
BQSim: GPU-accelerated Batch Quantum Circuit
Simulation using Decision Diagram

Shui Jiang
The Chinese University of Hong Kong

Shatin, Hong Kong
sjiang22@cse.cuhk.edu.hk

University of Wisconsin-Madison
Madison, WI, United States

sjiang285@wisc.edu

Yi-Hua Chung
University of Wisconsin-Madison

Madison, WI, United States
yihua.chung@wisc.edu

Chih-Chun Chang
University of Wisconsin-Madison

Madison, WI, United States
chih-chun.chang@wisc.edu

Tsung-Yi Ho
The Chinese University of Hong Kong

Shatin, Hong Kong
tyho@cse.cuhk.edu.hk

Tsung-Wei Huang
University of Wisconsin-Madison

Madison, WI, United States
tsung-wei.huang@wisc.edu

Abstract
Quantum circuit simulation (QCS) plays an important role in
the designs and analysis of a quantum algorithm, as it assists
researchers in understanding how quantum operations work
without accessing expensive quantum computers. Despite
many QCS methods, they are largely limited to simulating
one input at a time. However, many simulation-driven quan-
tum computing applications, such as testing and verification,
require simulating multiple inputs to reason a quantum algo-
rithm under different scenarios. We refer to this type of QCS
as batch quantum circuit simulation (BQCS). In this paper,
we present BQSim, a GPU-accelerated batch quantum circuit
simulator. BQSim is inspired by the state-of-the-art decision
diagram (DD) that can compactly represent quantum gate
matrices, but overcomes its limitation of CPU-centric sim-
ulation. Specifically, BQSim uses DD to optimize a quantum
circuit for reduced BQCS computation and converts DD to a
GPU-efficient data structure. Additionally, BQSim employs a
task graph-based execution strategy to minimize repetitive
kernel call overhead and efficiently overlap kernel execution
with data movement. Compared with three state-of-the-art
quantum circuit simulators, cuQuantum, Qiskit Aer, and
FlatDD, BQSim is 3.25×, 159.06×, and 311.42× faster on av-
erage.

CCS Concepts: • Computer systems organization →
Quantum computing; • Computing methodologies →
Parallel algorithms; • Software and its engineering →
Scheduling.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ASPLOS ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1079-7/25/03
https://doi.org/10.1145/3676641.3715984

Keywords: Quantum Circuit Simulation; Decision Diagram;
GPU; Task Graph
ACM Reference Format:
Shui Jiang, Yi-HuaChung, Chih-ChunChang, Tsung-Yi Ho, and Tsung-
Wei Huang. 2025. BQSim: GPU-accelerated Batch Quantum Circuit
Simulation using Decision Diagram. In Proceedings of the 30th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS ’25), March
30-April 3, 2025, Rotterdam, Netherlands. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3676641.3715984

1 Introduction
Quantum computing has the potential to tackle certain prob-
lems (e.g., cryptography [15], portfolio optimization [19])
that are classically intractable. Among various QC applica-
tions [9, 39, 52, 59, 68], quantum circuit simulation (QCS) [13,
17, 20, 22, 26, 29, 32, 34, 37, 47, 48, 56, 57, 60, 68, 69, 71, 72]
plays a crucial role as it allows researchers to simulate a
quantum algorithm on a classical computer without the need
to access high-cost quantum computers. However, QCS is
computationally demanding because it requires large time
and space complexity to compute state amplitudes of qubits.
For example, simulating an 𝑛-qubit quantum state involves
computing 2𝑛 state amplitudes. Furthermore, modern quan-
tum circuits can incorporate thousands of quantum gates to
approach quantum advantages [33], making it increasingly
challenging to complete QCS within a reasonable runtime.

Tomitigate these challenges, existing QCSworks have pro-
posed various strategies. For example, [17, 26, 32, 56, 60, 67]
introduced multi-threaded QCS algorithms through state
partition. [34, 37, 68–70] leveraged SIMD and GPU paral-
lelism to further accelerate QCS. Additionally, [13, 16, 22,
30, 32, 47, 60, 68] optimized the quantum circuit using gate
fusion and pattern matching to reduce the amount of QCS
computation.
While these strategies can improve the performance of

QCS, a fundamental challenge remains unsolved: existing

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3676641.3715984
https://doi.org/10.1145/3676641.3715984

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Shui Jiang, Yi-Hua Chung, Chih-Chun Chang, Tsung-Yi Ho, and Tsung-Wei Huang

simulators are largely limited to the strong scaling within
a single input (i.e., state vector). That is, they focus on im-
proving runtime by increasing the number of cores under
a single input. However, many simulation-driven quantum
applications, such as verification [9], testing [62–64], and
state analysis [25, 33, 41], require simulating multiple inputs
to understand the behavior of a quantum circuit under differ-
ent scenarios. In these applications, hundreds to thousands
of batches of inputs are fed into a quantum circuit for simu-
lation, which we refer to as batch quantum circuit simulation
(BQCS). While an intuitive approach to BQCS is to fork mul-
tiple single-input QCS processes, this type of embarrassingly
parallel strategy fails to leverage the substantial data paral-
lelism in BQCS, which could significantly benefit from GPU
acceleration.

However, designing a GPU-accelerated batch quantum cir-
cuit simulator is non-trivial. First, single-input QCS has been
computationally expensive because of superposition [14]
and entanglement [24]. Extending it to multiple-input BQCS
will further exacerbate this challenge. Second, while many
data structures [21, 29, 48, 50, 66, 72] can efficiently represent
quantum circuits, most of them are CPU-centric. For example,
state-of-the-art decision diagram (DD) [32, 48, 72] has shown
promising results in representing gate matrices in a compact
graph structure, but all DD-based QCS works are limited to
CPU parallelism. Third, extending these CPU-centric data
structures to GPU is not straightforward, because GPU has
distinct performance and memory models from CPU, requir-
ing specially designed kernel algorithms and memory layout
to make the most of GPU parallelism.

To overcome these challenges, we introduce BQSim, a GPU-
accelerated batch quantum circuit simulator. BQSim is in-
spired by and built upon the state-of-the-art DD-based simu-
lator, FlatDD [32], but overcomes its limitation of CPU-only
parallelism. We summarize our technical contributions be-
low:

• We introduce a novel gate-fusion algorithm that reduces
the amount of BQCS computation by leveraging DD to
explore gate matrix sparsity and regularity.

• We introduce a GPU kernel to convert DD into a GPU-
efficient data structure that can achieve low thread diver-
gence and efficient memory access patterns in BQCS.

• We introduce a task graph-based execution strategy to
minimize repetitive kernel call overhead and efficiently
overlap kernel execution with data movement.

We evaluated the performance of BQSim on a set of com-
monly used quantum circuits selected from MQT-Bench [51].
Compared with three state-of-the-art simulators, cuQuan-
tum [7], Qiskit Aer [31], and FlatDD [32], BQSim is 3.25×,
159.06×, and 311.42× faster on average, respectively. The
source code is available at https://github.com/IDEA-CUHK/
BQSim.

2 Background
In this section, we first provide an overview of QCS. Next,
we introduce DD, an efficient data structure for QCS. Finally,
we discuss gate fusion, a key quantum circuit optimization
technique.

2.1 Quantum Circuit Simulation
The goal of QCS is to derive the final state after applying
all quantum gates in a given quantum circuit to an initial
state [32]. A quantum gate and a state are expressed using
a gate matrix and a state vector, respectively. Applying a
quantum gate to a state is equivalent to multiplying the
state vector by the gate matrix. For example, if we apply a
single-qubit Hadamard gate𝑀 to a single-qubit input state
|𝜓 ⟩ = |0⟩, the resulting state |𝜓 ′⟩ is calculated in Equation 1.

|𝜓 ′⟩ = 𝑀 · |𝜓 ⟩ = 1
√
2

(
1 1
1 −1

)
·
(
1
0

)
=

1
√
2

(
1
1

)
(1)

Equation 1 can be extended to circuits with multiple qubits
through Kronecker product [31]. However, when simulating
circuits with𝑛 > 1 qubits, we do not have to construct the full
2𝑛 × 2𝑛 gate matrices. Instead, we can update the amplitudes
of the state vectors directly [7, 31, 32, 56, 60]. For example, if
we apply a single-qubit gate 𝑈 = (𝑢𝑖 𝑗) to the 𝑘-th qubit of a
state vector |𝜓 ⟩ = (𝑎𝑖)𝑇 , the operation to obtain the resulting
state vector |𝜓 ′⟩ = (𝑎′𝑖)𝑇 is calculated in Equation 2.(

𝑎′∗···∗0𝑘∗···∗
𝑎′∗···∗1𝑘∗···∗

)
=

(
𝑢00 𝑢01
𝑢10 𝑢11

)
·
(
𝑎∗···∗0𝑘∗···∗
𝑎∗···∗1𝑘∗···∗

)
(2)

On the other hand, if we apply a controlled gate𝑉 = (𝑣𝑖 𝑗)
to a state vector |𝜓 ⟩ = (𝑎𝑖)𝑇 , the resulting state vector |𝜓 ′⟩ =
(𝑎′𝑖)𝑇 is calculated in Equation 3, where 𝑐 represents the
control qubit and 𝑡 is the target qubit.(

𝑎′∗1𝑐∗···∗0𝑡 ∗···∗
𝑎′∗1𝑐∗···∗1𝑡 ∗···∗

)
=

(
𝑣00 𝑣01
𝑣10 𝑣11

)
·
(
𝑎∗1𝑐∗···∗0𝑡 ∗···∗
𝑎∗1𝑐∗···∗1𝑡 ∗···∗

)
(3)

Various types of QCS exist, such as unitary simulation [72],
state vector simulation [31], tensor network simulation [66],
and density matrix simulation [38]. In this paper, we focus
on full-state simulation, which provides the complete set
of ideal state amplitudes for each quantum gate, offering a
comprehensive view of the quantum circuit’s behavior.

2.2 Decision Diagram
DD [48, 72] is a state-of-the-art data structure that efficiently
represents quantum gate matrices and state vectors by ex-
ploring their regularity and sparsity. Figure 1 shows DD
examples for gate matrix𝑀 and state vector 𝑉 . In Figure 1a,
we store 𝑀 in DD, where nodes represent sub-matrices in
𝑀 , and edges track the values of elements in 𝑀 . Edge (0)
points to the root node 0○ with an edge weight of 𝑎 = 1/

√
2.

https://github.com/IDEA-CUHK/BQSim
https://github.com/IDEA-CUHK/BQSim

BQSim: GPU-accelerated BatchQuantum Circuit Simulation using Decision Diagram ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

00

1

④③ 0
0
0

(0)

(9)

(3)

(2)
⓪

① ②

Qubit
level

2

1

0

(1)

0

(5)

(6)
(8) (7)

(4)

0
0
0

0
0
1

𝑞!
𝑞"
𝑞#

0
1
0

0
1
1

1
1
1

𝑞!𝑞"𝑞#
0	 0	 0

1	 1	 0
1	 1	 1

−1

−1

−1

DD-based matrix 𝑴 2D array-based matrix 𝑴

1
0
0

0	 0	 1
0	 1	 0
0	 1	 1
1	 0	 0
1	 0	 1

1
0
1

1
1
0

𝑎 0 0 0 𝑎 0 0 0
0 0 0 𝑎 0 0 0 𝑎
0 0 𝑎 0 0 0 𝑎 0
0 𝑎 0 0 0 𝑎 0 0
𝑎 0 0 0 −𝑎 0 0 0
0 0 0 −𝑎 0 0 0 𝑎
0 0 𝑎 0 0 0 −𝑎 0
0 −𝑎 0 0 0 𝑎 0 0

𝒂 = 𝟏/ 𝟐

(a)Matrix𝑀 represented in DD (left) and 2D array (right).

1

Qubit level

2

𝑞!𝑞"𝑞#

DD-based vector 𝑽 Array-based vector 𝑽

1	 0	 1
1	 1	 0
1	 1	 1

⓪

1

0

(0)
(1)

(3)

(4) (5)

(2)

①

②
0

1	 0	 0

1/ 2

1/ 2

1/ 2

1/ 2
0	 0	 0
0	 0	 1

0	 1	 1
0	 1	 0

1/2
1/2
0
0
1/2
1/2
0
0

(b) Vector 𝑉 represented in DD (left) and array (right).

Figure 1. Storing array-based matrix and vector using DDs.
Unless specified otherwise, all edges have a weight of one.

All edge weights are uniquely determined via normaliza-
tion [48, 72]. Node 0○ represents the entire𝑀 , with four out-
going edges ((1), (2), (3), and (4)) pointing to the four equally
partitioned sub-matrices: 𝑀 [0 : 4] [0 : 4], 𝑀 [0 : 4] [4 : 8],
𝑀 [4 : 8] [0 : 4], and 𝑀 [4 : 8] [4 : 8]. In a DD, each qubit
level corresponds to a qubit, ordered from the most to the
least significant. Node 0○ is placed on qubit level 2 because
the size of all its sub-matrices are 22 × 22. Sub-matrices
𝑀 [0 : 4] [0 : 4] and 𝑀 [0 : 4] [4 : 8] are identical, while
sub-matrices 𝑀 [4 : 8] [0 : 4] and 𝑀 [4 : 8] [4 : 8] are op-
posites. Consequently, 𝑀 [0 : 4] [0 : 4] and 𝑀 [0 : 4] [4 : 8]
can share node 2○, and 𝑀 [4 : 8] [0 : 4] and 𝑀 [4 : 8] [4 : 8]
can share node 1○ with opposite incoming edge weights.
Likewise, the sub-matrices represented by nodes 1○ and 2○
can be further equally partitioned into 21 × 21 sub-matrices.
For example, edges (5), (6), (7), and (8) point to sub-matrices
𝑀 [0 : 2] [4 : 6], 𝑀 [0 : 2] [6 : 8], 𝑀 [2 : 4] [4 : 6], and
𝑀 [2 : 4] [6 : 8], respectively. Among these, 𝑀 [0 : 2] [4 : 6]
and 𝑀 [2 : 4] [6 : 8] are identical, and 𝑀 [0 : 2] [6 : 8] and
𝑀 [2 : 4] [4 : 6] are identical as well. Therefore, edges (5)
and (8) point to the shared node 3○, and edges (6) and (7)
point to the shared node 4○. Node 3○ represents matrix

(1 0
0 0

)
.

Among the four outgoing edges of node 3○, the upper-left
edge points to the constant-one node, and the other three
edges are set to constant zero. The same applies to node 4○.

The matrix value at an index pair is the product of the edge
weights along the corresponding path in DD. For example,

for 𝑀 [2] [6], we have 𝑞1 = 1 and 𝑞2 = 𝑞0 = 0 for its row
index 2; and 𝑞2 = 𝑞1 = 1 and 𝑞0 = 0 for its column index
6. Therefore, node 0○, at qubit level 2, chooses edge (2) (i.e.,
𝑞2 = 0 for row and 𝑞2 = 1 for column), pointing to node 2○,
which represents𝑀 [0 : 4] [4 : 8] (shaded in red in Figure 1a).
Node 2○ then chooses edge (8) (i.e., 𝑞1 = 1 for both row and
column), which points to node 3○, representing𝑀 [2 : 4] [6 :
8]. Finally, node 3○ chooses edge (9) (i.e., 𝑞0 = 0 for both
row and column), pointing to the constant-one node. The
value of𝑀 [2] [6] is the product of the weights of edges (0),
(2), (8), and (9) (red thick edges in Figure 1a), resulting in
𝑀 [2] [6] = 1/

√
2.

We can represent state vector 𝑉 in Figure 1b using DD
in a similar fashion. Root node 0○ represents the entire 𝑉 ,
with its two outgoing edges (i.e., (1) and (2)) pointing to the
equally partitioned sub-vectors 𝑉 [0 : 4] and 𝑉 [4 : 8]. Node
0○ is placed on qubit level 2 because the length of its sub-
vectors is 22. Since sub-vectors 𝑉 [0 : 4] and 𝑉 [4 : 8] are
identical, they can share node 1○ with equal edge weights
of 1/

√
2, determined by normalization. After dividing the

common edge weight 1/
√
2, we can further partition the sub-

vector represented by node 1○ (i.e.,
(
1/
√
2 1/

√
2 0 0

)𝑇) into(
1/
√
2 1/

√
2
)𝑇 and

(
0 0

)𝑇 . The former is represented by node
2○, while the latter is set to the constant-zero edge. Finally,
both of node 2○’s outgoing edges point to the constant-one
node with equal edge weights of 1/

√
2.

The vector value at a certain index is the product of the
edge weights along the corresponding edge path in DD. For
example, for index 0, we have 𝑞2 = 𝑞1 = 𝑞0 = 0. Therefore,
node 0○ chooses edge (1) (i.e., 𝑞2 = 0), leading to node 1○,
which represents 𝑉 [0 : 4] (shaded in red in Figure 1b). Next,
node 1○ chooses edge (3), leading to node 2○, which repre-
sents 𝑉 [0 : 2]. Finally, node 2○ chooses edge (4), pointing to
the constant-one node. The value of𝑉 [0] equals the product
of the weights of edges (0), (1), (3), and (4) (red thick edges
in Figure 1b), resulting in 𝑉 [0] = 1/2.

DD can effectively compress the computation of quantum
gate matrices and state vectors. For instance, computing the
DD-based matrix𝑀 in Figure 1a involves only 26 edges and
six nodes, compared to 64 nodes in 2D array-based𝑀 . DD-
based matrix-vector and matrix-matrix multiplications are
performed using depth-first-search (DFS), where the mul-
tiplication is partitioned into many smaller multiplications
among sub-matrices and sub-vectors. The results of repeated
multiplications are reused via caches [48, 71, 72].

2.3 Gate Fusion
To efficiently simulate large circuits containing thousands of
gates (e.g., QNN [33]), simulators often fuse multiple gate ma-
trices into a single equivalent gate matrix [13, 22, 32, 47, 60]
to reduce the amount of QCS computation. Among various
gate-fusion algorithms, array-based gate fusion [13, 22, 60],

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Shui Jiang, Yi-Hua Chung, Chih-Chun Chang, Tsung-Yi Ho, and Tsung-Wei Huang

which fuse gates represented in 2D arrays, has proven effec-
tive. However, array-based gate fusion becomes inefficient
as the size of the fused gate matrix grows exponentially
with the number of qubits. For example, a 2D array-based
ten-qubit fused gate matrix would be 1024 × 1024, making
further fusion difficult. In contrast, recent DD-based gate
fusion [32] offers a more efficient approach by representing
gate matrices in DD, which explores the sparsity and regular-
ity of gate matrices. DD-based gate fusion avoids redundant
zeros and repeated sub-matrices, enabling the fusion of addi-
tional gates without significant overhead, thereby effectively
reducing the amount of QCS computation.

3 Algorithm
In this section, we discuss the technical details of our BQSim
algorithm. As shown in Figure 2, BQSim consists of three
stages: BQCS-aware gate fusion, DD-to-ELL conversion, and
task graph-based execution.
In stage 1○ (Section 3.1), we reduce the amount of BQCS

computation by leveraging DD to explore gate matrix spar-
sity and regularity. However, extending the fused gates in
DD to GPU is non-trivial, because GPU has distinct perfor-
mance and memory models from CPU. Therefore, in stage
2○ (Section 3.2), we convert the fused gates from DD to a
GPU-efficient data structure, ELL [36, 53], to achieve low
thread divergence and efficient memory access patterns in
BQCS. Finally, in stage 3○ (Section 3.3), we introduce a task
graph-based execution strategy to simulate the fused gates
in ELL across multiple input batches. This strategy can mini-
mize repetitive kernel call overhead and efficiently overlap
kernel execution with data movement.

3.1 BQCS-aware Gate Fusion
BQCS-aware gate fusion is performed using DD to explore
gate matrix sparsity and regularity. However, existing DD-
based gate fusion [32] is limited to optimizing CPU-based
single-input QCS. To extend this gate-fusion algorithm to
GPU-accelerated BQCS, we first define and calculate the
BQCS cost of each gate (Section 3.1.1), and then fuse all the
gates in a circuit based on their BQCS costs (Section 3.1.2).

3.1.1 BQCS Cost for Each Gate. As we shall discuss,
BQSim eventually models BQCS as ELL-based sparse-matrix
multiplication (spMM) (Section 3.3.1). Since the core com-
putation of matrix multiplication is multiply-accumulate
(MAC) operations [10], we measure the BQCS cost using
the number of MAC operations (i.e., #MAC). For any gate
matrix represented in ELL, the #MAC needed to compute
every state amplitude is the same, which is equal to the max-
imum number of non-zero elements per row (NZR) of the
gate matrix (Section 3.2). Therefore, we can define the BQCS
cost of a gate matrix as its maximum NZR.

Finding the maximum NZR of an 𝑛−qubit gate matrix is
challenging due to its 2𝑛 rows. To address this issue, we ob-
serve that the NZR values across the rows exhibit a regular
pattern, making them efficient to process using DD. Con-
sequently, we store the NZR of all rows in a NZR vector
(NZRV) and use DD to represent the NZRV.

Figure 3 shows the algorithm to find the DD-based NZRV
of a DD-based gate matrix 𝑀 . We use DFS to traverse the
nodes in 𝑀 , where each node represents a sub-matrix. We
recursively find the NZRV of each node (i.e., sub-matrix), and
derive the NZRV of 𝑀 . To avoid repeated computations, the
NZRV of each node is stored in a map𝑇 . In the map𝑇 shown
in Figure 3, only the first column (i.e., node) and the last
column (i.e., DD-based NZRV) are stored in memory, while
the two middle columns are included only for illustration.
For each node, we traverse its outgoing edges from top to
bottom, left to right. Starting with node 0○, we move through
node 1○ to arrive at node 2○, which represents

(1 0
0 0

)
, whose

NZRV is
(1
0
)
. Then, we proceed to node 3○, whose NZRV is(1

1
)
. Returning to node 1○, the NZRVs of the top and bottom

rows are simply those of nodes 2○ and 3○. We can concate-
nate the NZRVs of nodes 2○ and 3○ using native DD opera-
tion DDConcatenate [72] (i.e.,𝑇 [1○]=DDConcatenate(𝑇 [2○],
𝑇 [3○])), yielding (1 0 1 1)𝑇 in array representation. Simi-
larly, the NZRV of node 4○ is (1 1 1 0)𝑇 . For the root node
0○, which represents 𝑀 , the NZRVs of the top and bottom
rows are calculated by summing the NZRVs of nodes 1○
and 4○, using native DD operation DDAdd [72]. Then, we
concatenate the NZRVs of the top and bottom rows (i.e.,
𝑇 [0○]=DDConcatenate(DDAdd(𝑇 [1○], 𝑇 [4○]), DDAdd(𝑇 [4○],
𝑇 [1○]))). Finally, the maximum NZR of𝑀 (i.e., 2) is obtained
through DFS traversal of 𝑇 [0○] (the DD-based NZRV of𝑀).

3.1.2 BQCS Cost-based Gate Fusion. Figure 4 illustrates
the three steps in BQCS cost-based gate fusion. In steps 1○
and 2○, we fuse DDs with low BQCS costs (i.e., 1 and 2) to
reduce the total number of gates used in step 3○, where more
expensive DD multiplications are performed through greedy
fusion. We fuse gates by multiplying their DD-based gate
matrices using native DD operation DDMultiply [72].
In step 1○, we fuse consecutive diagonal or permutation

gates, all of which have a BQCS cost of 1. The resulting fused
gate remains a diagonal or permutation gate with a BQCS
cost of 1. As a result, the overall BQCS cost is reduced from
the sum of individual costs to a single cost of 1. For example,
in Figure 4, gates 𝑀2, 𝑀3, 𝑀6, and 𝑀7 in 𝐺 , along with the
resulting fused gates𝑀32 and𝑀76 in 𝐹1, all have a cost of 1.
In step 2○, we fuse every two consecutive gates, each with
a cost of 2, resulting in a fused gate with a BQCS cost of 4.
For instance, in Figure 4, gates 𝑀1 and 𝑀0 in 𝐹1 each have
a cost of 2, while the fused gate 𝑀10 in 𝐹2 has a cost of 4.
Although the overall BQCS cost remains unchanged (i.e.,
2 + 2 = 4), simulating a single fused gate instead of two
reduces memory loads and stores, thereby improving BQCS

BQSim: GPU-accelerated BatchQuantum Circuit Simulation using Decision Diagram ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

cx q[2],q[0];
cx q[1],q[0];
h q[0];
x q[2];
cx q[1],q[2];
…

BQCS-aware
gate fusion

Quantum circuit Fused gates in DD

DD-to-ELL
conversion

Fused gates in ELL
1

, … ,	

1

, … ,	

① ②

③ Task graph-based
execution

…

…

Input batches

Output batches

Figure 2. Overview of BQSim algorithm. 1○ We apply BQCS-aware gate fusion to reduce the amount of BQCS computation by
leveraging DD to explore gate matrix sparsity and regularity. 2○ We convert the fused gates from DD to ELL, to achieve low
thread divergence and efficient memory access patterns in BQCS. 3○ We introduce a task graph-based execution strategy,
which simulates the fused gates in ELL across multiple input batches. This strategy can minimize repetitive kernel call overhead
and efficiently overlap kernel execution with data movement.

1

0
0

0
00

0
0

0
0

⓪

①

② ③

④

Sub-matrix in
𝑴 (2D array)

NZRV
(array) 𝑻[Node]: DD-based NZRV

⓪

1	0	0	0	0	0	1	0
0	0	0	0	0	0	0	1
1	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	1	0	0	0
0	0	0	0	0	1	0	0

2
1
2
1
2
1
2
1

①

1	0	0	0
0	0	0	0
1	0	0	0
0	1	0	0

1
0
1
1

② 1	0
0	0

1
0

③ 1	0
0	1

1
1

④

0	0	1	0
0	0	0	1
0	0	1	0
0	0	0	0

1
1
1
0

1

𝟎

1

1

𝟎

1

𝟎

1

DDConcatenate
(
 DDAdd(T[①],T[④]),
 DDAdd(T[④],T[①])
)

DDConcatenate
(
 T[②],
 T[③]
)

DDConcatenate
(
 T[③],
 T[②]
)

Map 𝑻: DD node in 𝑴 →	DD-based NZRV

DD-based gate
matrix 𝑴

Node

2

Figure 3. Determining the NZRV of a DD-based gate matrix
𝑀 . Each DD node in𝑀 represents a sub-matrix, and map𝑇 is
used to track the NZRV of each sub-matrix. Unless specified
otherwise, all edge weights are equal to one.

performance. Finally, in step 3○, we apply the greedy fusion
algorithm from FlatDD [32] to the fusion result of step 2○
(i.e., 𝐹2 in Figure 4). This algorithm fuses gates only when
the resulting gate has a lower BQCS cost. For example, the
BQCS costs of gates 𝑀10 and 𝑀32 are 4 and 1, respectively,
while gate𝑀3210 has a cost of 4. Since the fusion reduces the
overall cost (i.e., 4 < 4 + 1), we fuse𝑀10 and𝑀32 into𝑀3210.

3.2 DD-to-ELL Conversion
The goal of DD-to-ELL conversion is to convert the fused
gates from DD to a GPU-efficient data structure, ELL [36, 53].
We choose ELL over other sparse formats (e.g., CSR, COO)
because the NZRs of quantum gate matrices are distributed
roughly uniformly across rows, which is best suited for
ELL [8]. To demonstrate this uniformity, we calculate the

𝑴𝟔

1
𝑴𝟕

1
𝑴𝟒

2
𝑴𝟓

2

Original gates 𝑮

𝑴𝟑

1
𝑴𝟎

2
𝑴𝟐

1
𝑴𝟏

2

𝑴𝟕𝟔 𝑴𝟑𝟐

𝑴𝟓

2
𝑴𝟕𝟔

1
Fused

gates 𝑭𝟏
𝑴𝟏

2
𝑴𝟎

2
𝑴𝟒

2
𝑴𝟑𝟐

1

𝑴𝟓𝟒 𝑴𝟏𝟎

𝑴𝟓𝟒

4
𝑴𝟕𝟔

1
Fused

gates 𝑭𝟐

𝑴𝟑𝟐

1
𝑴𝟏𝟎

4

Greedy fusion

Final fused
gates 𝑭𝟑
𝑴𝟕𝟔𝟓𝟒𝟑𝟐𝟏𝟎

8

③ Greedy
fusion

② Fuse two
consecutive gates,
each with a cost of

two

Original
circuit

① Fuse consecutive
diagonal or

permutation gates

𝑀): ry(3.5902*pi) q[0];
𝑀*: ry(3.5478*pi) q[1];
𝑀+: cx q[1],q[2];
𝑀,: cx q[0],q[1];
𝑀-: ry(0.4724*pi) q[2];
𝑀.: ry(0.6389*pi) q[0];
𝑀/: cx q[1],q[2];
𝑀0: cx q[0],q[1];

DD-based gate matrix

BQCS cost of the gate

Fused gate

Figure 4. Steps of our BQCS cost-based gate fusion. 1○ Fuse
consecutive diagonal or permutation gates. 2○ Fuse every
two consecutive gates, each with a cost of two. 3○ Apply
greedy fusion to the result of the previous step.

average coefficient of variation (𝐶𝑉) of NZRs in gate matri-
ces used for BQCS-aware gate fusion across four quantum
circuits [6, 51], as shown in Table 1. 𝐶𝑉 quantifies the rela-
tive variability of a series of values [5], where a lower 𝐶𝑉
indicates lower variability and greater uniformity [18, 55].
In Table 1, the 𝐶𝑉 values for VQE, QNN, and TSP circuits
are zero, indicating that NZRs are uniform across all rows
for all gates. While the quantum supremacy circuit exhibits
a nonzero 𝐶𝑉 , its value of 0.0328 remains low, indicating
high uniformity in practice [55, 65]. This uniformity allows
for balanced partitioning of GPU threads across rows in the
ELL format, resulting in low thread divergence and efficient
memory access patterns in BQCS.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Shui Jiang, Yi-Hua Chung, Chih-Chun Chang, Tsung-Yi Ho, and Tsung-Wei Huang

Table 1. The average coefficient of variation (𝐶𝑉) of NZRs
in gate matrices used for BQCS-aware gate fusion across
four quantum circuits: Quantum supremacy (𝑛 = 12), VQE
(𝑛 = 16), QNN (𝑛 = 17), and TSP (𝑛 = 16).

Circuits Supremacy
(𝑛 = 12)

VQE
(𝑛 = 16)

QNN
(𝑛 = 17)

TSP
(𝑛 = 16)

𝐶𝑉 of NZR 0.0328 0 0 0

As shown in Figure 7a, the DD-based gate matrix 𝑀 is
converted to the ELL-based 𝑀 . The 2D array-based 𝑀 in-
cluded in Figure 7a is only for illustration and is not stored
in memory. For each row in the 2D array-based 𝑀 , which
corresponds to a combination of DD edges in the DD-based
𝑀 , ELL stores the non-zero elements in the ELL value matrix
and their column indices in the ELL column index matrix.
Each row in the ELL value matrix corresponds to a state
amplitude, and the #MAC needed to compute that amplitude
is the number of values in the row, which is the number of
columns in the ELL value matrix. This number is determined
by the maximum NZR of gate matrix𝑀 , as rows with fewer
non-zero elements than the maximum NZR are padded with
zeros (e.g., rows 1 and 5 in Figure 7a).

An intuitive approach for DD-to-ELL conversion is travers-
ing all DD edge combinations to generate the ELL value and
column index matrices on CPU (i.e., CPU-based conversion).
However, CPU-based conversion has exponential time com-
plexity, as there are 2𝑛 rows for an 𝑛-qubit gate matrix. To
address this issue, we leverage GPU to convert the rows
in parallel. While GPU-based conversion is typically faster,
Figure 5a shows that for certain gates, CPU-based conver-
sion can outperform GPU-based conversion. Additionally,
Figure 5b shows that CPU-based conversion can outperform
GPU-based conversion more significantly as the number of
DD edges increases. This is becausemoreDD edges introduce
more branches, resulting in greater GPU thread divergence
and memory inefficiency.
Therefore, to optimize the conversion performance, we

introduce a hybrid approach that adaptively selects either
GPU-based or CPU-based conversion based on the number
of DD edges. We refer to this approach as hybrid conversion.
If a DD has more edges than a specified threshold 𝜏 , we use
CPU-based conversion; otherwise, we use GPU-based con-
version. The best selection strategy of 𝜏 depends on the DD
structure and the hardware used for BQCS. Since there is no
universally optimal value, we parameterize it for different ap-
plications. In Section 3.2.1, we introduce DD storage on GPU
(i.e., GPU-based DD). Then, in Section 3.2.2, we introduce a
GPU kernel to convert the GPU-based DD to ELL.

3.2.1 GPU-based DD. Figure 6 shows a GPU-based DD
using an edge array and a node array. Each edge contains a
weight and a pointer to the node it connects to, while each

10 12 14 16 18 20
#Qubits

10 1

100

101

102

103

104

105

C
on

ve
rs

io
n

tim
e

(m
s) GPU

CPU

(a)

102 103 104 105

#Edges

0.5

1.0

1.5

2.0

2.5

C
on

ve
rs

io
n

tim
e

ra
tio

(G
PU

 to
 C

PU
)

(b)

Figure 5. Comparison of GPU-based and CPU-based DD-
to-ELL conversion. The data are collected by converting
the gates of various circuits. (a) GPU-based and CPU-based
conversion time vs. the number of qubits. (b) GPU-based to
CPU-based conversion time ratio vs. the number of edges.

node contains its qubit level and pointers to four outgoing
edges. Special cases, such as pointers to the constant-one
node and the constant-zero edge, are represented by null
pointers (i.e., ∅). The edges and nodes are stored in the edge
array and the node array, respectively. For example, in Fig-
ure 6, edge (0) in the edge array has weight𝑤0 and points to
node 0○ in the node array. Node 0○, located at qubit level 2,
points to four edges in the edge array: (1), (8), (12), and (13).
The connections between the edge array and the node array
efficiently forms the DD structure on GPU.

3.2.2 DD-to-ELL Conversion on GPU. We describe the
conversion algorithm using both Algorithm 1 (GPU-based
conversion CUDA kernel) and an example in Figure 7. For an
𝑛−qubit gate, the kernel is launched with a number of blocks
equal to the number of rows in the ELL representation, with
each block generating a single row. The number of threads in
each block is equal to the number of qubits. For example, in
Figure 7a, block 6 reads the red edges in the DD-based gate
matrix𝑀 (corresponding to row 6 of the 2D array-based𝑀),
and writes the result to row 6 of the ELL value and column
index matrices.
In Algorithm 1, each block runs an independent DFS to

generate a row in the ELL representation. Since recursion is
not efficient on GPU, we implement DFS using iteration with
a custom stack for tracking edges: 𝑒𝑑𝑔𝑒_𝑠𝑡𝑎𝑐𝑘 . To track the
traversal direction for a node at each qubit level, we use two
arrays: 𝑙𝑒 𝑓 𝑡_𝑟𝑖𝑔ℎ𝑡 and 𝑢𝑝_𝑑𝑜𝑤𝑛 (line 1). These arrays, along
with the stack, are stored in GPU shared memory to reduce
memory latency [54]. Initially, 𝑙𝑒 𝑓 𝑡_𝑟𝑖𝑔ℎ𝑡 is set to 0 (i.e., left)
for all qubit levels, while 𝑢𝑝_𝑑𝑜𝑤𝑛 is initialized based on
the block index (lines 2-5). For example, the 𝑢𝑝_𝑑𝑜𝑤𝑛 array
for block 6 is {1,1,0} (i.e., {down, down, up}). We initialize
the stack pointer 𝑠𝑡𝑎𝑐𝑘_𝑝𝑡𝑟 to 0, and push edge (0) onto
𝑒𝑑𝑔𝑒_𝑠𝑡𝑎𝑐𝑘 (line 7). We initialize current gate matrix value
𝑣𝑎𝑙 and column index 𝑐𝑜𝑙 to 1 and 0, respectively (line 8).

BQSim: GPU-accelerated BatchQuantum Circuit Simulation using Decision Diagram ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

0
0
0

1

0
0
0

(0)

(1)

②

(4)

(5)

(6)

(7)

(8)

(9)
(10)

(11)

(12)(13)

Weight

Node
pointer

𝒘𝟐

2
𝒘𝟑

∅
𝒘𝟎

0
𝒘𝟏

1
𝒘𝟔

∅
𝒘𝟕

3
𝒘𝟒

2
𝒘𝟓

3
𝒘𝟏𝟎

2
𝒘𝟖

4
𝒘𝟗

3
𝒘𝟏𝟑

1
𝒘𝟏𝟏

2
𝒘𝟏𝟐

4

Qubit level

(0)

Edge 0Edge
pointers

2

1
12

8
13

Qubit
level

2

1

0

Edge
structure

Node
structure

Edge array
(1)

Node array

(2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

1

2
5

4
7

0

3
∅

∅
∅

0

∅
∅

∅
6

1

9
10

∅
11

⓪ ① ② ③ ④

∅

∅

Node pointer to
constant one

Edge pointer to
constant zero

DD on CPU DD on GPU

⓪

①

③

④

Edge 1
Edge 2 Edge 3

0(2)

(3)

Figure 6. GPU-based DD using a node array and an edge array.

0
0
0

1

④

③
0
0
0

(0)

(3)

(5)

(7) (10)

(11)

(12)(13)

⓪

①

②

Qubit
level

2

1

0

DD-based gate matrix 𝑴

∗	
0	
0	
0	
0	
0	
𝑊!	
0	

0	
0	
0	
∗	
0	
∗	
0	
0	

∗	
0	
0	
0	
0	
0	
𝑊"
0	

0	
0	
0	
∗	
0	
0	
0	
0	

0	
0	
∗	
0	
∗	
0	
0	
0	

0	
∗	
0	
0	
0	
0	
0	
∗	

0	
0	
∗	
0	
∗	
0	
0	
0	

0
0
0
0
0
0
0
∗

∗	
∗	
∗	
∗	
∗	
∗
𝑊!
∗	

∗
0
∗
∗
∗
0
𝑊"
∗

0	
5	
4	
1	
4	
1	
0	
5	

2
0
6
3
6
0
2
7

row	0	
row	1	
row	2	
row	3	
row	4	
row	5	
row	6	
row	7	

2D array-
based 𝑴

row	0	
row	1	
row	2	
row	3	
row	4	
row	5	
row	6	
row	7	

ELL
column
index

matrix

ELL
value

matrix

ELL-based 𝑴

0

(a) The ELL representation of a DD-based gate matrix𝑀 .

𝒘𝟑

∅
𝒘𝟎

0
𝒘𝟕

3
𝒘𝟓

3

(0)

2

1
12

8
13

Edge array

Node array

(3) (5) (7)

1

2
5

4
7

0

3
∅

∅
∅

0

∅
∅

∅
6

1

9
10

∅
11

⓪ ① ② ③ ④

𝒘𝟏𝟎

2
𝒘𝟏𝟑

1
𝒘𝟏𝟏

2
𝒘𝟏𝟐

4

(10) (11) (12) (13)

DFS with edge stack

0
Steps ⓐ

0
ⓑ

0
ⓒ

0
ⓓ

0
ⓔ

0
ⓕ

0
ⓖ

0
ⓗ

12 12
10

12
10
3

12
11

12
11
3

13
0
ⓘ

13
5

13
7

𝒗𝒂𝒍
𝒄𝒐𝒍

𝒘𝟎
𝟎

𝒘𝟎𝒘𝟏𝟐
𝟎

𝒘𝟎𝒘𝟏𝟐𝒘𝟏𝟎
𝟎

𝑾𝟏
𝟎

𝒘𝟎𝒘𝟏𝟐𝒘𝟏𝟏
𝟐

𝑾𝟐
𝟐

𝒘𝟎𝒘𝟏𝟑
𝟒

𝒘𝟎𝒘𝟏𝟑𝒘𝟓
𝟒

𝒘𝟎𝒘𝟏𝟑𝒘𝟕
𝟔

(b) Example: Block 6 traverses𝑀 (GPU-based DD representation)
in DFS to generate row 6 in the ELL representation.

Figure 7. Converting a gate matrix𝑀 from DD to ELL.𝑊1 =
𝑤0𝑤12𝑤10𝑤3.𝑊2 = 𝑤0𝑤12𝑤11𝑤3.

Next, recursion begins and continues until the edge stack
is empty. We first find the current edge and its corresponding
node. If the edge is the constant-zero edge, 𝑒𝑑𝑔𝑒_𝑠𝑡𝑎𝑐𝑘 pops
this edge and returns. If the node is the constant-one node,
the block writes the results to the ELL value and column
index matrices, and 𝑒𝑑𝑔𝑒_𝑠𝑡𝑎𝑐𝑘 pops this edge and returns
(lines 9-17). If 𝑙𝑒 𝑓 𝑡_𝑟𝑖𝑔ℎ𝑡 [𝑠𝑡𝑎𝑐𝑘_𝑝𝑡𝑟] equals two, this means
that the left and right directions of this node has already
been traversed (line 18). Since this node is fully explored,
we reset 𝑙𝑒 𝑓 𝑡_𝑟𝑖𝑔ℎ𝑡 [𝑠𝑡𝑎𝑐𝑘_𝑝𝑡𝑟] to 0 for other nodes at this
qubit level and pop this edge. We also restore variables 𝑣𝑎𝑙
and 𝑐𝑜𝑙 (lines 19-21). If the node is not fully explored, we
visit its unvisited edges, push the edge onto 𝑒𝑑𝑔𝑒_𝑠𝑡𝑎𝑐𝑘 , and
update 𝑣𝑎𝑙 and 𝑐𝑜𝑙 as described in FlatDD [32] (lines 22-28).

In Figure 7b, block 6 traverses the GPU-based DD in DFS.
From step a○ to step d○, block 6 moves through edges (0),
(12), (10) and (3), reaching the constant-one node. At step d○,
block 6 writes 𝑣𝑎𝑙 =𝑊1 = 𝑤0𝑤12𝑤10𝑤3 and 𝑐𝑜𝑙 = 0 to row
6 of the ELL value and column index matrices, respectively.
From step d○ to step f○, edges (3) and (10) are popped from
the edge stack and edges (11) and (3) are pushed onto it.
At the same time, 𝑣𝑎𝑙 is updated by dividing it by 𝑤3 and
𝑤10, and then multiplying it by 𝑤11 and 𝑤3, resulting in
𝑊2. 𝑐𝑜𝑙 is updated by adding 21. At step f○, block 6 writes
𝑣𝑎𝑙 = 𝑊2 = 𝑤0𝑤12𝑤11𝑤3 and 𝑐𝑜𝑙 = 2 to row 6 of the ELL
value and column index matrices, respectively.

3.3 Task Graph-based Execution
To simulate a quantum gate on a batch of state vectors, we
call the BQCS kernel (Section 3.3.1) on the GPU. While the
overhead of invoking a kernel is typically small, this over-
head will become significant when simulating large circuits
with many gates and batches due to repetitive kernel calls.
Moreover, the CPU-GPU data movement overhead for batch
inputs and outputs also accumulates as the number of batches
increases.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Shui Jiang, Yi-Hua Chung, Chih-Chun Chang, Tsung-Yi Ho, and Tsung-Wei Huang

Algorithm 1 GPU kernel to convert DD to ELL
Input: 𝐸𝑑𝑔𝑒𝑠: edge array, 𝑁𝑜𝑑𝑒𝑠: node array, 𝑉 : ELL value

matrix, 𝐶 : ELL column index matrix,𝑀𝑁𝑍𝑅: maximum
NZR of the gate matrix for conversion

1: shared 𝑒𝑑𝑔𝑒_𝑠𝑡𝑎𝑐𝑘[𝑛], 𝑙𝑒 𝑓 𝑡_𝑟𝑖𝑔ℎ𝑡 [𝑛], 𝑢𝑝_𝑑𝑜𝑤𝑛[𝑛]
2: 𝑡𝑖𝑑 = threadIdx.x;𝑏𝑖𝑑 = blockIdx.x
3: 𝑙𝑒 𝑓 𝑡_𝑟𝑖𝑔ℎ𝑡 [𝑡𝑖𝑑] = 0
4: 𝑢𝑝_𝑑𝑜𝑤𝑛[𝑛 − 1 − 𝑡𝑖𝑑] = 𝑏𝑖𝑑&(1 << 𝑡𝑖𝑑)
5: __syncthreads()
6: if 𝑡𝑖𝑑 == 0 then
7: 𝑠𝑡𝑎𝑐𝑘_𝑝𝑡𝑟 = 0; 𝑒𝑑𝑔𝑒_𝑠𝑡𝑎𝑐𝑘 [𝑠𝑡𝑎𝑐𝑘_𝑝𝑡𝑟] = 0
8: 𝑣𝑎𝑙 = 1; 𝑐𝑜𝑙 = 0; 𝑖𝑑𝑥 = 0
9: while 𝑠𝑡𝑎𝑐𝑘_𝑝𝑡𝑟 ≥ 0 do
10: 𝑒𝑑𝑔𝑒_𝑝𝑡𝑟 = 𝑒𝑑𝑔𝑒_𝑠𝑡𝑎𝑐𝑘 [𝑠𝑡𝑎𝑐𝑘_𝑝𝑡𝑟]
11: if 𝑒𝑑𝑔𝑒_𝑝𝑡𝑟 == ∅ then
12: 𝑠𝑡𝑎𝑐𝑘_𝑝𝑡𝑟 − −; continue
13: 𝑛𝑜𝑑𝑒_𝑝𝑡𝑟 = 𝐸𝑑𝑔𝑒𝑠 [𝑒𝑑𝑔𝑒_𝑝𝑡𝑟] .𝑛𝑜𝑑𝑒_𝑝𝑜𝑖𝑛𝑡𝑒𝑟
14: if 𝑛𝑜𝑑𝑒_𝑝𝑡𝑟 == ∅ then
15: 𝐶 [𝑏𝑖𝑑 ·𝑀𝑁𝑍𝑅 + 𝑖𝑑𝑥] = 𝑐𝑜𝑙

16: 𝑉 [𝑏𝑖𝑑 ·𝑀𝑁𝑍𝑅 + 𝑖𝑑𝑥] = 𝑣𝑎𝑙 · 𝐸𝑑𝑔𝑒𝑠 [𝑒𝑑𝑔𝑒_𝑝𝑡𝑟] .
𝑤𝑒𝑖𝑔ℎ𝑡

17: 𝑠𝑡𝑎𝑐𝑘_𝑝𝑡𝑟 − −; 𝑖𝑑𝑥 + +; continue
18: if 𝑙𝑒 𝑓 𝑡_𝑟𝑖𝑔ℎ𝑡 [𝑠𝑡𝑎𝑐𝑘_𝑝𝑡𝑟] == 2 then
19: 𝑙𝑒 𝑓 𝑡_𝑟𝑖𝑔ℎ𝑡 [𝑠𝑡𝑎𝑐𝑘_𝑝𝑡𝑟] = 0; 𝑠𝑡𝑎𝑐𝑘_𝑝𝑡𝑟 − −
20: 𝑣𝑎𝑙 = 𝑣𝑎𝑙/𝐸𝑑𝑔𝑒𝑠 [𝑒𝑑𝑔𝑒_𝑝𝑡𝑟] .𝑤𝑒𝑖𝑔ℎ𝑡
21: 𝑐𝑜𝑙 = 𝑐𝑜𝑙 − (1 << 𝑁𝑜𝑑𝑒𝑠 [𝑛𝑜𝑑𝑒_𝑝𝑡𝑟] .𝑞𝑢𝑏𝑖𝑡_𝑙𝑣)
22: else
23: 𝑐ℎ𝑖𝑙𝑑_𝑖𝑑𝑥 = 2·𝑢𝑝_𝑑𝑜𝑤𝑛[𝑠𝑡𝑎𝑐𝑘_𝑝𝑡𝑟]+𝑙𝑒 𝑓 𝑡_𝑟𝑖𝑔ℎ𝑡

[𝑠𝑡𝑎𝑐𝑘_𝑝𝑡𝑟]
24: 𝑙𝑒 𝑓 𝑡_𝑟𝑖𝑔ℎ𝑡 [𝑠𝑡𝑎𝑐𝑘_𝑝𝑡𝑟] + +
25: 𝑣𝑎𝑙 = (𝑙𝑒 𝑓 𝑡_𝑟𝑖𝑔ℎ𝑡 [𝑠𝑡𝑎𝑐𝑘_𝑝𝑡𝑟] == 1) ? 𝑣𝑎𝑙 ·

𝐸𝑑𝑔𝑒𝑠 [𝑒𝑑𝑔𝑒_𝑝𝑡𝑟] .𝑤𝑒𝑖𝑔ℎ𝑡 : 𝑣𝑎𝑙
26: 𝑐𝑜𝑙 = 𝑐𝑜𝑙 + (𝑙𝑒 𝑓 𝑡_𝑟𝑖𝑔ℎ𝑡 [𝑠𝑡𝑎𝑐𝑘_𝑝𝑡𝑟] − 1) · (1 <<

𝑁𝑜𝑑𝑒𝑠 [𝑛𝑜𝑑𝑒_𝑝𝑡𝑟] .𝑞𝑢𝑏𝑖𝑡_𝑙𝑣)
27: 𝑒𝑑𝑔𝑒_𝑠𝑡𝑎𝑐𝑘 [𝑠𝑡𝑎𝑐𝑘_𝑝𝑡𝑟] = 𝑁𝑜𝑑𝑒𝑠 [𝑛𝑜𝑑𝑒_𝑝𝑡𝑟] .𝑒-

𝑑𝑔𝑒_𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝑠 [𝑐ℎ𝑖𝑙𝑑_𝑖𝑑𝑥]
28: 𝑠𝑡𝑎𝑐𝑘_𝑝𝑡𝑟 + +

To address these issues, we describe the kernel execution
and the data movement as tasks and organize them into a
task graph based on their dependencies. By delegating the
scheduling of task graph to a GPU runtime, such as CUDA
Graph [43, 61], SYCL Graph [11], or HIP Graph [3], we can
minimize repetitive kernel call overhead while overlapping
kernel execution with data movement. In Section 3.3.1, we
introduce the BQCS kernel, and in Section 3.3.2, we define
the task dependencies.

3.3.1 BQCS Kernel. The BQCS kernel is an ELL-based
spMM kernel, where the gate matrix, represented in ELL,
multiplies a matrix that represents a batch of state vectors.
Since task graph-based execution imposes no restrictions on

the kernel, any ELL-based spMM kernel can be easily inte-
grated into the task graph as the BQCS kernel. In this paper,
we implement a custom BQCS kernel based on previously
studied ELL-based spMM algorithms [45, 46].

GPU
memory

𝑫[𝟎] 𝑫[𝟏]

𝑫[𝟐] 𝑫[𝟑]

For even-indexed
batches

For odd-indexed
batches

(a) Memory buffers in GPU memory.

𝒌𝟎 𝒌𝟏 𝒌𝟎 𝒌𝟏 𝒌𝟎 𝒌𝟏 𝒌𝟎 𝒌𝟏

Batch 0 Batch 1 Batch 2 Batch 3

CPU to
GPU

memcpy

GPU to CPU
memcpy

Kernel
execution on

GPU

Task graph execution time

CPU to
𝑫[𝟎]	

𝑫[𝟎] to
CPU

CPU to
𝑫[𝟏]	

𝑫[𝟏] to
CPU

CPU to
𝑫[𝟐]	

𝑫[𝟐] to
CPU

CPU to
𝑫[𝟑]	

𝑫[𝟑] to
CPU

(b) Dependencies in our task graph for BQCS execution.

Figure 8. Memory buffers and task dependencies.

3.3.2 Task Dependencies. To overlap the execution of
BQCS kernels with data movement tasks across batches, we
use multiple memory buffers [42, 44] to store different BQCS
inputs and outputs on GPU at the same time. As shown in
Figure 8a, we use two buffers (𝐷 [0] and 𝐷 [1]) to store the
inputs and outputs of even-indexed batches, and another two
buffers (𝐷 [2] and 𝐷 [3]) to store the inputs and outputs of
odd-indexed batches. Specifically, for batch 𝐼𝐵 , the input and
output of kernel 𝐼𝑘 are determined by 𝐷 [2(𝐼𝐵%2) + (⌊𝐼𝐵/2⌋ ·
(𝐿+1) + 𝐼𝑘)%2] and 𝐷 [2(𝐼𝐵%2) + (⌊𝐼𝐵/2⌋ · (𝐿+1) + 𝐼𝑘 +1)%2],
respectively. Here, 𝐿 is the total number of BQCS kernel calls
per batch.
Figure 8b shows the dependencies of our task graph for

BQCS execution across multiple batches. There are four
batches, each with two BQCS kernels, 𝑘0 and 𝑘1. Before simu-
lating batch 0, its input is copied from the CPU to 𝐷 [0]. Ker-
nel𝑘0 reads from𝐷 [0] (i.e.,𝐷 [2(0%2)+(⌊0/2⌋ · (2+1)+0)%2])
and writes to𝐷 [1]. Then, 𝑘1 reads from𝐷 [1] and writes back
to𝐷 [0]. Meanwhile, the CPU copies the input for the coming
batch 1 to 𝐷 [2] (i.e., 𝐷 [2(1%2) + (⌊1/2⌋ · (2 + 1) + 0)%2]).
After batch 0 finishes, batch 1 begins. Similarly, kernel 𝑘0
reads from 𝐷 [2] and writes to 𝐷 [3] (i.e., 𝐷 [2(1%2) + (⌊1/2⌋ ·
(2 + 1) + 1)%2]), and then 𝑘1 reads from 𝐷 [3] and writes to
𝐷 [2]. Meanwhile, the result from batch 0 (i.e.,𝐷 [0]) is copied
back to the CPU, and the input of batch 2 is copied from the
CPU to 𝐷 [1] (i.e., 𝐷 [2(2%2) + (⌊2/2⌋ · (2 + 1) + 0)%2]). Both
of these copies must finish before batch 2 starts. The same
process applies to the remaining batches.

BQSim: GPU-accelerated BatchQuantum Circuit Simulation using Decision Diagram ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

4 Experimental Results
We evaluated the performance of BQSim on 16 medium and
large quantum circuits selected from MQT-Bench [51], which
are representative of different quantum applications includ-
ing machine learning and portfolio optimization. In Sec-
tion 4.2, we compare the runtime of BQSim with three base-
lines. We then evaluate the performance of the three stages
of BQSim separately: BQCS-aware gate fusion (Section 4.3),
DD-to-ELL conversion (Section 4.4), and task graph-based ex-
ecution (Section 4.5). In Section 4.6, we demonstrate the scal-
ability of BQSim over increasing batch sizes. In Section 4.7,
we evaluate the power consumption of BQSim. In Section 4.8,
we study the runtime breakdown of the three stages of BQSim.
Finally, in Section 4.9, we perform an ablation study to evalu-
ate how each stage contributes to the performance of BQSim.

For each simulation run, we randomly generate 200 input
batches, each of 256 inputs (i.e., state vectors), based on the
popular BQCS settings [33, 62, 63]. We set the threshold 𝜏 to
2000, which can yield decent performance on our machine.
All experiments are conducted on a Ubuntu 22.04.3 LTS ma-
chine with 16 Intel i7-11700 CPU cores at 2.50 GHz, one RTX
48 GB A6000 GPU, and 128 GB RAM. We implement our task
graph using Taskflow [27, 28], which provides a high-level
C++ wrapper over CUDA Graph. For data with exponential
differences, we measure the average in geometric mean. We
validate BQSim by comparing our simulation results with the
baselines, where we observe identical state amplitudes in the
output.

4.1 Baselines
Given the page limit and many simulators, it is impossible to
compare BQSim with all of them. Instead, we consider three
representative simulators as our baselines, cuQuantum [7],
Qiskit Aer [31], and FlatDD [32], for two reasons: (1) All
the baselines are open-source [1, 2, 4], allowing us to fairly
study and reason their results. (2) All the baselines are highly
optimized. cuQuantum and Qiskit Aer are GPU-accelerated
QCS libraries. FlatDD is a recent simulator that has success-
fully parallelized DD using manycore CPU. Both Qiskit Aer
and FlatDD also provide powerful gate-fusion algorithms.

cuQuantum only provides gate-level BQCS via the custa-
tevecApplyMatrixBatchedAPI [12]. To simulate the whole
circuit, we apply this API iteratively to each quantum gate.
Since Qiskit AER and FlatDD do not support BQCS at all,
we run eight processes to simulate eight input states in paral-
lel. This configuration of process-level parallelism provides
the best throughput performance on our machine. Addition-
ally, each FlatDD process uses 16 CPU threads at which its
performance saturates on our machine.

4.2 Overall Comparison
Table 2 compares the overall runtime of BQSim with cuQuan-
tum, Qiskit Aer, and FlatDD. Unless otherwise specified,

all runtimes are measured in milliseconds (ms), and we ter-
minate the runs that take longer than 24 hours.

BQSim is faster than cuQuantum, Qiskit Aer, and FlatDD
on all quantum circuits. On average, BQSim is 3.25×, 159.06×,
and 331.42× faster than cuQuantum, Qiskit Aer, and FlatDD,
respectively. The largest speed-up is observed when com-
pared with FlatDD, which is limited to CPU parallelism.
While Qiskit Aer has GPU acceleration, BQSim significantly
outperforms Qiskit Aer due to its lack of support for BQCS.
Although GPU-based cuQuantum supports gate-level BQCS,
BQSim is still 3.25× faster than cuQuantum. We attributes
this speed benefit to our BQCS-aware gate fusion and task
graph-based execution, which reduce the amount of BQCS
computation and provide scheduling-level enhancements.
The speed-up of BQSim over the baselines become more

remarkable when simulating large quantum circuits. For
example, when simulating the 16-qubit VQE of 78 gates,
BQSim is 2.46× faster than cuQuantum; when simulating the
larger 16-qubit Portfolio optimization of 424 gates, BQSim is
5.10× faster than cuQuantum.
Table 2 presents results for circuits with up to 21 qubits.

However, BQSim can scale to larger qubit counts by adjusting
batch sizes and leveraging multiple GPUs. For instance, the
batch of state vectors can be partitioned across multiple
GPUs where each GPU can afford a larger qubit count. This
indeed highlights another advantage of BQSim: the circuit is
optimized once into a reusable simulation task graph that
can run different batches on multiple GPUs.

4.3 Evaluation of BQCS-aware Gate Fusion
In Table 3, we evaluate the effectiveness of BQSim’s BQCS-
aware gate fusion by comparing the resulting #MAC among
BQSim and the baselines.

BQSim outperforms cuQuantum, Qiskit Aer, and FlatDD
across all quantum circuits in terms of #MAC. BQSim achieves
the largest improvement compared with cuQuantum, which
is 10.76× on average. This is because cuQuantum does not
fuse gates. While Qiskit Aer incorporates a powerful gate-
fusion algorithm, BQSim is still 3.85× faster on average. This
is because Qiskit Aer’s gate fusion is limited to array-based
gate matrix representation, which computes redundant zeros
and repeated sub-matrices (Section 2.3). Although FlatDD
efficiently avoid such redundancy by representing gates with
DD, BQSim is still 1.23× faster on average, because FlatDD’s
gate-fusion algorithm is limited to optimizing CPU-based
single-input QCS.

4.4 Evaluation of DD-to-ELL Conversion
Figure 9 compares the runtimes of GPU-based, CPU-based,
and hybrid DD-to-ELL conversions across five circuits with
different numbers of qubits: QNN (𝑛 = 17, 19, 21), VQE (𝑛 =

16), and TSP (𝑛 = 16). For QNN (𝑛 = 17, 19, 21), hybrid con-
version yields the best performance. For instance, on QNN
of 𝑛 = 17, GPU-based and CPU-based conversions are 1.96×

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Shui Jiang, Yi-Hua Chung, Chih-Chun Chang, Tsung-Yi Ho, and Tsung-Wei Huang

Table 2. Comparison of runtimes among BQSim (ours), cuQuantum, Qiskit Aer, and FlatDD on 16 circuits representative of
different quantum applications.

Circuits Runtime (ms) Speed-up of BQSim over

Name #Qubits
(𝑛) #Gates cuQuantum Qiskit Aer FlatDD

BQSim
(ours) cuQuantum Qiskit Aer FlatDD

QNN
17 934 246280 1663228 24195648 24218 10.17× 68.68× 999.08×
19 1158 1181539 5491441 >24 h 113254 10.43× 48.49× >762.89×
21 1406 5598394 20428647 >24 h 517621 10.82× 39.47× >166.92×

VQE
12 58 1433 394267 167565 884 1.62× 446.00× 189.55×
14 68 5901 470945 576705 2495 2.37× 188.76× 231.14×
16 78 24619 874623 2442323 10026 2.46× 87.24× 243.60×

Portfolio
opt.

16 424 56934 1035447 3393370 11159 5.10× 92.79× 304.09×
17 476 122784 1755908 6979064 24551 5.00× 71.52× 284.27×
18 531 264992 3135291 15009161 51675 5.13× 60.67× 290.45×

Graph
state

16 32 18424 872669 1056870 9822 1.88× 88.85× 107.60×
18 36 75305 2923585 4537635 39611 1.90× 73.81× 114.55×
20 40 308446 10285365 20036118 157555 1.96× 65.28× 127.17×

TSP 9 94 245 373035 130619 138 1.78× 2703.15× 946.51×
16 171 36083 886423 3986412 16435 2.20× 53.94× 242.56×

Routing 6 39 51 363760 54736 31 1.65× 11734.19× 1765.68×
12 81 1628 392998 240627 666 2.44× 590.09× 361.30×

Table 3. Comparison of #MAC (smaller is better) among BQSim, cuQuantum, Qiskit Aer, and FlatDD on 16 circuits represen-
tative of different quantum applications.

Circuits #MAC Improvement vs.

Name #Qubits
(𝑛) #Gates cuQuantum Qiskit Aer FlatDD

BQSim
(ours) cuQuantum

Qiskit
Aer

FlatDD

QNN
17 934 489684992 60162048 19791872 17301504 28.30× 3.48× 1.14×
19 1158 2428502016 266338304 87556096 77594624 31.30× 3.43× 1.13×
21 1406 11794382848 1178599424 383778816 343932928 34.29× 3.43× 1.12×

VQE
12 58 950272 360448 348160 253952 3.74× 1.42× 1.37×
14 68 4456448 1703936 1589248 1277952 3.49× 1.33× 1.24×
16 78 20447232 7864320 7602176 6029312 3.39× 1.30× 1.26×

Portfolio
opt.

16 424 111149056 92798976 8912896 8388608 13.25× 11.06× 1.06×
17 476 249561088 210763776 19267584 17825792 14.00× 11.82× 1.08×
18 531 556793856 475004928 39845888 37748736 14.75× 12.58× 1.06×

Graph
state

16 32 8388608 4194304 2293760 2097152 4.00× 2.00× 1.09×
18 36 37748736 18874368 10223616 9437184 4.00× 2.00× 1.08×
20 40 167772160 83886080 45088768 41943040 4.00× 2.00× 1.08×

TSP 9 94 192512 81920 95232 55296 3.48× 1.48× 1.72×
16 171 44826624 19660800 17432576 12582912 3.56× 1.56× 1.39×

Routing 6 39 9984 3840 4736 3072 3.25× 1.25× 1.54×
12 81 1327104 540672 499712 393216 3.38× 1.38× 1.27×

and 1.56× slower than hybrid conversion. This is because
some gates have simpler DD structures, better suited for the
GPU, while others are more complex with many branches,
which run more efficiently on the CPU. Hybrid conversion
outperforms both by adaptively selecting either GPU-based
or CPU-based conversion depending on the structural com-
plexity of each DD. For VQE of 𝑛 = 16 and TSP of 𝑛 = 16,

GPU-based and hybrid conversions both deliver the best per-
formance. We attribute this result to the simpler DD struc-
tures in these circuits, which are more efficient on GPU, and
hybrid conversion always selects GPU-based conversion for
optimal performance.

BQSim: GPU-accelerated BatchQuantum Circuit Simulation using Decision Diagram ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

QNN of n=21

QNN of n=19

QNN of n=17

VQE of n=16

TSP of n=16

Circuits

0

1

2

3

4
N

or
m

al
iz

ed
 c

on
ve

rs
io

n
tim

e
GPU-based
CPU-based
Hybrid

Figure 9. Runtime comparison of GPU-based, CPU-based,
and hybrid DD-to-ELL conversion across five circuits. For
each circuit, the conversion times are normalized by dividing
them by the respective hybrid conversion time.

4.5 Evaluation of Task Graph-based Execution
To evaluate our task graph-based execution strategy, we
compare the BQCS runtimes between BQSim and cuQuantum.
Since cuQuantum does not have gate fusion, we run cuQuantum
with both our BQCS-aware gate-fusion (i.e., cuQuantum+B)
and Qiskit Aer’s gate-fusion (i.e., cuQuantum+Q) algorithms,
to ensure a fair comparison. Table 4 compares the BQCS run-
times among BQSim, cuQuantum+B and cuQuantum+Q. On av-
erage, BQSim is 407.42× faster than cuQuantum+B and 3.62×
faster than cuQuantum+Q. We attribute this result to our
task graph-based model and scheduling using CUDA Graph,
which reduce repetitive BQCS kernel call overhead and en-
hance asynchrony by overlapping BQCS kernel tasks with
data movement operations. Another contributing factor is
that the gate-level BQCS API in cuQuantum only supports
quantum gates in dense format, incurring significant com-
putation overhead.

4.6 Scalability of BQSim
We evaluate the scalability of BQSim with increasing batch
sizes (𝐵). Figure 10 illustrates the speed-up of BQSim com-
pared with cuQuantum on two quantum circuits, QNN and
VQE. When 𝐵 increases, BQSim’s speed-up over cuQuantum
also increases. For instance, for VQE with 𝑛 = 16, the speed-
up is 2.16× at 𝐵 = 32 and 2.52× at 𝐵 = 512. The result
eventually saturates at 𝐵 = 1024. We attribute this to the use
of memory buffers (Section 3.3.2) to store multiple batches at
the same time. When the batch size is large, the data move-
ment reaches memory bandwidth limit. Nevertheless, BQSim
remains significantly faster than cuQuantum at 𝐵 = 1024 (e.g.,
9.59× faster on QNN of 𝑛 = 17). This result highlights the
scalability of BQSim at different batch sizes.

32 64 12
8

25
6

51
2

10
24

Batch size

6

8

10

Sp
ee

d-
up

(a) QNN of 𝑛 = 17.

32 64 12
8

25
6

51
2

10
24

Batch size

2.00

2.25

2.50

Sp
ee

d-
up

(b) VQE of 𝑛 = 16.

Figure 10. Speed-up of BQSim compared with cuQuantum
on two quantum circuits (QNN of 𝑛 = 17 and VQE of 𝑛 = 16)
with increasing batch sizes.

4.7 Power Consumption of BQSim
Figure 11 compares the average power among BQSim, cuQuan-
tum, Qiskit Aer, and FlatDD on CPU and GPU for simulat-
ing three circuits (QNN, VQE, and TSP) using ten batches.We
measure GPU power consumption using nvidia-smi [49]
and CPU power consumption using powerstat [35]. Since
FlatDD does not utilize GPU, we onlymeasure its CPU power
consumption.

BQSim consumes less GPU power than cuQuantum, reduc-
ing power consumption by 27.17%—52.76%. We attribute this
reduction to BQSim’s BQCS-aware gate fusion and task graph-
based execution, which minimize redundant operations on
the GPU. Additionally, BQSim outperforms Qiskit Aer and
FlatDD in terms of CPU power consumption, reducing it
by 43.20%—46.59% over Qiskit Aer and by 41.19%—42.54%
over FlatDD. The higher power consumption of Qiskit Aer
and FlatDD can be attributed to their high utilization of
multi-threading and multi-processing. BQSim also outper-
forms cuQuantum and Qiskit Aer in overall (i.e., CPU+GPU)
power consumption, reducing it by 15.29%–41.93% over cu-
Quantum and by 15.91%–36.48% over Qiskit Aer. Although
FlatDD consumes less power than BQSim, its simulation time
is considerably longer, resulting in a much higher total en-
ergy cost than BQSim.

4.8 Runtime Breakdown of BQSim
Figure 12 shows the runtime breakdown of BQSim on three
circuits (Routing, Portfolio optimization, and QNN) at dif-
ferent numbers of batches (𝑁). While BQCS-aware gate fu-
sion and DD-to-ELL conversion can effectively reduce the
amount of BQCS computation and enable efficient GPU exe-
cution, they also incur some runtime overhead. For example,
when simulating the 21-qubit QNN with ten batches, such
overhead takes about 16.20% and 41.31% of the total run-
time. However, gate fusion and conversion are performed
only once for any given circuit, and the result will remain
unchanged throughout the simulation. As 𝑁 increases (typi-
cally hundreds to thousands of batches), such overhead can

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Shui Jiang, Yi-Hua Chung, Chih-Chun Chang, Tsung-Yi Ho, and Tsung-Wei Huang

Table 4. Comparison of BQCS runtimes among BQSim, cuQuantum with BQSim’s BQCS-aware gate fusion (cuQuantum+B),
and with Qiskit Aer’s gate fusion (cuQuantum+Q), on 16 circuits representative of different quantum applications. Some
cuQuantum+B runs fail because the gate-level BQCS API in cuQuantum only supports gate matrices in dense format, causing
the fused gates to exceed memory capacity.

Circuits Runtime (ms) Speed-up vs.
Name #Qubits (𝑛) #Gates cuQuantum+Q cuQuantum+B BQSim (ours) cuQuantum+Q cuQuantum+B

QNN
17 934 367121 - 22605 16.24× -
19 1158 1828465 - 105745 17.29× -
21 1406 9054894 - 481913 18.79× -

VQE
12 58 1192 24334 854 1.40× 28.49×
14 68 4820 69319242 2439 1.98× 28421.17×
16 78 19655 1266788 9809 2.00× 129.15×

Portfolio
opt.

16 424 77945 - 10786 7.23× -
17 476 175373 - 23790 7.37× -
18 531 386924 - 49981 7.74× -

Graph
state

16 32 17253 3053229 9736 1.77× 313.60×
18 36 70727 43888468 39215 1.80× 1119.18×
20 40 286244 - 155771 1.84× -

TSP 9 94 224 46769 111 2.02× 421.34×
16 171 28093 238363 15919 1.76× 14.97×

Routing 6 39 36 2889 22 1.64× 131.32×
12 81 1320 6479010 637 2.07× 10171.13×

QNN of n=17 VQE of n=16 TSP of n=16
Circuits

0

100

200

300

Av
er

ag
e

po
w

er
 (W

)

BQSim on CPU
BQSim on GPU
cuQuantum on CPU
cuQuantum on GPU

Qiskit Aer on CPU
Qiskit Aer on GPU
FlatDD on CPU

Figure 11. Comparison of average power among BQSim,
cuQuantum, Qiskit Aer, and FlatDD on CPU and GPU for
simulating three circuits (QNN of 𝑛 = 17, VQE of 𝑛 = 16, and
TSP of 𝑛 = 16) with ten batches.

be amortized by the simulation time which had significantly
benefited from fused gates and converted ELL formats. For
example, when 𝑁 increases to 200, the simulation time takes
93.04%, while BQCS-aware gate fusion and DD-to-ELL con-
version are amortized to 1.94% and 5.02%.

4.9 Ablation Study of BQSim
We conduct an ablation study to evaluate the contribution
of each stage of BQSim to its overall performance on four cir-
cuits (QNN, VQE, Portfolio optimization, and TSP) with ten
batches. As shown in Figure 13, we compare the runtimes

N=10 N=20 N=50 N=100 N=200

Ro
ut

in
g

of
 n

=6
Po

rtf
. o

f n
=1

8
QN

N
of

 n
=2

1
Ro

ut
in

g
of

 n
=6

Po
rtf

. o
f n

=1
8

QN
N

of
 n

=2
1

Ro
ut

in
g

of
 n

=6
Po

rtf
. o

f n
=1

8
QN

N
of

 n
=2

1
Ro

ut
in

g
of

 n
=6

Po
rtf

. o
f n

=1
8

QN
N

of
 n

=2
1

Ro
ut

in
g

of
 n

=6
Po

rtf
. o

f n
=1

8
QN

N
of

 n
=2

1

0

50

100

R
un

tim
e

pe
rc

en
ta

ge
 (%

)

BQCS-aware gate fusion
DD-to-ELL conversion
Simulation (via task graph)

Figure 12. Runtime breakdown of BQSim on three circuits
(Routing of 𝑛 = 6, Portfolio optimization of 𝑛 = 18, and QNN
of 𝑛 = 21) at different numbers of batches (𝑁).

of (1) the original BQSim, (2) BQSim without BQCS-aware
gate fusion, (3) BQSimwithout DD-to-ELL conversion (where
BQCS is conducted using DDs stored on GPU, as shown in
Section 3.2.1), and (4) BQSim without the task graph-based
execution. For each circuit, runtimes are normalized by di-
viding them by the respective runtime of the original BQSim.
The contribution of each stage is quantified as the normalized
runtime of BQSim without that stage.

BQSim: GPU-accelerated BatchQuantum Circuit Simulation using Decision Diagram ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

BQCS-aware gate fusion accelerates BQSim by 1.39×–6.73×,
with the speed-up largely dependent on the circuit structure.
We attribute this speed-up to the effectiveness of our gate-
fusion algorithm, which significantly reduces the BQCS cost.
DD-to-ELL conversion accelerates BQSim by 5.55×–35.08×,
as the ELL format lowers thread divergence and enables ef-
ficient memory access patterns on GPU. Additionally, ELL
allows direct access to gate matrix values, avoiding the DFS
overhead required when accessing DD-based gate matrix
values (see Algorithm 1). Task graph-based execution im-
proves BQSim’s performance by 1.46×–1.73×. We attribute
this speed-up to our task graph-based model and CUDA
Graph scheduling, which reduce the overhead of repetitive
BQCS kernel calls and enable efficient overlap of kernel exe-
cution with data movement.

QNN of n=17

VQE of n=16

Portf.
of n=16

TSP of n=16

Circuits

100

101

N
or

m
al

iz
ed

 ru
nt

im
e

Original BQSim
BQSim without BQCS-aware gate fusion
BQSim without DD-to-ELL conversion
BQSim without task graph

Figure 13. Ablation study of the three stages in BQSim on
four circuits (QNN of 𝑛 = 17, VQE of 𝑛 = 16, Portfolio
optimization of 𝑛 = 16, and TSP of 𝑛 = 16) with ten batches.
For each circuit, the runtimes are normalized by dividing
them by the respective runtime of BQSim.

5 Related Work
Existing QCS research has introduced various strategies to
improve simulation performance by optimizing both space
and time complexity. To name a few recent works, [67]
leveraged lossy data compression to simulate more qubits.
[32, 48, 72] used DD to explore sparsity and regularity in
quantum circuits. [26] leveraged task-parallel decomposition
to explore both inter- and intra-gate parallelisms. [34, 37, 68–
70] leveraged GPU to further accelerate QCS; in particu-
lar, [34, 37, 70] optimized CPU-GPU data communications,
and [68, 69] improved GPU memory locality to reduce la-
tency. Additionally, [13, 16, 22, 30, 32, 47, 60, 68] optimized
the quantum circuit using gate fusion and pattern match-
ing. While these strategies can improve the performance of

QCS, they are limited to the strong scaling within a single
simulation input.

On an orthogonal route, several works have explored effi-
cient QCS of multiple quantum circuits. [23, 40, 58] simulated
multiple noisy quantum circuits, each representing a differ-
ent noise condition. [29] simulated a variational quantum al-
gorithm under different circuit configurations. To accelerate
this type of QCS, [23, 29, 40] avoided redundant computa-
tion shared across consecutive simulation runs on different
circuits, whereas [23, 58] leveraged SIMD and GPU paral-
lelism to simulate multiple circuits simultaneously. Although
these QCS works share a similar inspiration with BQCS, they
target a completely different problem formulation.

6 Conclusions
In this paper, we have presented BQSim, a GPU-accelerated
batch quantum circuit simulator, inspired by the state-of-the-
art DD but overcomes its limitation of CPU-centric simu-
lation. BQSim uses DD to optimize the quantum circuit for
reduced BQCS computation, and converts DD to a GPU-
efficient data structure. Additionally, BQSim introduces a task
graph-based execution strategy using CUDA Graph to mini-
mize repetitive kernel call overhead and efficiently overlap
kernel execution with data movement. Compared with three
state-of-the-art quantum circuit simulators, cuQuantum, Qis-
kit Aer, and FlatDD, BQSim is respectively 3.25×, 159.06×,
and 311.42× faster on average.
Our future work will focus on designing efficient accel-

erators for BQSim by leveraging specialized DD properties,
such as their ability to compactly represent gate matrices
and state vectors through regularity and sparsity. For exam-
ple, the structure of DD enables efficient parallel process-
ing, as each DD node represents a unique sub-matrix or
sub-vector. After each parallel computation round, identical
sub-structures within DDs can be merged, thereby reducing
memory overhead and computational redundancy.

Acknowledgement
The research work described in this paper was conducted in
the JC STEM Lab of Intelligent Design Automation funded
by The Hong Kong Jockey Club Charities Trust. This work
is jointly supported by the Research Grants Council of Hong
Kong SAR (No. CUHK14207523). This project is also sup-
ported by NSF grants 2235276, 2349144, 2349143, 2349582,
and 2349141.

A Artifact Appendix
A.1 Abstract
This artifact appendix describes the steps to compile and
run BQSim on various quantum circuits and provides a per-
formance comparison of BQSim against cuQuantum, Qiskit
Aer, and FlatDD, reproducing the runtime results from Sec-
tion 4.2 and Section 4.5.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Shui Jiang, Yi-Hua Chung, Chih-Chun Chang, Tsung-Yi Ho, and Tsung-Wei Huang

The artifact includes the source code for BQSim, cuQuantum,
Qiskit Aer, and FlatDD, along with 16 quantum circuits
and their corresponding inputs with varying numbers of
qubits for evaluation. Running the artifact requires a CUDA-
enabled GPU with at least 48 GB of memory, 20 GB of system
RAM, and 20 GB of free disk space.

A.2 Artifact check-list (meta-information)
• Compilation: GCC 12.3.0, NVCC 12.6, CMake 3.22.1. We
provide an automated compilation script and a Dockerfile.

• Datasets: 16 quantum circuits, and the corresponding ran-
dom circuit inputs.

• Hardware: CUDA-enabled GPU with 48 GB of memory
and 20 GB of system RAM.

• Metrics: Simulation runtime.
• Output: Metric data in the console log.
• Experiments: We provide automated scripts for running
the experiments.

• Howmuchdisk space required (approximately)?: 20GB.
• How much time is needed to prepare workflow (ap-
proximately)?: 10 minutes.

• How much time is needed to complete experiments
(approximately)?: For Section 4.2, all experiments take
approximately four days to complete. To reduce runtime, we
can evaluate each simulator separately. The fastest simula-
tor, BQSim, takes less than 20 minutes, whereas the slowest
simulator, FlatDD, takes more than two days. For Section 4.5,
the experiments take approximately 10 minutes to complete.

• Publicly available?: Yes.
• Code licenses?: MIT License.
• Archived: 10.5281/zenodo.14775677

A.3 Description
A.3.1 How to access. The code repository for BQSim can
be downloaded from https://github.com/IDEA-CUHK/BQSim.

A.3.2 Hardware dependencies. An x86 host with a CUDA-
enabled GPU (at least 48 GB of memory), 20 GB of system
RAM, and 20 GB of free disk space.

A.3.3 Software dependencies. Our experiments are con-
ducted on a Ubuntu 22.04.3 LTS machine, which can run
either with or without a Docker container. The software
dependencies for both cases are listed below:

Without Docker:

• CUDA 12.6 with cuQuantum SDK.
• GCC 12.3.0, NVCC 12.6, CMake 3.22.1.
• libeigen3-dev.
• OpenMP.
• Python 3.10.12 with NumPy 1.26.4, Qiskit Aer GPU
0.15.0, and Qiskit 1.2.0.

With Docker:

• Docker 26.1.3.
• NVIDIA Container Toolkit.

A.3.4 Datasets. The artifact includes 16 MQT-Bench quan-
tum circuits along with their corresponding randomly gen-
erated inputs.

A.4 Installation
A.4.1 Without Docker. Clone the repository to a local
machine and jump into BQSim folder:

∼$ git clone https://github.com/IDEA-CUHK/BQSim
∼$ cd BQSim

Then, run the compilation script compile.sh, which will
automatically generate the executables for BQSim and the
baseline simulators.

∼/BQSim$./compile.sh

A.4.2 With Docker. Build a docker image bqsim_image
using Dockerfile. The compilation script docker_compile.
sh is included in the Dockerfile, so if the Docker image
builds successfully, the program should compile without
issues.

∼/BQSim$ sudo docker build --no-cache -t
bqsim_image .

Run a docker container bqsim_container using the im-
age.

∼/BQSim$ sudo docker run -it --rm --gpus all
--name bqsim_container bqsim_image:latest

A.5 Experiment workflow
We provide automated scripts to run BQSim, cuQuantum,
Qiskit Aer, and FlatDD on the quantum circuits. The scripts
report the runtime of each simulator for each circuit.

A.6 Evaluation and expected results
Both inside and outside the Docker container, the same gen-
eral steps apply here.

A.6.1 Experiments in Section 4.2. To run simulators
BQSim, cuQuantum, Qiskit Aer, and FlatDD on 16 quantum
circuits, we run the overall.sh script. However, this process
takes approximately four days. To reduce the runtime, we
can evaluate each simulator separately by running individual
scripts (e.g., bqsim.sh). The fastest simulator, BQSim, takes
less than 20 minutes, whereas the slowest simulator, FlatDD,
takes more than two days. The simulation runtimes should
match those in Section 4.2. For more detailed instructions,
please refer to the README.md file in the repository.

A.6.2 Experiments in Section 4.5. First, we export the
fused gates obtained from BQCS-aware and Qiskit Aer’s
gate fusion by running script export_fused_gates.sh. This
script will export the fused gates to log/fused_gates/,

https://github.com/IDEA-CUHK/BQSim

BQSim: GPU-accelerated BatchQuantum Circuit Simulation using Decision Diagram ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

where some pre-exported fused gates are already provided.
Due to memory and time constraints, we did not export
all the fused gates analyzed in Section 4.5. You may mod-
ify export_fused_gates.sh to export additional gates as
needed.

Next, we run cuQuantum with both our BQCS-aware gate-
fusion (i.e., cuQuantum+B) and Qiskit Aer’s gate-fusion (i.e.,
cuQuantum+Q) algorithms by executing script cuquantum_
plus_bq.sh. The simulation runtimes should match those
in Section 4.5.

References
[1] 2024. cuQuantum. https://github.com/NVIDIA/cuQuantum
[2] 2024. FlatDD. https://github.com/IDEA-CUHK/FlatDD
[3] 2024. HIP Graph. https://rocm.docs.amd.com/projects/HIP/en/docs-

develop/how-to/hipgraph.html
[4] 2024. Qiskit-Aer. https://github.com/Qiskit/qiskit-aer
[5] Hervé Abdi. 2010. Coefficient of variation. Encyclopedia of research

design 1, 5 (2010), 169–171.
[6] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin,

Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao,
David A Buell, et al. 2019. Quantum supremacy using a programmable
superconducting processor. Nature 574, 7779 (2019), 505–510.

[7] Harun Bayraktar, Ali Charara, David Clark, Saul Cohen, Timothy
Costa, Yao-Lung L Fang, Yang Gao, Jack Guan, John Gunnels, Azzam
Haidar, et al. 2023. cuQuantum SDK: A high-performance library for
accelerating quantum science. In 2023 IEEE International Conference on
Quantum Computing and Engineering (QCE), Vol. 1. IEEE, 1050–1061.

[8] Nathan Bell and Michael Garland. 2009. Implementing sparse matrix-
vector multiplication on throughput-oriented processors. In Proceed-
ings of the conference on high performance computing networking, stor-
age and analysis. 1–11.

[9] Lukas Burgholzer and Robert Wille. 2020. The power of simulation for
equivalence checking in quantum computing. In 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 1–6.

[10] Ke Chen, Linbin Chen, Pedro Reviriego, and Fabrizio Lombardi. 2019.
Efficient Implementations of Reduced Precision Redundancy (RPR)
Multiply and Accumulate (MAC). IEEE Trans. Comput. 68, 5 (2019),
784–790. https://doi.org/10.1109/TC.2018.2885044

[11] Cheng-Hsiang Chiu, Dian-Lun Lin, and Tsung-Wei Huang. 2021. An
Experimental Study of SYCL Task Graph Parallelism for Large-Scale
Machine Learning Workloads. In European Conference on Parallel Pro-
cessing. Springer, 468–479.

[12] cuStateVec Functions NVIDIA cuQuantum 24.08.0 documentation.
[n. d.]. https://docs.nvidia.com/cuda/cuquantum/latest/custatevec/
api/functions.html

[13] Aneeqa Fatima and Igor L Markov. 2021. Faster schrödinger-style
simulation of quantum circuits. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, 194–207.

[14] Tim M Forcer, Anthony JG Hey, DA Ross, and Peter GR Smith. 2002.
Superposition, entanglement and quantum computation. Quantum
Information and Computation 2, 2 (2002), 97–116.

[15] Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel, and Hugo Zbinden.
2002. Quantum cryptography. Reviews of modern physics 74, 1 (2002),
145.

[16] Gian Giacomo Guerreschi. 2022. Fast simulation of quantum algo-
rithms using circuit optimization. Quantum 6 (2022), 706.

[17] Thomas Häner, Damian S Steiger, Mikhail Smelyanskiy, and Matthias
Troyer. 2016. High performance emulation of quantum circuits. In
SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 866–874.

[18] Adam Hayes. 2024. Coefficient of Variation: Meaning and How to Use
It. https://www.investopedia.com/terms/c/coefficientofvariation.asp

[19] Dylan Herman, Cody Googin, Xiaoyuan Liu, Yue Sun, Alexey Galda,
Ilya Safro, Marco Pistoia, and Yuri Alexeev. 2023. Quantum computing
for finance. Nature Reviews Physics 5, 8 (2023), 450–465.

[20] Stefan Hillmich, Alwin Zulehner, and Robert Wille. 2020. Concurrency
in DD-based quantum circuit simulation. In 2020 25th Asia and South
Pacific Design Automation Conference (ASP-DAC). IEEE, 115–120.

[21] Xin Hong, Xiangzhen Zhou, Sanjiang Li, Yuan Feng, and Mingsheng
Ying. 2022. A tensor network based decision diagram for representa-
tion of quantum circuits. ACM Transactions on Design Automation of
Electronic Systems (TODAES) 27, 6 (2022), 1–30.

[22] Hiroshi Horii and Jun Doi. 2021. Optimization of Quantum Computing
Simulation with Gate Fusion. IPSJ SIG Technical Report (2021).

[23] Hiroshi Horii, Christopher Wood, et al. 2023. Efficient techniques
to gpu accelerations of multi-shot quantum computing simulations.
arXiv preprint arXiv:2308.03399 (2023).

[24] Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol
Horodecki. 2009. Quantum entanglement. Reviews of modern physics
81, 2 (2009), 865–942.

[25] Zhirui Hu, Peiyan Dong, Zhepeng Wang, Youzuo Lin, Yanzhi Wang,
and Weiwen Jiang. 2022. Quantum neural network compression. In
Proceedings of the 41st IEEE/ACM International Conference on Computer-
Aided Design. 1–9.

[26] Tsung-Wei Huang. 2023. qTask: Task-parallel Quantum Circuit Sim-
ulation with Incrementality. In 2023 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 746–756.

[27] T.-W. Huang, C.-X. Lin, Guannan Guo, and Martin D. F. Wong. 2019.
Cpp-Taskflow: Fast Task-based Parallel Programming using Modern
C++. IEEE IPDPS, 974–983.

[28] Tsung-Wei Huang, Dian-Lun Lin, Chun-Xun Lin, and Yibo Lin. 2021.
Taskflow: A lightweight parallel and heterogeneous task graph com-
puting system. IEEE Transactions on Parallel and Distributed Systems
33, 6 (2021), 1303–1320.

[29] Yipeng Huang, Steven Holtzen, Todd Millstein, Guy Van den Broeck,
and Margaret Martonosi. 2021. Logical abstractions for noisy varia-
tional quantum algorithm simulation. In Proceedings of the 26th ACM
international conference on architectural support for programming lan-
guages and operating systems. 456–472.

[30] Raban Iten, Romain Moyard, Tony Metger, David Sutter, and Stefan
Woerner. 2022. Exact and practical pattern matching for quantum
circuit optimization. ACM Transactions on Quantum Computing 3, 1
(2022), 1–41.

[31] Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J.
Wood, Jake Lishman, Julien Gacon, Simon Martiel, Paul D. Nation,
Lev S. Bishop, Andrew W. Cross, Blake R. Johnson, and Jay M. Gam-
betta. 2024. Quantum computing with Qiskit. https://doi.org/10.
48550/arXiv.2405.08810 arXiv:2405.08810 [quant-ph]

[32] Shui Jiang, Rongliang Fu, Lukas Burgholzer, Robert Wille, Tsung-Yi
Ho, and Tsung-Wei Huang. 2024. FlatDD: A High-Performance Quan-
tum Circuit Simulator using Decision Diagram and Flat Array. In
Proceedings of the 53rd International Conference on Parallel Processing.
388–399.

[33] Weiwen Jiang, Jinjun Xiong, and Yiyu Shi. 2021. A co-design frame-
work of neural networks and quantum circuits towards quantum ad-
vantage. Nature communications 12, 1 (2021), 579.

[34] Chenyang Jiao, Weihua Zhang, and Li Shen. 2023. Communication
Optimizations for State-vector Quantum Simulator on CPU+ GPU
Clusters. In Proceedings of the 52nd International Conference on Parallel
Processing. 203–212.

[35] Colin King. 2015. powerstat - a tool to measure power con-
sumption. https://manpages.ubuntu.com/manpages/xenial/man8/
powerstat.8.html

[36] Los Alamos National Lab. 2014. ELL format. https://www.lanl.gov/
Caesar/node223.html

https://github.com/NVIDIA/cuQuantum
https://github.com/IDEA-CUHK/FlatDD
https://rocm.docs.amd.com/projects/HIP/en/docs-develop/how-to/hipgraph.html
https://rocm.docs.amd.com/projects/HIP/en/docs-develop/how-to/hipgraph.html
https://github.com/Qiskit/qiskit-aer
https://doi.org/10.1109/TC.2018.2885044
https://docs.nvidia.com/cuda/cuquantum/latest/custatevec/api/functions.html
https://docs.nvidia.com/cuda/cuquantum/latest/custatevec/api/functions.html
https://www.investopedia.com/terms/c/coefficientofvariation.asp
https://doi.org/10.48550/arXiv.2405.08810
https://doi.org/10.48550/arXiv.2405.08810
https://arxiv.org/abs/2405.08810
https://manpages.ubuntu.com/manpages/xenial/man8/powerstat.8.html
https://manpages.ubuntu.com/manpages/xenial/man8/powerstat.8.html
https://www.lanl.gov/Caesar/node223.html
https://www.lanl.gov/Caesar/node223.html

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Shui Jiang, Yi-Hua Chung, Chih-Chun Chang, Tsung-Yi Ho, and Tsung-Wei Huang

[37] Ang Li, Bo Fang, Christopher Granade, Guen Prawiroatmodjo, Bettina
Heim, Martin Roetteler, and Sriram Krishnamoorthy. 2021. Sv-sim:
scalable pgas-based state vector simulation of quantum circuits. In
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis. 1–14.

[38] Ang Li, Omer Subasi, Xiu Yang, and Sriram Krishnamoorthy. 2020.
Density matrix quantum circuit simulation via the BSP machine on
modern GPU clusters. In Sc20: international conference for high perfor-
mance computing, networking, storage and analysis. IEEE, 1–15.

[39] Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the qubit mapping
problem for NISQ-era quantum devices. In Proceedings of the twenty-
fourth international conference on architectural support for programming
languages and operating systems. 1001–1014.

[40] Gushu Li, Yufei Ding, and Yuan Xie. 2020. Eliminating redundant
computation in noisy quantum computing simulation. In 2020 57th
ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[41] Zhiding Liang, Zhepeng Wang, Junhuan Yang, Lei Yang, Yiyu Shi,
and Weiwen Jiang. 2021. Can noise on qubits be learned in quantum
neural network? a case study on quantumflow. In 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE,
1–7.

[42] Dian-Lun Lin and Tsung-Wei Huang. 2020. A novel inference algorithm
for large sparse neural network using task graph parallelism. In 2020
IEEE High Performance Extreme Computing Conference (HPEC). IEEE,
1–7.

[43] Dian-Lun Lin and Tsung-Wei Huang. 2021. Efficient GPU computation
using task graph parallelism. In Euro-Par 2021: Parallel Processing: 27th
International Conference on Parallel and Distributed Computing, Lisbon,
Portugal, September 1–3, 2021, Proceedings 27. Springer, 435–450.

[44] Dian-Lun Lin and Tsung-Wei Huang. 2022. Accelerating Large Sparse
Neural Network Inference Using GPU Task Graph Parallelism. IEEE
Transactions on Parallel and Distributed Systems 33, 11 (2022), 3041–
3052. https://doi.org/10.1109/TPDS.2021.3138856

[45] Marco Maggioni and Tanya Berger-Wolf. 2013. AdELL: An Adaptive
Warp-Balancing ELL Format for Efficient Sparse Matrix-Vector Multi-
plication on GPUs. In 2013 42nd International Conference on Parallel
Processing. 11–20. https://doi.org/10.1109/ICPP.2013.10

[46] Marco Maggioni and Tanya Berger-Wolf. 2014. CoAdELL: Adaptivity
and Compression for Improving Sparse Matrix-Vector Multiplication
on GPUs. In 2014 IEEE International Parallel & Distributed Processing
Symposium Workshops. 933–940. https://doi.org/10.1109/IPDPSW.
2014.106

[47] Stefano Markidis. 2023. Enabling Quantum Computer Simulations on
AMD GPUs: a HIP Backend for Google’s qsim. In Proceedings of the
SC’23 Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis. 1478–1486.

[48] Philipp Niemann, Robert Wille, David Michael Miller, Mitchell A
Thornton, and Rolf Drechsler. 2015. QMDDs: Efficient quantum func-
tion representation and manipulation. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 35, 1 (2015), 86–99.

[49] NVIDIA. [n. d.]. nvidia-smi. https://docs.nvidia.com/deploy/nvidia-
smi/index.html

[50] Tom Peham, Lukas Burgholzer, and Robert Wille. 2022. Equivalence
checking of quantum circuits with the ZX-calculus. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems 12, 3 (2022),
662–675.

[51] Nils Quetschlich, Lukas Burgholzer, and Robert Wille. 2023. MQT
Bench: Benchmarking Software and Design Automation Tools for
Quantum Computing. Quantum (2023). MQT Bench is available at
https://www.cda.cit.tum.de/mqtbench/.

[52] Gokul Subramanian Ravi, Pranav Gokhale, Yi Ding, William Kirby,
Kaitlin Smith, Jonathan M Baker, Peter J Love, Henry Hoffmann, Ken-
neth R Brown, and Frederic T Chong. 2022. CAFQA: A classical simu-
lation bootstrap for variational quantum algorithms. In Proceedings
of the 28th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, Volume 1. 15–29.
[53] John R Rice and Ronald F Boisvert. 2012. Solving elliptic problems using

ELLPACK. Vol. 2. Springer Science & Business Media.
[54] Shane Ryoo, Christopher I Rodrigues, Sara S Baghsorkhi, Sam S Stone,

David B Kirk, and Wen-mei W Hwu. 2008. Optimization Principles
and Application Performance Evaluation of a Multithreaded GPU
Using CUDA. In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 73–82.

[55] SixSigma. 2024. Coefficient of Variation: Mastering Relative Variability
in Statistics. https://www.6sigma.us/six-sigma-in-focus/coefficient-
of-variation/

[56] Mikhail Smelyanskiy, Nicolas PD Sawaya, and Alán Aspuru-Guzik.
2016. qHiPSTER: The quantum high performance software testing
environment. arXiv preprint arXiv:1601.07195 (2016).

[57] Yasunari Suzuki, Yoshiaki Kawase, Yuya Masumura, Yuria Hiraga,
Masahiro Nakadai, Jiabao Chen, Ken M Nakanishi, Kosuke Mitarai,
Ryosuke Imai, Shiro Tamiya, et al. 2021. Qulacs: a fast and versatile
quantum circuit simulator for research purpose. Quantum 5 (2021),
559.

[58] Keichi Takahashi, Toshio Mori, and Hiroyuki Takizawa. 2023. Proto-
type of a Batched Quantum Circuit Simulator for the Vector Engine.
In Proceedings of the SC’23 Workshops of The International Conference
on High Performance Computing, Network, Storage, and Analysis. 1499–
1505.

[59] Siwei Tan, Debin Xiang, Liqiang Lu, Junlin Lu, Qiuping Jiang, Ming-
shuai Chen, and Jianwei Yin. 2024. MorphQPV: Exploiting Isomor-
phism in Quantum Programs to Facilitate Confident Verification. In
Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3.
671–688.

[60] Quantum AI team and collaborators. 2020. qsim. https://doi.org/10.
5281/zenodo.4023103

[61] CUDA Toolkit v12.6.2. [n. d.]. https://docs.nvidia.com/cuda/cuda-
runtime-api/group__CUDART__GRAPH.html

[62] Jiyuan Wang, Fucheng Ma, and Yu Jiang. 2021. Poster: Fuzz testing of
quantum program. In 2021 14th IEEE Conference on Software Testing,
Verification and Validation (ICST). IEEE, 466–469.

[63] JiyuanWang, Qian Zhang, Guoqing Harry Xu, and Miryung Kim. 2021.
Qdiff: Differential testing of quantum software stacks. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 692–704.

[64] Xinyi Wang, Paolo Arcaini, Tao Yue, and Shaukat Ali. 2021. Quito: a
coverage-guided test generator for quantum programs. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 1237–1241.

[65] Wikipedia. [n. d.]. Coefficient of Variation. https://en.wikipedia.org/
wiki/Coefficient_of_variation

[66] Robert Wille, Lukas Burgholzer, Stefan Hillmich, Thomas Grurl,
Alexander Ploier, and Tom Peham. 2022. The basis of design tools for
quantum computing: arrays, decision diagrams, tensor networks, and
ZX-calculus. In Proceedings of the 59th ACM/IEEE Design Automation
Conference. 1367–1370.

[67] Xin-Chuan Wu, Sheng Di, Emma Maitreyee Dasgupta, Franck Cap-
pello, Hal Finkel, Yuri Alexeev, and Frederic T Chong. 2019. Full-state
quantum circuit simulation by using data compression. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–24.

[68] Chen Zhang, Zeyu Song, Haojie Wang, Kaiyuan Rong, and Jidong Zhai.
2021. HyQuas: hybrid partitioner based quantum circuit simulation
system on GPU. In Proceedings of the ACM International Conference on
Supercomputing. 443–454.

[69] Chen Zhang, Haojie Wang, Zixuan Ma, Lei Xie, Zeyu Song, and Ji-
dong Zhai. 2022. UniQ: a unified programming model for efficient
quantum circuit simulation. In SC22: International Conference for High

https://doi.org/10.1109/TPDS.2021.3138856
https://doi.org/10.1109/ICPP.2013.10
https://doi.org/10.1109/IPDPSW.2014.106
https://doi.org/10.1109/IPDPSW.2014.106
https://docs.nvidia.com/deploy/nvidia-smi/index.html
https://docs.nvidia.com/deploy/nvidia-smi/index.html
https://www.cda.cit.tum.de/mqtbench/
https://www.6sigma.us/six-sigma-in-focus/coefficient-of-variation/
https://www.6sigma.us/six-sigma-in-focus/coefficient-of-variation/
https://doi.org/10.5281/zenodo.4023103
https://doi.org/10.5281/zenodo.4023103
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html
https://en.wikipedia.org/wiki/Coefficient_of_variation
https://en.wikipedia.org/wiki/Coefficient_of_variation

BQSim: GPU-accelerated BatchQuantum Circuit Simulation using Decision Diagram ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Performance Computing, Networking, Storage and Analysis. IEEE, 1–16.
[70] Yilun Zhao, Yanan Guo, Yuan Yao, Amanda Dumi, Devin M Mulvey,

Shiv Upadhyay, Youtao Zhang, Kenneth D Jordan, Jun Yang, and Xu-
long Tang. 2022. Q-gpu: A recipe of optimizations for quantum circuit
simulation using gpus. In 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 726–740.

[71] Alwin Zulehner, Stefan Hillmich, and Robert Wille. 2019. How to
efficiently handle complex values? Implementing decision diagrams
for quantum computing. In 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 1–7.

[72] Alwin Zulehner and Robert Wille. 2018. Advanced simulation of
quantum computations. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 38, 5 (2018), 848–859.

	Abstract
	1 Introduction
	2 Background
	2.1 Quantum Circuit Simulation
	2.2 Decision Diagram
	2.3 Gate Fusion

	3 Algorithm
	3.1 BQCS-aware Gate Fusion
	3.2 DD-to-ELL Conversion
	3.3 Task Graph-based Execution

	4 Experimental Results
	4.1 Baselines
	4.2 Overall Comparison
	4.3 Evaluation of BQCS-aware Gate Fusion
	4.4 Evaluation of DD-to-ELL Conversion
	4.5 Evaluation of Task Graph-based Execution
	4.6 Scalability of BQSim
	4.7 Power Consumption of BQSim
	4.8 Runtime Breakdown of BQSim
	4.9 Ablation Study of BQSim

	5 Related Work
	6 Conclusions
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results

	References

