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Abstract. Task-parallel pipeline framework explores pipeline parallelism in applications and
is critical in many parallel and heterogeneous areas, such as VLSI static timing analysis and
data similarity search. However, existing solutions only deal with certain types of applications in
which data dependency exists between preceding data and succeeding data in a forward direc-
tion. Some applications, such as video encoding, exhibit data dependency in both forward and
backward directions and cannot be processed with existing solutions. To address the limitation,
we introduce a token dependency-aware pipeline framework. Our framework associates each data
element with a token as its identifier, supports explicit definitions of forward and backward to-
ken dependency with an expressive programming model, resolves token dependency using simple
data structures, and schedules tokens with lightweight atomic counters. We have evaluated the
framework on applications that exhibit both forward and backward token dependency. For ex-
ample, our framework is 8.6% faster than PARSEC’s implementation in x.264 video encoding
applications.

1 Introduction

Task-parallel pipeline framework (TPF) explores pipeline parallelism in applications and plays a critical
role in parallel and heterogeneous computing workloads, such as static timing analysis [13, 8,22, 14, 15,
32,16,23,17,1,18, 28, 24], data similarity search workload (ferret benchmark [4,5]), quantum circuit
simulation [26], and others [27,7,35,36,25,29]. TPF models a pipeline application as a task graph
that describes a function call as a task and a functional dependency as an edge. Through task graph
scheduling, pipeline parallelism arises when multiple tasks are scheduled and executed concurrently
once the dependency constraints are met. As a result, recently Chiu et al. introduced the state-of-the-
art task-parallel pipeline framework, Pipeflow [13].

Although Pipeflow has demonstrated good runtime performance [13], we find out Pipeflow only
deals with specific applications in which data dependencies exist between preceding data and succeeding
data in a forward direction. However, some applications exhibit data dependency from succeeding
data back to preceding data. For instance, in video encoding applications, frames would reference
encoded frames to reduce stream size for online transmission [34]. In real-world applications, three
frame types are employed, intra (I) frame, predicted (P) frame, and bi-directional (B) frame. I frames
are encoded independently without reference to other frames. P frames require references from a
preceding [ frame. B frames require references from both a preceding and a succeeding (future) I or
P frames. Figure 1 illustrates such frame dependency in a video encoding application. The presence
of B frames introduces bi-directional dependency, where the encoding of a frame relies on information
from both past and future frames. This characteristic poses a significant challenge for existing pipeline
frameworks, including Pipeflow, which primarily focus on uni-directional dependency. As a result,
Pipeflow cannot effectively schedule the encoding of B frames, limiting its applicability in real-world
video encoding scenarios.

To handle the data dependency in both forward and backward directions, the most common way is
to reorder the execution order of data using low-level synchronization primitive, condition variable 2],
and then feed the reordered data to the pipeline framework as PRASEC does [4, 5]. However, we notice
three limitations of this approach: 1) Manipulating condition variable requires a deep understanding



2 C.H. Chiu et al.

ee«1 P P B P P I P P B P P eee

Fig. 1. A sample dependency diagram in a video encoding application of an x.264 standard. Edges denote the
dependencies between two frames. I denotes frames, P denotes predicted, B denotes bi-directional frames.

of this low-level synchronization primitive from users and is error-prone when dependency is intricate.
2) The approach is not an end-to-end implementation as users need to additionally reorder the data
outside the original pipeline application. 3) The implementation could encounter deadlock when the
data dependency is complex and insufficient threads are spawned.

To overcome the limitations, we have associated each data element with a token as its identifier
and introduced a new task-parallel pipeline framework with token dependency enabled on top of
Pipeflow [13]. We summarize our technical contributions as follows:

— New Programming Model. We have proposed a new programming model for applications
to explicitly define generalized bi-directional token dependency. With our programming model,
applications can easily specify the token dependency with a single and intuitive API and do not
need to touch low-level synchronization primitives.

— New Scheduling Algorithm. We have proposed a new scheduling algorithm to support our
new programming model. Our scheduling algorithm leverages simple data structures to efficiently
determine the execution order of tokens and to avoid potential deadlock when dealing with intricate
token dependency and insufficient threads are spawned.

— End-to-end Implementation. We have integrated the step of reordering tokens into the pipeline
to achieve an end-to-end implementation. With our seamless integration, users can eliminate the
need for external token reordering mechanisms, simplifying the overall system design while provid-
ing an end-to-end solution for scheduling tokens with bi-directional dependency within the pipeline
itself.

We have evaluated the framework on applications that exhibit both forward and backward token
dependency. For example, our framework is 8.6% faster than PARSEC’s implementation in x.264
video encoding applications.

2 Background

Due to space constraints, we will focus on token dependency and the state-of-the-art Pipeflow pro-
gramming framework [13], rather than providing a comprehensive discussion of pipeline frameworks.
For a broader discussion of other pipeline frameworks, readers are referred to [13].

2.1 Token Dependency

Token dependency constrains the order in which tokens should execute in the pipeline. A dependency
exists between token ¢; and ¢s in which ¢; must complete before to can begin. We categorize token
dependency into two types: forward token dependency (FTD), which refers to dependency connecting
from preceding to succeeding token, and backward token dependency (BTD), which refers to depen-
dency in the opposite direction. Figure 2(a) shows a diagram in which all dependencies are FTDs,
which are implicitly assumed in existing task-parallel pipeline framework. Since all dependencies are
FTDs, there is no need to reorder the tokens to get the correct execution order. Figure 2(b) shows a
diagram combining both FTDs and BTDs. As BTDs exist, we need to reorder the tokens to get the
correct execution order. For example, token 16 pointing to 7 and 12 are BTDs, we need to reorder 16
before 7 and 12.

To get the correct execution order of tokens when BTDs exist, existing frameworks adopt the con-
dition variable primitive, such as PARSEC’s pthread implementation, to first determine the execution
order and then flow the reordered tokens through the pipeline. Figure 3 illustrates PARSEC’s im-
plementation using C++. Every token has its own condition variable cv and a mutex mutex and is
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Fig. 2. (a) The diagram of all FTDs and the corresponding execution order of tokens. (b) The diagram of both
FTDs and BTDs and its corresponding execution order of tokens. Red edges pointing from token 6 and 7 to
12 are FTDs, and those from 16 to 7 and 12 are BTDs. Black edges are implicit dependencies and red ones are
explicit dependencies. Execution order denotes the order in which the tokens should be executed.

handled by one thread. A token will wait on the cv of its dependent token until that dependent token
finishes. For example, token 7 has a dependent token 16, meaning token 7 must wait until 16 finishes.
7 will acquire 16’s mutex and wait on 16’s cv until 16 finishes. Once token 16 finishes, token 7 can
start the execution and then notify all the other waiting tokens that token 7 has finished.

P T O 1+ { // Wait until token 6 finishes
6 N /‘?\;'1‘2‘:/_\16 2 std::unique_lock lock(Token_6.mutex);
\_ \__' 9 Token_6.cv.wait(lock, [ & ] { return Token_6.is_finished; });
: ; o
, ' 5
H ' 6+ { // Wait until token 7 finishes
H B L > 7 std::unique_lock lock(Token_7.mutex);
' 8 Token_7.cv.wait(lock, [ & ] { return Token_7.is_finished; });
: o
10
1~ { // Wait until token 16 finishes 11~ § // Wait until token 16 finishes
2 std::unique_lock lock(Token_16.mutex); 12 std::unique_lock lock(Token_16.mutex);
3 Token_16.cv.wait(lock, [ & ] { return Token_16.is_finished; }); 13 Token_16.cv.wait(lock, [ & ] { return Token_16.is_finished; });
4 3} 14 3}
5 15
6 process(Token_7); // Process token 7 16 process(Token_12); // Process token 12
7 17
8~ { // Set token 7's state as finished 18+ { // Set token 12's state as finished
9 std::unique_lock lock(Token_7.mutex); 19 std: :unique_lock lock(Token_12.mutex);
10 Token_7.is_finished = true; 20 Token_12.is_finished = true;
1 } 210 1
12 22
13 Token_7.cv.notify_all(); // Notify all waiting threads 23  Token_12.cv.notify_all(); // Notify all waiting threads

Fig. 3. PARSEC’s implementation of Figure 2(b) to reorder tokens using the condition variable primitive.

The implementation of using condition variable is able to reorder the tokens whenever BTDs exist.
However, we notice three challenges: 1) Manipulating condition variable requires a deep understand-
ing of this low-level synchronization primitive from users. This can be particularly challenging for
users, especially when dealing with complex token dependency, such as those involving tokens with
multiple forward and backward dependencies (e.g., token 12 in Figure 3). 2) This solution is not an
end-to-end implementation as users require manual token reordering outside the core pipeline execu-
tion logic. This introduces additional complexity and increases the risk of errors in the overall system.
3) The reliance on low-level synchronization primitives can increase the risk of deadlocks, especially
in resource-constrained environments (insufficient threads) with complex dependency graphs. For in-
stance, consider a scenario where token 6 has backward dependencies on tokens 1 through 5, and only
5 threads are available. These 5 threads are all waiting for token 6 to complete, a deadlock occurs, as
no thread is available to process token 6. As a result, we need a solution that is able to avoid deadlock
when application’s token dependency is complex and insufficient threads are spawned.
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2.2 Pipeflow: Task-parallel Pipeline Framework

Pipeflow [13] represents a state-of-the-art task-parallel pipeline framework, offering significant ad-
vancements over prior work such as oneTBB [3]|. By decoupling task scheduling from data abstrac-
tion, Pipeflow introduces an efficient scheduling algorithm that optimizes pipeline execution. Further-
more, Pipeflow provides an expressive programming model, simplifying the process of defining complex
pipeline applications for developers.

Pipeflow models pipeline applications as circular task graphs, as depicted in Figure 4. This repre-
sentation facilitates the scheduling of tasks across multiple parallel execution units. For instance, in a
scenario with three parallel execution lines, Pipeflow can effectively schedule token O on parallel line
0, token 1 on parallel line 1, and token 2 on parallel line 2 and so on, adhering to the execution order
obtained by the dependency illustrated in Figure 2(a).

Figure 4 illustrates the concept of parallel execution within the Pipeflow framework. In this example,
the first and second pipeline stages (or pipes) are serial pipes, meaning tokens within these stages must
execute sequentially. For instance, token ¢ in pipe 0 and parallel line 1 cannot commence execution
until token p in pipe 0 and parallel line 0 has completed. In contrast, the third pipe is a parallel pipe.
This allows for concurrent processing of tokens within this stage. For example, token p in pipe 2 and
parallel line 0 can execute concurrently with token ¢ in pipe 2 and parallel line 1.

I- — - === -~ - - --------------------------- 1
1| token p on token p on tokenpon |t
| pipe0, te» pipel, [ pipe2, tq p=0,3,6,9, 12,15, ...
1| parallel line 0 parallel line 0 parallel line O |!
- T ..... T ¢ ................... -’
token q on token q on token q on
—| pipe0, |e» pipel, (= pipe2, 1 q=1,4,7,10,13,16, ...
parallel line 1 parallel line 1 parallel line 1
T T
token r on token r on token r on
—  pipe0, |e» pipel, —f pipe2, |7 r=2,58, 11,14, ...
parallel line 2 parallel line 2 parallel line 2
| — —

Fig. 4. Pipeflow’s circular task graph of an application in which every token is processed by a chain of 3 pipes
(in the red dashed rectangle, referred to a parallel line) and up to 3 tokens can be processed concurrently.
Edges denote dependencies.

3 Proposed Framework

We introduce a new task-parallel pipeline framework with token dependency enabled shown in Figure
5. At a high level, we first determine the execution order of tokens and then flow the ordered tokens
through the circular task graph. We provide an expressive programming model for users to explicitly
express generalized bi-directional token dependency and provide a pipeline scheduling framework to
support our programming model.

3.1 Programming Model

We extend the Pipeflow framework [13] by introducing a novel programming model that explicitly sup-
ports bi-directional token dependency. Our new programming model leverages a two-tiered approach.
Firstly, it retains Pipeflow’s core structure for defining the pipeline structure. Secondly, we introduce
a mechanism for explicitly defining token dependency within this framework. Listing 1.1 exemplifies
an application of a serial-serial-parallel pipeline structure with token dependency in Figure 2(b). To
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Fig. 5. Overview of token dependency-aware Pipeflow running an application with both FTDs and BTDs, as
illustrated in Figure 2(b). After determining the execution order of tokens, our framework schedules token
0,3,6,10,14, and 7 on parallel line 0 and so on.

define the pipeline structure, we follow Pipeflow’s programming model. We use the API Pipeline to
instantiate an object pl and define the pipeline structure (line 5). In the API, we specify the number
of parallel lines (line 4) and the abstract function of every pipe. For every pipe, we define the pipe
type and a pipe callable using Pipe. We use PipeType: : SERIAL to specify the type for the first pipe
(line 5) and the second pipe (line 30), and PipeType: : PARALLEL for the third pipe (line 36). The pipe
callable takes an argument pf (line 6, 31, and 37) which is used to query the status of a token that is
executing the pipe callable. In this example, the first pipe stores a float in the buffer buffer (line 21
and 25), the second pipe stores a string in buffer (line 33), and the third pipe prints the value (line
39).

The second part of our new programming model is to specify the token dependency. To achieve an
end-to-end implementation, we integrate this step into the pipeline by explicitly specifying the token
dependency at the first pipe before the tokens flows to the pipes. To specify token dependency, we first
use the number returned by Pipeflow: :num_deferrals to start defining the token dependency (line
11). Initially, all tokens have zero num_deferrals. Then we specify token 12’s three dependencies (line
13:15) and token 7’s dependency (line 18) using Pipeflow: :defer, respectively. For tokens that do not
have dependencies (line 21) or tokens whose execution orders are determined can resume execution
(line 25), we define the corresponding function. Finally, we call run to submit the object pl to a
runtime and execute it (line 43).

std :: variant<float , std::string> data_ type;
std :: array<data_ type, number lines> buffer;

Pipeline pl(3,

Pipe{PipeType::SERIAL, // Define the first pipe
[&](Pipeflow& pf) {

if ( pf.token() = 100) { // Stop when 100 tokens are done
pf.stop ();

}

else {
if (pf.num deferrals() = 0) {

if (pf.token() = 12) { // Specify token 12’s dependencies

pf.defer (6);
pf.defer (7);
pf.defer (16);

else if (pf.token() = 7) { // Specify token 7’s dependency
pf.defer (16);
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else {
buffer [pf.line ()] = 0.0f; // Save a float in buffer
}
}
else {
buffer [pf.line ()] = 0.0f; // Save a float in buffer
}
}
}
}
Pipe{PipeType::SERIAL, // Define the second pipe
[&](Pipeflow& pf) {
// Save a string in buffer
buffer [pf.line ()] = make string(std:: get<0>(buffer[pf.line ()]));
}
}
Pipe{PipeType::PARALLEL, // Define the third pipe
[&](Pipeflow& pf) {
// Print the string stored in buffer
std :: cout << std::get<l>(buffer[pf.line ()]);
}
}
)i
pl.run(); // Execute the pipeline

Listing 1.1. The implementation of a pipeline application consisting of 3 parallel lines and 3 pipes with a
serial-serial-parallel type. The token dependency for the application is shown in Figure 2(b). Assume the first
pipe stores a float in buffer, the second pipe stores a string in buffer, and the third pipe prints the value.

In contrast to existing approaches, such as PARSEC [4,5], our framework eliminates the need
for low-level synchronization primitives like condition variables, significantly simplifying dependency
management. This not only reduces development complexity but also improves developer productivity
by minimizing the risk of errors. Our framework introduces a concise and intuitive API for defining
dependency, pf .defer. For example, specifying the dependencies for token 12 requires only three lines
of code in Listing 1.1, compared to the 23 lines of code required in the PARSEC implementation (see
Figure 3) for handling same dependencies. This significant reduction in code complexity simplifies
debugging and maintenance, particularly in scenarios involving complex dependency graphs.

3.2 Scheduling Algorithm

To support our programming model, we design a new scheduling algorithm which includes two com-
ponents: 1) Determining the correct execution order of tokens. 2) Scheduling the reordered tokens in
the pipeline.

1) Determining the Correct Execution Order of Tokens. The first part of our scheduling
algorithm is to determine the correct execution order of tokens. The idea is to defer the execution of
a token with unresolved token dependency and save the token until its dependency is resolved. Once
that token becomes ready, we run it as soon as possible in order to resolve possible dependency for
other tokens. To realize the idea, we use three data structures,

— deferred_tokens (DT): An associative container that stores deferred tokens and their respective
dependencies. For example, in Figure 2(b), token 7 has one dependent token 16, meaning 16 must
reorder before 7. We consider token 7 as a deferred token and represent the relationship as the
entry {key:7, value:16} in DT.

— token_dependencies (TD): Another associative container that stores the reverse mapping of de-
pendencies. For example, for the dependency between token 7 and 16 in Figure 2(b) TD stores
{key:16, value:7}, allowing for efficient identification of tokens that depend on a given token. This
enables rapid updates to DT when a dependency is resolved. Specifically, once token 16’s order is
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determined later, we can quickly use the value obtained at TD[16], which is token 7, to locate and
remove the entry at DT[7].

— ready_tokens (RT): A queue that stores tokens whose dependencies have been resolved and are
ready for execution.

Figure 6 visualizes how we use the three data structures to determine the correct execution order of
tokens in Figure 2(b). In (a), token 0 to 6 do not have BTDs and we put them in the EST list in order.
In (b), token 7 has a dependent token 16 because of 7.defer (16). We first insert {key:7, value: 16} in
DT, meaning 7 needs to be reordered after 16. Then we insert {key:16, value:7} in TD in order to locate
7 in DT quickly. EST does not have 7 as its’ execution order is not yet decided. In (c), token 8 to 11
do not have BTDs and appear in EST. Token 12 has three dependencies, token 6, 7, and 16. As token
6’s order has been determined in (a), we only insert {key:12, value:{7,16}} in DT and then update TD
to reflect the new dependency. In (d), token 13 to 15 do not have BTDs and appear in EST. In (e),
token 16 does not have BTDs and appears in EST. As TD[16] exists, we use the value of that entry,
token 7 and 12, to locate the corresponding entry in DT. Then we resolve 16’s related dependency by
deleting 16 from DT[7] and DT[12]. As a result, DT[7] is empty, meaning 7’s order can be determined
and we insert it in RT. In (f), RT is not empty and we append token 7 in EST. Next, TD[7] has token
12, and we directly use 12 to locate DT [12] and delete 7 from that entry. As a result, DT[12] is empty,
meaning 12’s order can be determined and be inserted in RT. In (g), we find 12 in RT and then append
it in EST. In the end, we obtain the correct execution order of tokens as shown in Figure 2(b) using
only three simple data structures, DT, TD, and RT.

7.defer(16@>

ot [ ] 12.defer(6) 7116 7116
12.defer(7) ===-»1217, 16 12]7, 16
@ 12.defer(16) -
™ [ ] “»li6]7 ] +>[16]7. 12 16]7, 12
=712 712
Sl — ] —
EST 0,1,2,3.4,5,6 0,1,2,3.4,5,6 0,1,23,45,689, 0,1,23,45,6.8.9,
10,11 10,11,13,14,15
(a) (b) (©) (d)
~[7]h6- o [12]7-
DT v [12]7- ] ]
-»[12]7, 6 3
AR AT -
oy Ojlusa -
EST L 0,1.2,34,5,689, ~.0,1,2,3,4,5,6.89, 0,1,2.3.4,5.6,8.9,
" 10,11,13,14,15, 1Q4.1,13,14,15, 10,113,14,15,
716 16,7 : 16,7, 12
(e) ® (8

Fig. 6. Visualization of how DT, TD, and RT determine the correct execution order of tokens with the token
dependency in Figure 2(b). EST denotes the execution order of tokens and is used for illustration. We simplify
pf.defer(16) in line 15 in Listing 1.1 to 7.defer (16) for explanation purposes. The encircled numbers denote
the operation sequence in each sub-figure.
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2) Scheduling Reordered Tokens in the Pipeline. After determining the correct execution
order of tokens, we schedule the reordered tokens over the circular task graph as Pipeflow does [13].
We place one token per parallel line and schedule all tokens in a circular way across all parallel lines.
As a result, we schedule the reordered tokens as shown in Figure 5. For example, we schedule token
0,3,6,10,14,7 over parallel line 0 and so on.

3.3 Pseudocode

To implement the proposed algorithm discussed in Section 3.2, we formulate each parallel line as a
task, which defines a function object to run by a thread in the thread pool. Each task 1) determines
the execution order of tokens at the first pipe, 2) deals with one scheduling token per parallel line, and
3) decides which adjacent task to run on its next parallel line and pipe. Algorithm 1 implements such
a task. When a task is to be scheduled, we must know which pipe and which parallel line for the token
to run at. Each task owns an object pf of a specific line 1 (line 1). Once a token is done at a pipe, there
are two cases for its corresponding task to proceed: 1) for a parallel pipe, the task moves to the next
pipe at the same parallel line; 2) for a serial pipe, the task additionally checks if it can move to the
next parallel line. For example, in Figure 5 when a thread finishes token p at pipe 1 and parallel line
0, we check whether the thread goes to the pipe 2 at the same parallel line 0 or pipe 1 at the adjacent
parallel line 1. To carry out such a task dependency constraint, each pipe keeps a join counter of an
atomic integer to represent its dependency value. The values of a serial pipe and a parallel pipe can
be up to 2 and 1, respectively. We create a 2D array join_counters to store the join counter of each
pipe at each parallel line. Line 2 initializes these join counters to either 2 (serial) or 1 (parallel) based
on the corresponding pipe types. At the first pipe (line 3), a task either takes a ready token (i.e., a
token whose order has been determined) (line 4:6) or a new token (line 7:9), and then invokes the pipe
callable on that token (line 10). Then, we increment the number of processed tokens num_tokens by
one if the task processes a new token (line 11:12).

When a task finds the token has dependency (line 13:19), we call check_dependents (line 14,
defined in Algorithm 2) to keep valid dependents and remove invalid ones. Invalid dependents refer
to tokens whose order has been determined. If the token still has dependents after the first check
(line 15:17), we construct it as a deferred token (line 16, defined in Algorithm 3) and reiterate the
task with another token (line 17). If the token has no dependent, we reiterate the task with the
same token (line 18:19). After a token finishes at the first pipe, we call resolve_token_dependencies
(line 21, defined in Algorithm 4) to resolve its associated token dependency up to longest_deferral
(lines 20:21). longest_deferral keeps track of the biggest deferred token ID and is used to avoid
redundant invocations of resolve_token_dependencies. For example, there is no need to invoke
resolve_token_dependencies for applications that do not exhibit BTDs, such as Figure 2(a). At the
first pipe (line 3:21), we perform the above operations. For other pipes, we simply invoke the pipe
callables (line 22:23). After the pipe callable returns, we call schedule_tasks(pf) (line 24, defined in
Algorithm 5) to determine the next possible tasks to run.

Algorithm 2 shows the implementation of check_dependents in line 14 in Algorithm 1 to check if
a token has valid dependents. We increment the number of deferrals of that token to track how many
times this token has been deferred (line 1). We iterate the token’s dependents to check the validity for
two cases (line 2:10). Firstly, the dependent whose ID is bigger than the number of processed tokens
(num_tokens) is a future token and thus is valid. We insert pf . token in token_dependencies|dep] (line
4) and update longest_deferral (line 5). Secondly, the dependent that is a deferred token is valid,
and we insert the corresponding entry in token_dependencies (line 7:8). The remaining dependents
are invalid and are removed from the token’s dependents (line 9:10).

Algorithm 3 shows the construction of a deferred token in line 16 in Algorithm 1. For a deferred
token, we insert the key-value pair in deferred_tokens, where the key is the token ID, and the value
includes the token’s ID, num_deferrals, and its dependents.

Algorithm 4 implements resolve_token_dependencies in line 21 in Algorithm 1. When a token
whose order has been determined at the first pipe and has an entry in token_dependencies, we need to
resolve the associated token dependency (line 1:6). We iterate over every element (deferred_token) of
the entry in token_dependencies[pf . token| and remove the token from deferred_token’s dependents
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Algorithm 1: build _tasks({)

global: tasks: an array of tasks

global: ready tokens: a queue of ready tokens

global: join_counters: a two-dimensional array of join counters
global: longest deferral: an integer of longest deferral

global: num_tokens: the number of processed tokens

Input: [: a parallel line id

1 pf < tasks[l];
2 AtomicStore(join__counters[pf.line][pf.pipe], join_counter of pf.type);
3 if pf.pipe == 0 then
4 if ready tokens.empty() == false then
5 pf.token < ready tokens.front();
6 ‘ ready _tokens.pop();
7 else
8 pf.token < num__tokens;
9 pf.num_deferrals < 0;
10 invoke pipe_ callable(pf);
11 if pf.token == num_tokens then
12 ‘ Increment(num_tokens);
13 if pf.dependents.empty() == false then
14 check dependents(pf);
15 if pf.dependents.empty() == false then
16 construct _deferred _tokens(pf);
17 goto Line 2;
18 else
19 ‘ goto Line 10;
20 if pf.token < longest deferral then
21 ‘ resolve token dependencies(pf);
22 else

23 ‘ invoke pipe _callable(pf);
24 schedule tasks(pf);

Algorithm 2: check dependents(pf)

global: token _dependencies: a hashmap of a token and the deferred tokens
global: longest deferral: an integer of longest deferral
global: num_tokens: the number of processed tokens
Input: pf: a pipeflow object
1 Increment(pf.num _deferrals);
2 for dep € pf.dependents do

3 if num_tokens < dep then

4 token _dependencies|dep|.push(pf.token);

5 longest _deferral < maz(longest _deferral,dep);
6 else

7 if dep € deferred tokens then

8 ‘ token _dependencies|dep|.push(pf.token);

9 else
10 ‘ pf.dependents.erase(dep);

(line 3). If deferred_token does not have any dependent left, it is no longer a deferred token and
becomes ready. We insert deferred_token in ready_tokens and remove it from deferred_tokens.

Algorithm 5 shows how we schedule tasks when a token finishes at a pipe in line 24 in Algorithm
1. We update variables (line 1:4) and define an array to track next tasks (line 5). We update the join
counters based on the pipe type and determine the next possible tasks to run (line 6:9). When the join
counter of a pipe reaches zero, we bookmark this pipe as a task to run next (line 7 and line 9). If two
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Algorithm 3: construct _deferred tokens(pf)

1
2
3

global: deferred tokens: a hashmap of a token and its deferred object
Input: pf: a pipeflow object

deferred tokens[pf.token].token < pf.token;

deferred tokens[pf.token].num _deferrals < pf.num _deferrals;
deferred_tokens[pf.token|.dependents < pf.dependents;

Algorithm 4: resolve token dependencies(pf)

1

o ks N

global: token depencencies: a hashmap of a token and its related deferred tokens
global: deferred tokens: a hashmap of a token and its deferred object
global: ready tokens: a queue of ready tokens
Input: pf: a pipeflow object
if pf.token € token dependencies then
for deferred_token € token dependencies[pf.token] do
deferred token.dependents.erase(pf.token);
if deferred_token.dependents.empty() == true then
ready _tokens.push(deferred token);
deferred_tokens.erase(deferred_token);

next tasks exist (line 10), the current task informs the scheduler to call a worker thread to run the
task at the next parallel line (line 11) and reiterates itself on the next pipe (line 12). The idea here is
to facilitate data locality as applications tend to deal with the next pipe as soon as possible. If only
one task exists, the current task directly runs the next task with the updated pf object (line 13:16).

Algorithm 5: schedule tasks(pf)

© 0 g O A W N -

[ =
o oA W R O

global: num_ pipes: the number of pipes
global: num_lines: the number of parallel lines
global: join_counters: a two-dimensional array of join counters
Input: pf: a pipeflow object
curr _pipe < pf.pipe;
next pipe < (pf.pipe + 1)%num_ pipes;
next_line « (pf.line + 1)%num_lines;
pf.pipe < next pipe;
next _tasks = {};
if curr_pipe is SERIAL and AtomicDecrement(join_counters[next line][curr _pipe]) == 0 then
| next_tasks.insert(1);
if AtomicDecrement(join_counters[pf.line][next pipe]) == 0 then
‘ next _tasks.insert(0);

if next tasks.size() == 2 then

call scheduler(tasks[next line));

goto Line 2 in Algorithm 1;
if next tasks.size() == 1 then

if next tasks[0] == 1 then

‘ pf  tasks[next line];
goto Line 2 in Algorithm 1;

4

Experiments

We implemented our framework using C++20 and evaluated the runtime performance on a x.264
application. We compiled all programs using g++11.4 with -std=c++20 and -O3 enabled. We ran all
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the experiments on a Ubuntu Linux 22.04 machine with 20 Intel i5-13500 CPU cores at 4.8 GHz and
128 GB RAM. All data is an average of ten runs.

4.1 Real-world x.264 Application

We evaluated our framework with x.264 applications and demonstrated the advantages of our approach
to effectively handle generalized token dependency. The goal of x.264 is to generate H.264-compatible
video streams [4, 5]. In H.264 standard, there are three types of video frames, I, P, and B frames. To
encode frames, different frame types would reference either preceding or succeeding frames. I frames
do not reference other frames, P frames reference one preceding [ frame, and B frames reference one
preceding and one succeeding I or P frame. Figure 1 illustrates a sample dependency diagram between
these three frames. The backward dependency of B frames cannot be easily handled using existing
pipeline frameworks without using condition variable to first reorder the tokens as PARSEC [4, 5]
does. We modified the x.264 benchmark from [4] by duplicating the frames to a bigger benchmark to
evaluate the performance under different frame sizes and thread sizes. In addition, we added more B
frames in the modified benchmark to further mimic the H.264 standard.

We considered PARSEC’s pthread implementation [4] as the baseline because PARSEC is the pop-
ular pipeline benchmark for many applications, such as ferret and x.264. To apply pipeline parallelism
to x.264 applications, PARSEC assigns a thread to each frame. Every frame has a condition variable
associated with its dependency. If a frame has unresolved dependency, its condition variable will wait
until its dependency is resolved. When the frame becomes ready, its condition variable will broadcast
the frame’s readiness to any other frames that are waiting for the frame to finish. We implemented
PARSEC’s condition variable solution using C++. Figure 3 illustrates the implementation in which we
use token 12 to simulate a B frame. This fine-grained control requires a high familiarity with low-level
synchronization primitives from developers and is error-prone. With our framework, applications can
directly specify the frame dependencies at the first pipe. Besides, PARSEC’s solution could lead to
deadlock when insufficient threads are spawned as discussed in Section 2.1. Our framework can avoid
deadlock regardless of the thread counts.
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Fig. 7. Runtime comparison between our framework and PARSEC at different frame and thread sizes.

Figure 7 compares the frame reordering time between our framework and PARSEC with up to 2
million frames and using up to 20 threads. We find out that the gap between our solution and PARSEC
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increases as the frame sizes grow. For example, when using 8 threads, the gap increases from 0.7 second
at 1 million frames (22°) to 1.4 seconds at 2 million frames (22!). For the largest 2 million frame sizes,
our framework is consistently faster than the baseline. For example, ours is 8.2%, 8.6%, 5.4%, 6.8%,
7.8%, and 5% faster than PARSEC when using 8, 10, 12, 14, 16, and 20 threads, respectively. We also
notice that all of the plots show one trend that our framework outperforms PARSEC regardless of the
frame sizes and thread sizes. For example, when running 1 million frames we are 0.7 second faster with
both 8 and 16 threads; when using 16 threads, we are 8%, 8%, and 7.8% faster running 0.5, 1, and
2 millions frames, respectively. We attribute the observations to the reasons: 1) PARSEC uses fine-
grained low-level condition variable to address the bi-directional frame dependencies. When a frame
has unresolved dependency, the thread that processes the frame has to wait until the dependency is
resolved. When a frame finishes, the thread needs to broadcast the completeness of the frame to other
waiting frames. This mechanism that puts waiting threads to sleep and wakes up threads to resume the
operations causes overheads. 2) Our solution does not wait for the frame but stores a deferred frame
in deferred_token and continues to schedule other frames without waiting. This design could avoid
the overheads that condition variable brings. As a result, our framework demonstrates the runtime
advantages over the baseline in all cases regardless of the frame sizes and thread sizes.

5 Conclusion

In this paper, we have introduced a new task-parallel pipeline programming framework on top of the
state-of-the-art Pipeflow to explore pipeline parallelism in applications with token dependency. We
have introduced an expressive programming model for applications to explicitly specify generalized
token dependency. We have introduced a simple yet efficient scheduling algorithm to reorder tokens
and schedule reordered tokens in the pipeline. We have evaluated the performance of our framework
on an x.264 video encoding application. For example, our framework is 8.6% faster than PARSEC’s
implementation. We have integrated Pipeflow into the open-source task-parallel programming system,
Taskflow [22] to benefit the HPC community. Our future plans are to 1) apply the framework to more
different types of applications and bring interdisciplinary ideas to the parallel computing community,
2) extend token dependency-aware Pipeflow to task-parallel GPU computing platforms [30, 10,29, 31,
25,11,6,35,27] and distributed environment [20,21,19], and 3) leverage machine learning techniques
to further improve the scheduling performance [12,33,9].
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