representation to accommodate
new computing environment statistics, such as power
consumption. With this state representation, applications
are able to quickly switch to a different scheduling
algorithm based on their specific needs.

We have evaluated our framework on a real static timing
analysis (STA) workload that executes a task graph to com-
plete full timing analysis. Compared to the popular heuristic-
based scheduler that assigns tasks to all 40 workers uniformly
at random, our RL-based scheduler achieved a slightly lower
runtime on multiple task graphs using only 7-8 workers.

II. BACKGROUND

A. System Overview

Our system targets at static timing analysis (STA) applica-
tion, one of the most important steps in the entire EDA flow,
and describes a STA workload as a task graph. The goal is
to efficiently schedule the tasks of the task graph. The task
graph consists of multiple nodes and edges, which represent
the tasks and the dependencies among the tasks, respectively.
In particular, the task dependencies not only constrain the
execution order of the tasks, but also determine the data flow
among them. Take the task graph shown in Figure 1(a) as
an example. The task dependencies require that A executes
before B and C, and D executes after B and C. Moreover, the
execution of B and C needs A’s data, and the execution of
D needs both B and C’s data. To schedule tasks across the

execution contexts (e.g., CPUs) in a non-stationary computing
environment, we propose a reinforcement learning (RL)-based
task scheduler as illustrated in Figure 1(b). Next, we provide
a high-level overview of this RL-based scheduler, and leave
all the technical details to Section III.

We consider a multi-core system and denote the i-th worker
as Wi. Each worker has its own task queue to store the tasks
assigned to it. We denote the general computing environment
as State, which includes the total workloads assigned to the
workers and some information about the task to be scheduled
(see Section III-B for the details). Then, based on the current
State, the reinforcement learning Agent determines an
Action that assigns the task to a certain worker. Figure 1(c)-
(h) illustrate how our task scheduler schedules the three tasks
A, B, and C from the task graph in Figure 1(a). To explain,
in (c), the Agent first assigns A to worker W1 based on the
current StateA. In (d), A is inserted into W1’s queue. After
W1 completes A, Agent assigns B and C to W1 and W0

according to StateB and StateC , respectively, as shown in
Figure1(e) and (g). As B is assigned to the same worker (W1)
as A, there is no data transfer cost for B shown in Figure 1(f).
In contrast, C requires an extra data transfer cost shown in
Figure 1(h).

III. REINFORCEMENT LEARNING-BASED SCHEDULING

In this section, we reformulate the task scheduling problem
as a reinforcement learning (RL) problem, and apply the Deep
Q-Learning algorithm [39] to train a good RL policy for
autonomous task scheduling.

A. Reinforcement learning and Markov Decision process
Reinforcement learning (RL) is a powerful machine learning

framework for learning optimal decision-making in a so-called



Markov decision process (MDP) [40]–[44]. In RL, an agent
interacts with a complex environment through an MDP, and
the interaction data are used to further improve the agent’s
decision-making. Specifically, MDP is an abstract sequential
decision-making process that consists of the following key
elements.

• State st: At any time t, the agent observes the global state
st of the environment, which contains all information that
the agent needs to take an action.

• Policy π and action at: Based on the current state st,
the agent follows its policy π(·|st) to take an action at.
Here, policy π is regarded as a probability distribution
over all possible actions conditioned on the state st.

• State transition kernel P: After action at is taken, the
global state st transfers to a new state st+1 following
the environment’s transition kernel P(·|st, at), which is a
distribution over all possible states conditioned on st, at.

• Reward rt: The agent receives a reward signal rt after
the state transition at time t. Here, the reward rt generally
depends on st, at and st+1.

Equation (1) below illustrates the evolution of MDP. In
RL, the goal of the agent is to learn the optimal policy π∗,
following which yields the highest accumulated reward when
interacting with the environment through the MDP.

(MDP): s0
π(·|s0)−→ a0

P(·|s0,a0)−→ (s1, r0)
π(·|s1)−→ a1 · · · (1)

B. Formulate Task scheduling as an MDP

We view task scheduling as an MDP. Specifically, consider
a multi-core system with m workers. Denote Tk as the k-th
task to be assigned to the workers, and denote P (Tk) the set
of parent tasks of Tk. Then, the elements of this MDP can be
specified as follows.

State: Consider the time when the k-th task Tk is ready for
scheduling, the state of the RL agent is a vector containing
2m+1 coordinates. The first m coordinates record the current
total workload of the queues of the m workers (each coordinate
records the workload of one queue). The next m coordinates
record the distribution of the total workload of the parent tasks
P (Tk) over the m workers, i.e., each coordinate records the
amount of workload of P (Tk) done by one worker. Finally, the
last coordinate of the state vector records the total workload of
the task Tk to be scheduled. We can see Figure 2 for the state
vectors for task A and B from the task graph in Figure 1(a).
These state information are queried from the system whenever
a new task is ready for scheduling, and we take logarithm to
reduce the scale of large numerical values in this state. In
particular, these information is directly related to the balance
of workload assigned to the workers and the data transfer cost,
which are two critical factors that affect the overall system
performance.

Policy and action: There are m possible actions since the
task Tt will be assigned to one of the m workers. The policy is
specified based on a so-called state-action value table Q(s, a),
which evaluates the expected return of taking action a in state
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Fig. 2: Illustration of the state representations when scheduling
task A and B in the task graph of Figure 1(a). The first column
refers to the State for task A and the second for B. Gray
rectangles denote the workloads. Every state includes 1) the
workload of each worker, 2) the parent task’s workload that
is finished at each worker, and 3) the workload of a task. The
first m rows of StateA and StateB correspond to Figure 1(c)
and 1(e), respectively. As task A is executed by W1, W ∗

1 for
StateB is the workload of task A. The workload of other W ∗

is empty.

s. In the next subsection, we describe the deep Q-learning
algorithm used to learn Q(s, a) in a data-driven way.

State transition: Once task Tk is assigned to a worker based
on the action generated by the policy, the workload of that
worker’s queue will change. This will further lead to a new
system state. We note that the new state depends only on the
previous state and the action taken, which satisfies the Markov
property required by MDP.

Reward: After each state transition, the agent receives
a reward signal, which is designed based on two system
performance-related characteristics: the balance of total work-
load assigned to the workers and the data transfer cost induced
by scheduling the task Tk.

• The balance of workload is defined as the gap between
the maximum queue load and the minimum queue load
among the workers, which quantifies the level of imbal-
ance of the workers’ queues.

• For the data transfer cost, suppose Tk is assigned to
worker i, then the induced data transfer cost is the total
data load of its parent tasks P (Tk) that are not assigned
to worker i (these parent tasks’ data need to be transferred
to worker i in order to execute task Tk).

Mathematically, the reward signal is defined as follows.

rt := − log10(workload balance)− α log10(transfer cost),
(2)

where α > 0 is a hyper-parameter, and we take logarithm
to reduce the scale of large numerical values. Intuitively, the



above reward design penalizes taking actions that would cause
imbalanced queue workloads and high data transfer cost.

C. Deep Q-Learning Algorithm

Deep Q-learning is a popular algorithm that aims to learn
the optimal policy that maximizes the expected accumulated
reward [39]. This problem is formulated as follows.

max
π

J(π) := E
[ ∞∑

t=0

γtrt
∣∣π],

where γ ∈ (0, 1) is a pre-selected discount factor. In particular,
given state st at time t, the policy generates an action at based
on a state-action value function Q according to

π(at|st) = argmax
a

Q(st, a). (3)

Intuitively, Q(s, a) evaluates the expected return of taking
action a in state s, and the policy π simply suggests the
action that leads to the highest Q value in a given state. It is
well-known that the Q-function satisfies the following Bellman
equation [41].

Q(st, at) = rt + γE
[
max

a
Q(st+1, a)

]
. (4)

The main idea of deep Q-learning is to parameterize the
Q-function using a deep neural network Qθ(s, a), where θ
denotes the network parameters. This network takes state
as the input and outputs the Q values associated with all
possible actions, as illustrated in Figure 3. Specifically, the
deep Q-learning algorithm is summarized in Algorithm 1, and
it consists of the following key steps.

• Data collection: At each time step t, the agent takes an
action at following an ϵ-greedy strategy, i.e., at is chosen
uniformly at random with probability ϵ(t) (called explo-
ration), otherwise, it is chosen based on the Q-network as
at = argmaxa Qθ(st, a) (called exploitation). Here, ϵ(t)
is a pre-defined parameter that decays over t to encourage
exploration at the beginning and exploitation later on.
After taking the action at, we collect the transition data
(st, at, rt, st+1) and add it to the Experience Replay
memory, which stores the latest N transition data and
will be used in the training phase.

• Data sampling: In each iteration of the training phase,
we query B random samples from the Experience Replay
memory. Then, for each sampled transition data (assume
collected at time T ), we compute the following target
based on the Bellman equation in Equation (4).

yT = rT + γmax
a

Qθ′(sT+1, a), ∀ T ∈ B.

Here, Qθ′ corresponds to the so-called target Q-network,
whose parameters θ′ are copied from the original Q-
network Qθ every K time steps. The purpose is to
decouple the original Q-network from the target and
allows to properly use automatic back propagation in the
model update later.

• Model update: With the computed targets, we build the
following loss function associated with the sampled data.

L =
1

B

∑
T∈B

(
yT −Qθ(sT , aT )

)2
.

Then, we update the Q-network’s parameters θ using
back-propagation through the computed loss L.

Algorithm 1 Deep Q-Learning Algorithm
Initialize: Q-network θ, copy to target network θ′ ← θ
for Iterations t = 0, 1, . . . do

▶ Take action at following the ϵ(t)-greedy policy.
▶ Get data (st, at, rt, st+1) and add to replay buffer.
▶ Sample a batch of B samples from the replay buffer
and compute the target

yT = rT + γmax
a

Qθ′(sT+1, a), ∀ T ∈ B.

▶ Update θ via back-propagation via the following loss.

L =
1

B

∑
T∈B

(
yT −Qθ(sT , aT )

)2
.

▶ if t mod K = 0, θ′ ← θ.
end

IV. EXPERIMENTS

We evaluated the performance of our reinforcement
learning-based task scheduling system on an industrial static
timing analysis (STA) application [1], [4] that exploits task
graph parallelism to parallelize graph-based analysis (GBA).
STA is a critical step in the overall EDA flow because
it verifies the expected timing behavior of a circuit design
and reports the critical paths that violate the given timing
constraints (e.g., set-up, hold). As our system schedules task
graphs, we used the state-of-the-art open-source STA engine,
OpenTimer [45], to generate a task graph for us. OpenTimer
formulates the GBA algorithm into a task graph. The task
graph represents the corresponding circuit graph and can
contain millions of tasks and dependencies for large designs.
Each task computes the required timing information at its cor-
responding node in the circuit graph (e.g., slew, delay, arrival
time), while each edge represents a dependency between two
tasks. After OpenTimer generates a task graph, our scheduler
directly performs the scheduling on the task graph. Table I
lists the statistics of the nine circuits we used.

We compiled programs using gcc-12 with -std=c++17
and -O3 enabled. We ran all the experiments on a Ubuntu
19.10 (Eoan Ermine) machine with 80 Intel Xeon Gold 6138
CPU at 2.00GHz and 256 GB RAM.

A. Baseline and Deep Q-Learning

For comparison, we implemented a baseline method based
on the random action (RA) engine, which assigns each task
to one of the 40 workers uniformly at random. Such a
baseline method is widely used to schedule STA workloads.



It randomly assigns the tasks to the workers without adapting
to the dynamic and non-stationary computing environment.

To learn our RL-based task scheduler, we implemented
Algorithm 1 to train the RL policy using a mixed graph
composed of the following three graphs: aes core, tv80 and
c6288. Specifically, we implemented Algorithm 1 with the
following set of hyper-parameters: batch size B = 64, target
network synchronization period K = 10, reward discount
factor γ = 0.95, reward weight α = 0.01, and experience
replay memory size N = 10k. In particular, for the ϵ(t)-greedy
policy, we adopt the initialization ϵ(0) = 1.0 (at t = 0) and
multiply ϵ(t) by a factor of ϵ decay = 0.99998 after every
iteration. Also, we used a four-layer fully-connected neural
network to parameterize the Q-function [46], and the network
architecture is illustrated in Figure 3. To update the model
parameters θ via back-propagation, we use the standard Adam
optimizer with learning rate η = 1e− 4 [47].

s[0]

s[1]

s[80]

Input layer 

(81, 256)

Hidden layer 

(256, 256)

Hidden layer 

(256, 128)

Output layer 

(128, 40)

Q(s, a = 0) 

Q(s, a = 39) 

Fig. 3: Illustration of the Q-network architecture. The network
takes in the state vector as input (input dimension=81), then
propagates it forward through 2 hidden layers and finally
outputs the Q-values corresponding to each of the 40 possible
actions (output dimension=40). The task at hand is then
scheduled to the worker corresponding to the highest Q-value.

Fig. 4: Left: Training loss v.s. iterations in the training. Right:
Accumulated reward v.s. epochs in the training. Every epoch
consists of 1K iterations, and the accumulated reward for each
epoch is calculated by R =

∑1000
t=1 γtrt.

Figure 4 plots the training loss (left figure) and the accumu-
lated reward (right figure) achieved by the RL policy during
the training process. From the left figure, it can be seen that the
training loss decays quickly, indicating that the learned policy

performs well on the training data. Moreover, the right figure
shows that the RL policy eventually achieved an accumulated
reward at around −6.0. Next, we further test the trained RL
policy on some unseen test graphs and demonstrate its superior
generalization performance.

B. Performance Comparison
We tested and compared the runtime performance of the

baseline RA scheduler and our RL-based scheduler on vari-
ous graphs with different configurations, and the results are
summarized in Table I. We note that the mixed graph used in
the test phase is composed of the same three types of graphs
(aes core, tv80 and c6288) as those used in the training phase,
but with different configurations. Hence, the mixed graph used
in the test phase is very different from the one used in the
training phase.

From Table I, it can be seen that the total runtime of our
RL-based scheduler is consistently slightly lower than that of
the RA scheduler for all the test graphs. Surprisingly, these
runtime results are achieved by our RL-based scheduler using
only 7-8 workers, which are much more efficient compared to
the RA scheduler that utilizes all of the 40 workers. Thus,
the experimental results clearly demonstrate the advantage
of our RL-based scheduler, indicating its superior memory
efficiency and energy efficiency. This also implies that, through
the reinforcement learning framework and our specialized
reward design, the RL-based scheduler successfully learned
a policy that enhances workload balance among the workers
and reduces unnecessary data transfer cost.

In Figure 5, we further plot the distribution of tasks assigned
to each worker under the RA scheduler and our RL-based
scheduler for two task graphs (aes core and mixed graphs).
Specifically, one can observe from Figure 5(a) that, in order
to schedule the tasks of the aes core graph, the RA scheduler
assigns tasks uniformly to all the 40 workers. As a comparison,
our RL-based scheduler assigns tasks to only 8 workers, and
moreover, most of the tasks are actually assigned to only 4
workers. One can make very similar observations in the Figure
5(b) for the mixed graph.

V. CONCLUSION

We have introduced a resource-efficient reinforcement
learning-based task scheduling system to adapt the perfor-
mance optimization to the computing environment. We have
evaluated our task scheduling system on an industrial static
timing analysis workload. Compared to the popular heuristic-
based scheduler, our RL-based scheduler achieved a lower
runtime on all task graphs while using only 20% of workers.
Our future work plans to extend our framework to a distributed
environment [48]–[53] and consider GPU task graphs [54]–
[56] into our state model.
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TABLE I: Runtime comparison between the random action (RA) scheduler and our reinforcement learning (RL) scheduler.
∥V ∥ and ∥E∥ respectively denote the number of nodes and edges of a graph. Improvement denotes the performance of RL
over RA.

Graph ∥V ∥ ∥E∥ Runtime (Seconds) # Workers
RA RL Improvement RA RL Improvement

mixed graph 88,626 115,777 38.44 38.29 0.39% 40 7 471%
aes core 66,751 86,446 29.55 28.89 2.28% 40 8 400%
ac97 ctrl 42,438 53,558 18.92 18.09 4.59% 40 8 400%

tv 80 17,038 23,087 7.76 7.04 10.22% 40 8 400%
wb dma 13,125 16,593 5.52 5.33 3.56% 40 8 400%
c6288 4,837 6,244 2.01 1.98 1.52% 40 8 400%

c7552 slack 3,802 4,791 1.75 1.60 9.38% 40 7 471%
usb phy ispd 2,447 2,999 1.11 1.00 11% 40 7 471%

s1494 2,292 2,925 1.04 0.97 7.22% 40 7 471%
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