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Graph partitioning is important for the design of many CAD algorithms. However, as the graph size continues to grow, graph

partitioning becomes increasingly time-consuming. Recent research has introduced parallel graph partitioners using either

multi-core CPUs or GPUs. However, the speedup of existing CPU graph partitioners is typically limited to a few cores, while

the performance of GPU-based solutions is algorithmically limited by available GPU memory. To overcome these challenges,

we propose G-kway, an eicient multilevel GPU-accelerated �-way graph partitioner. G-kway introduces an efective union

ind-based coarsening and a novel independent set-based reinement algorithm to signiicantly accelerate both the coarsening

and uncoarsening stages. Furthermore, when kernel launch overhead becomes substantial in the reinement algorithm,

G-kway employs CUDA Graph-based uncoarsening to reduce the overhead and improve performance. Experimental results

have shown that G-kway outperforms both the state-of-the-art CPU-based and GPU-based parallel partitioners with an

average speedup of 8.6× and 3.8×, respectively, while achieving comparable partitioning quality. Additionally, G-kway with

CUDA Graph-based uncoarsening can further accelerate graph partitioning, achieving up to 1.93× speedup over the default

G-kway.

CCS Concepts: · Hardware→ Partitioning and loorplanning.

1 Introduction

Graph partitioning is important for the design of eicient computer-aided design (CAD) algorithms [4, 19, 26,

30, 32, 40, 41] because it allows an algorithm to break down a problem into smaller and manageable pieces.

Since graph partitioning is NP-complete [7, 17], prior research has proposed several frameworks and heuristics,

including spectrum method [6, 37], FM-based reinement [5], geometric partitioning [16, 38], learning-based

partitioning [3, 35], and multilevel graph partitioning [20]. Among various partitioning frameworks, multilevel

partitioning is the most popular for large-scale graphs due to its high partitioning quality and fast runtime. [2, 34].
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A typical multilevel partitioner iteratively coarsens the original graph into a smaller representation. When the

graph becomes small enough, the partitioner iteratively restores the graph back to a larger one, followed by a

reinement algorithm.

However, as the size of circuit graphs continues to increase, graph partitioning becomes time-consuming. For

example, partitioning a timing graph can take up to 60% of the runtime per timing update in a static timing

analysis (STA) engine [11, 12, 15], and partitioning can be performed iteratively during incremental timing.

Similar problems exist in many RTL simulation workloads as well [32]. To alleviate the long runtime, existing

partitioners have leveraged multicore CPUs [1, 10, 22] to parallelize the partitioning algorithm. Despite some

runtime improvements, the speedup is typically limited to only 8ś16 CPU threads [22]. On the other hand, modern

GPUs ofer a massive amount of parallelism and memory bandwidth that present an opportunity to accelerate

graph partitioning to a new performance degree. For instance, [8] proposes a CPU-GPU-hybrid multilevel graph

partitioner that dynamically performs the work on either the GPU or CPU. However, their approach requires

frequent data transfers between CPU and GPU, resulting in signiicant runtime overhead. To address this problem,

GKSG [9] performs the entire graph partitioning on GPU. However, their performance is far from optimal due

to limited parallelism. Speciically, GKSG’s reinement algorithm can only move a few vertices (e.g., eight) in

parallel due to limited GPU memory, as it counts on an exponential enumeration to ind a valid reinement.

Furthermore, GKSG’s coarsening algorithm requires many sequential matching iterations, largely underutilizing

the massive parallelism in GPU. As a consequence, GKSG reported only an average 1.9× speedup over a CPU-

parallel partitioner [9]. To overcome these problems, we propose G-kway [25], a new GPU-accelerated �-way

graph partitioner. We summarize three key contributions of G-kway below:

• G-kway introduces a union ind-based coarsening algorithm that can coarsen many vertices simultaneously

to substantially reduce the number of levels while keeping good partitioning quality. Speciically, at each

level, our union ind-based coarsening joins multiple connected vertices into the same subset and coarsens

them into a single coarse vertex to construct a coarser graph, signiicantly reducing the graph size.

• G-kway introduces an independent set-based reinement that can reine many vertices in parallel, largely

reducing the number of reinement iterations. Speciically, in each reinement iteration, our independent

set-based reinement identiies thousands of independent vertices with positive gains and relocates them in

parallel to improve partitioning quality.

• G-kway introduces CUDA Graph-based uncoarsening for graphs with signiicant kernel launch overhead,

utilizing CUDA Graph and conditional nodes to reduce overhead and minimize CPU intervention, thereby

enhancing performance. Speciically, CUDA Graph reduces the overhead of frequent kernel launches by

encapsulating the entire computation worklow into a predeined execution graph, allowing the CPU to

launch it with a single host call.

We have evaluated the performance of G-kway on industrial circuit graphs and compared our results with

two state-of-the-art parallel graph partitioners, CPU-based mt-metis [22] and GPU-based GKSG [9]. On average,

experimental results have shown that G-kway outperforms 32-threaded mt-metis and GKSG by 8.6× and 3.8×

faster, respectively, with comparable cut sizes.

2 Problem Definition and Notation

Given the importance of graph partitioning in designing eicient CAD algorithms, this section provides a formal

description of the partitioning problem. Given an undirected graph, � = (� , �), where � is a set of vertices, and

� is a set of edges. Each element in � is of the form � = (�, �), representing an edge connecting vertices � and � in

� . We denote the neighbors of � as �� � (�). For a vertex � ∈ � , we denote the weight of � by�� , while for an edge

� ∈ �, we denote the weight of � by�� . For a vertex � ∈ � , its adjacent vertex set is denoted as �� � (�). Given

� , if � = {�1, �2, . . . , �� } is a disjoint partition of � , we call � a �-way partition. For � ∈ � , we deine � (�) = � if
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� ∈ �� . We deine the cut size as
︁

�=(�,�) ∈�,� (� )≠� (�)

��

. Cut size is widely used for evaluating the quality of a partition since it represents the interconnect complexity

among partitions. The partition weight of �� is deined as

��� =

︁

�∈��

��

The goal of the graph partition problem is to ind a �-way partition that satisies the balance constraint while

minimizing the cut size. The balance constraint limits the maximum weight of �� as

��� ≤ (1 + �)

∑
�∈���

�

, where 0 < � ≪ 1 and � is the imbalance ratio given by applications.

In this paper, we focus on partitioning large regular graphs, which is widely applied in many CAD algorithms

and beyond. For instance, Register-transfer level (RTL) simulators [31] partition a big logic graph into � macro

tasks that produce minimal cut dependencies for improving simulation performance; STA engine [15] partitions

a million-task timing graph into � min-cut subgraphs for reducing scheduling overhead.

3 GPU Multilevel �-way Partitioner

In this section, we present our multilevel GPU-based k-way graph partitioning method, G-kway. Figure 1 shows

the overview of G-kway that consists of three main stages: coarsening, initial partition, and uncoarsening.

• Coarsening. The goal is to coarsen the graph into a smaller representation level by level while preserving

the original graph’s structure. The coarsening level continues until the graph size becomes smaller than the

coarsening threshold, � (typically 160×�). We develop a union ind-based coarsening that substantially reduces

the number of coarsening levels while still maintaining a good representation of the original graph structure.

• Initial partition. The goal is to create an initial partition from the coarsest graph. We utilize single-threaded

Metis [20] for the initial partition. Since the coarsest graph is much smaller than the original graph, the initial

partition stage is very fast and does not beneit much from CPU/GPU parallelism.

• Uncoarsening. The goal is to iteratively restore the coarsened graph to its previous state and reduce the cut

size of the restored graph by moving each vertex to a diferent partition (i.e., reinement). The uncoarsening

level continues until the graph size is the same as the original graph. We develop an eicient independent

set-based reinement algorithm that reduces the cut size by moving many vertices among partitions in parallel.

When the reinement algorithm has substantial kernel launch overhead, we use CUDA Graph to improve

performance by reducing this overhead.

Multilevel graph partitioning requires many iterative control-low operations performed on the CPU to

determine termination. Such frequent CPU-GPU data transfers can result in signiicant runtime overhead. To

address this issue, G-kway utilizes CUDA pinned memory for control-low data to avoid swapping out memory

to disk by the operating system. Moreover, for graphs requiring a signiicantly large number of iterative control

low operations (e.g., 2,000), we further enhance performance by utilizing CUDA Graph and a conditional node,

allowing the GPU to manage the control low directly and eliminating frequent CPU-GPU data transfers.

In both coarsening and uncoarsening stages, we utilize modern warp-level primitives for our GPU kernels to

further optimize the performance. In terms of graph storage, G-kway utilizes the commonly used compressed

sparse row (CSR) data structure [9] for eicient GPU computing.

ACM Trans. Des. Autom. Electron. Syst.
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Fig. 1. Overview of G-kway that consists of three main stages: coarsening, initial partition, and uncoarsening.

3.1 Union Find-based Coarsening with Scoring

Most existing parallel multilevel graph partitioners such as GKSG [9] implement a parallel Heavy Edge Matching

(HEM) algorithm that inds matching pairs to coarsen the original graph. Speciically, each vertex searches

for a neighbor with the heaviest edge to form a matching pair and coarsen the two vertices into a coarsened

vertex. However, this matching algorithm requires both vertices to choose each other. If both vertices have many

neighbors connected with the same heaviest edges, they may choose diferent neighbors for matching, preventing

the formation of matching pairs and leaving many vertices unable to match. The unmatched vertices continue

to search with their remaining neighbors in the next matching iteration. Such an iterative algorithm largely

underutilizes the massive parallelism in GPU. Furthermore, GKSG can only coarsen two vertices per matching

pair, thus requiring many coarsening levels until the size of the coarsened graph is smaller than the threshold.

Figure 2 shows the comparison between GKSG’s coarsening algorithm and ours. As shown in Figure 2 (a), GKSG

can only match �1 and �2 in the irst iteration, leaving the unmatched vertices �3 and �4 for the next matching

iteration.

Fig. 2. Examples of three coarsening methods for one iteration, including (a) Heavy Edge Matching (HEM) by GKSG, (b)

Union find-based coarsening without scoring, and (c) Union find-based coarsening with scoring. Each vertex has a red arrow

pointing to its selected neighbor. Vertices circled in the same color are coarsened into a coarsened vertex.

To address these issues, our initial solution is to group vertices into subsets and coarsen all vertices in the same

subset into a coarsened vertex. Each vertex inds a neighbor with the heaviest edge. If that neighbor belongs to

another subset, we group the vertex into the same subset. This union ind-based strategy eliminates the need

for iteratively searching neighbors to form match pairs, ensuring each vertex can be grouped into a subset in a

single iteration. Also, since we group multiple vertices per subset, it requires much fewer coarsening levels than

GKSG. However, this strategy can cause highly imbalanced subsets that largely impact reinement quality in the

next stage since many vertices may all be grouped into the same subset. As shown in 2 (b), �1 and �3 choose �2, �2

ACM Trans. Des. Autom. Electron. Syst.
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chooses �1, and �4 chooses �3. While the solution allows each vertex to join a subset in one iteration, all vertices

eventually join the same subset and are coarsened into a single vertex.

To this end, we propose a union ind-based coarsening with scoring. Each vertex calculates the score for

each connected edge and selects a neighbor with the highest score to form a subset. Speciically, when a vertex

� has multiple neighbors with the same heaviest edge, we prioritize the neighbor of � with the lower degree

by assigning a higher score to the edge connected to this neighbor. Figure 2 (c) shows our union ind-based

coarsening with scoring. �3 selects �4 instead of �2 since �4 has lower degree than �2, resulting in two balanced

subsets. Our coarsening algorithm consists of two steps: select neighbors and perform union ind.

Algorithm 1 Union ind-based coarsening with scoring

1: /* select neighbors: assign 32 vertices and their edges to a GPU warp */

2: parallel for each thread in a warp {

3: while (there are more edges to process) {

4: get an edge �� = (�, �) to process

5: ind the assigned edge’s source vertex �

6: � (�, �) ← � ×�(�,�) - ������(�)

7: /* using __shl_up_sync */

8: reduce on the scores with threads have the same source vertex

9: }

10: write a vertex �’s selected neighbor to ��������_��� array

11: }

12: /* union ind: assign each vertex �� to a GPU thread �� */

13: while (any threads is still updating) {

14: parallel for each thread in a warp {

15: ��� ← ��������_��� [��]

16: ��_������_�� ← �_������_��[��]

17: ���_������_�� ← �_������_��[��� ]

18: if (��_������_�� > ���_������_��) then

19: atomicMin(&�_������_��[��], ���_������_��)

20: else if (��_������_�� < ���_������_��) then

21: atomicMin(&�_������_��[��� ], ��_������_��)

22: /* using __any_sync */

23: check if any thread in a warp updates subset_IDs

24: }

25: }

3.1.1 Select neighbors. We irst ind a neighbor connected by the edge with the highest score for each vertex.

Given a source vertex �, we deine the score of its edge (�, �) as

� (�, �) = � ×�(�,�) − ������ (�)

, where ������ (�) is the number of neighbors of � , � is a constant no less than the maximum degree of the graph,

and�(�,�) is the edge weight of � = (�, �). Algorithm 1 shows our neighbor selection algorithm which leverages

an eicientWarp Segmentation technique [21]. We assign 32 consecutive vertices and their edges to each GPU

warp. Each GPU thread then processes an edge (�, �) by inding the source vertex (line 5) and calculating the edge

score (line 6). Next, threads whose assigned edges belong to the same source vertex perform parallel reduction

ACM Trans. Des. Autom. Electron. Syst.
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to identify the edge with the highest score (line 8). During reduction, we employ CUDA warp-level primitives,

__shfl_up_sync, to eiciently exchange scores among threads in the same warp. Using the warp-level primitive

allows threads in the same warp to share data through registers, which is much faster than through GPU global or

share memory [39]. Finally, we map each thread to a vertex, and each thread is responsible for writing a vertex’s

neighbor connected by the highest-score edge to the array ��������_��� in the GPU’s global memory (line 10).

3.1.2 Perform union find. After selecting the highest score neighbor for each vertex, we perform union_find

to group vertices into subsets. We maintain an additional array, �_������_�� , to record each vertex’s subset ID,

where each vertex’s subset ID is initialized to its vertex ID. We assign each vertex �� to a GPU thread; then, each

thread gets its assigned vertex’s selected neighbor ��� from the previous step stored in ��������_��� (line 15),

and its vertex and selected neighbor’s subset IDs from �_���_�� (lines 16-17). Each thread then group vertices by

comparing its assigned vertex and the selected neighbor’s subset ID and changing the larger ID to the smaller

one (lines 18-21). At the end of each iteration, we employ CUDA warp-level voting primitives, __any_sync, to

eiciently check if any thread in the warp updates the subset ID (line 23). We then repeat this process until no

vertex’s subset ID is updated. Finally, we coarsen vertices with the same subset ID into a coarsened vertex to

derive the coarsened graph.

3.2 Independent Set-based Refinement

The goal of the reinement algorithm is to reduce the cut size by moving a vertex to a partition that maximizes

the reduction in cut size. We deine the gain of a vertex � for a partition �� as

����(�, �� ) = �� (�, �� ) − �� (�)

, where � ∉ �� . The internal degree of �, denoted as �� (�), is the sum of the weights of edges (�, �) where both �

and � belong to the same partition:

�� (�) =
︁

�∈adj(� ),� (�)=� (� )

� (�, �)

. On the other hand, the external degree of � to partition �� , denoted as �� (�, �� ), is the sum of the weights of

edges (�, �) where � belongs to partition �� :

�� (�, �� ) =
︁

�∈adj(� ),� (� )=�

� (�, �)

. In reinement, we only consider moving a vertex at the partition boundary (i.e., one of its neighbors is located in

a diferent partition). Moving vertices not at the partition boundary cannot have positive gain, as �� (�, �� ) is

always zero.

To move multiple vertices in parallel while ensuring that the move results in the largest gain, GKSG’s reinement

algorithm enumerates all possible moves [9]. Each move represents a combination of vertices, where each vertex

either moves to its destination partition or not. For example, to move eight vertices in parallel, GKSG will launch

a GPU kernel with 28 × 32 threads to calculate 28 possible moves, where each move is veriied by a GPU warp of

32 threads. This exponential enumeration algorithm limits the number of vertices that can be moved in parallel

due to the limited GPU memory.

To overcome this problem, we propose an independent set-based reinement algorithm that can move many

vertices in parallel. Our algorithm does not exponentially enumerate all possible moves, thus enabling much more

parallelism without being constrained by GPU memory limitations. Algorithm 2 shows our reinement algorithm,

which contains three steps: ind an independent set of vertex moves, calculate delta partition weights, and select

vertex moves. We iteratively perform our reinement algorithm until no vertex with positive gain can be moved.
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Fig. 3. Example of finding an independent set of vertices. Vertices colored black have a legal destination partition, while

those colored red are added to the independent set. Each thread is assigned a vertex. In step (a), each thread checks whether

its assigned vertex has a legal destination partition and marks it black if one exists. In step (b) each thread checks whether

its assigned vertex is independent and marks it red if the conditions are met.

3.2.1 Find an independent set of vertex moves. Moving multiple vertices in parallel is challenging. Even though

each vertex has a positive gain, the overall cut size after all moves can remain or even increase due to intercon-

nections among vertices. Furthermore, moving connected (i.e., adjacent) vertices in parallel requires expensive

synchronization to keep updating gains. To address these issues, we ind an independent set of vertices to move

in parallel. We deine each vertex move as����,���
� , a struct that consists of a vertex ID (�), its source partition ID

(���), its destination partition ID (��� ), and the gain. We then use a move bufer to store vertex moves.

Algorithm 2 presents our independent set-based reinement algorithm. To ind an independent set of vertex

moves, we distribute each vertex in the graph to a GPU thread, where each GPU thread determines whether

its vertex is at the partition boundary. If the vertex is at the boundary, the GPU thread inds a legal destination

partition for that vertex (line 7). We say a vertex has a legal destination partition if there exists one destination

partition such that moving the vertex to that partition has a positive gain without violating the balance constraint.

If a vertex has a legal destination partition, the GPU thread checks if any of its neighbors also have a legal

destination partition (line 9). If no such neighbor exists, the GPU thread creates a vertex move for the vertex and

inserts it into the move bufer (lines 10-12). Otherwise, we compare that vertex with its neighbors’ IDs. We then

only create a vertex move for the vertex with the smallest ID and insert it into the move bufer (lines 13-16). This

organization ensures that no adjacent vertices are inserted into the move bufer.

Figure 3 shows an example of inding an independent set of vertices. Vertices with a legal destination partition

are shown in black, while vertices in the independent set are colored red. In this example, the thread assigned vertex

�9 adds it to the independent set because none of �9’s neighbors have a legal destination partition. Additionally,

the thread assigned to vertex �2 irst checks if �2 has neighbors with a legal destination partition. Since �2 has a

neighbor with a legal partition, �3, the thread compares their vertex IDs and adds �2 to the move bufer because

its vertex ID is smaller than that of �3.

After inding an independent set of vertex moves, we need to select a subset of them such that applying

those vertex moves still satisies the balance constraint. However, inding the best subset still encounters the

exponential enumeration problem (i.e., to select or not to select per vertex move). To address this challenge, we

design a sequence-based strategy that irst sorts each vertex move by gain to form a sequence and selects the

longest sub-sequence of vertex moves that satisies the balance constraint. While this strategy may not be the

absolute best subset, selecting vertex moves from the largest gain ensures we prioritize the vertex moves that

make a substantial contribution to overall cut size improvement. In the following sections, we present how to

ind that sub-sequence of vertex moves.

ACM Trans. Des. Autom. Electron. Syst.
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Algorithm 2 Independent set-based reinement

1: while (true) {

2: /* ind an independent set of vertex moves */

3: /* assign each vertex �� to a GPU thread �� */

4: parallel for each thread {

5: if �� is not at a partition boundary then

6: return

7: ��� ← ind a legal destination partition with the largest gain

8: if (��� exists) then

9: ����� ← ��� in �� � (�� ) has a legal destination partition

10: if (����� is empty) then

11: create a vertex move for ��
12: insert the vertex move to the move bufer

13: else

14: if (�� .�� < each ��� .�� in �����) then

15: create a vertex move for ��
16: insert the vertex move to the move bufer

17: }

18: if (the move bufer is empty) then

19: return

20: calculate delta partition weights /* Section 3.2.2 */

21: select vertex moves /* Section 3.2.3 */

22: }

3.2.2 Calculate delta partition weights. In this step, we sort each vertex move by gain in descending order and

calculate the delta partition weight of each vertex move to check the balance constraint. We deine the delta

partition weight of a vertex move����,���
� for a partition �� as follows:

�� (�
���,���
� ) =




��, � = ���

−��, � = ���

0, ��ℎ������

We maintain a �-segment array, ���_�_��� , where each segment initially stores the delta partition weight of

each vertex move for a partition. The segment size is the minimum of the total number of vertex moves and 1,024.

Since most modern GPUs have 1,024 threads per GPU block, calculating more than 1,024 vertex moves needs

multiple blocks for each segment, which requires expensive synchronization across multiple blocks.

Figure 4 shows an example of our algorithm for six vertex moves with � = 2. Each element in ���_�_���

records the delta partition weight of each of the six vertex moves, where the irst six elements (i.e., segment 0) and

the last six elements (i.e., segment 1) are for partitions �0 and �1, respectively. We then perform a parallel scan

on ���_�_��� to accumulate delta partition weights for each partition. Speciically, after applying the parallel

scan, the ��ℎ element in segment � stores the accumulated delta partition weight from the irst to the ��ℎ vertex

moves for partition � (i.e., a sub-sequence from the irst to the ��ℎ vertex moves). This accumulation allows us to

quickly access each partition’s accumulated delta partition weight if we apply all vertex moves in a sub-sequence

of vertex moves. We then use these accumulated results to ind the longest sub-sequence of vertex moves in the

next step.

ACM Trans. Des. Autom. Electron. Syst.
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Fig. 4. Illustration of the process to construct ���_�_��� and ���_��� with � = 2 under six vertex moves. Assuming current

partition weights are 13 and 10 for �0 and �1, respectively, with a maximum partition weight of 14.

Algorithm 3 presents the calculation of delta partition weights. We irst sort vertex moves in the move bufer

by gain in descending order in parallel using a parallel sorting algorithm (line 1). We then assign each vertex

move,����,���
� , to a GPU thread, �� , based on its ��� . Each GPU thread irst gets the index of a vertex move’s

source (���_�_��� ) and destination partition (���_�_��� ) in �����_�_��� (lines 6-7). Each GPU thread then writes

the corresponding delta partition weights to ���_�_��� (lines 8-9).

Finally, we apply our parallel scan kernel on each segment to obtain the accumulated delta partition weights

per partition (lines 13-18). We launch our parallel scan kernel with the number of GPU blocks equal to � (i.e.,

number of partitions), where each GPU block conducts a parallel scan simultaneously for its assigned segment

(line 15). To further improve performance, we utilize a CUDA warp-level primitive, __shfl_up_sync, for our

parallel scan kernel.
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Algorithm 3 Calculate delta partition weights

1: parallel sort the move bufer in descending order by gain

2: ���_���� ← min(#������_����� , 1024)

3: ��� ← thread’s global ID

4: /*assign a vertex move����
� to a GPU thread �� based on its ���*/

5: parallel for each thread {

6: ���_�_��� ←����,���
� .��� × ���_���� + ���

7: ���_�_��� ←����,���
� .��� × ���_���� + ���

8: ���_�_��� [���_�_���] ← -��

9: ���_�_��� [���_�_���] ←��

10: return

11: }

12: /*assign segment ���� of del_p_wgt to a GPU block ��*/

13: parallel for each block {

14: ����_����� ← �� .�� × ���_����

15: ����_��� ← ����_����� + ���_����

16: parallel scan on ���� /* __shl_up_sync */

17: return

18: }

3.2.3 Select vertex moves. In this step, we select the longest sub-sequence of vertex moves while ensuring that

applying those vertex moves satisies the balance constraint. This selection is based on our accumulated delta

partition weights.

As shown in Figure 4, we maintain a ���_��� array to record the balanced condition for a sub-sequence of

vertex moves. The value stored at index � in ���_��� indicates whether applying the sub-sequence of vertex

moves from the irst to the ��ℎ results in a balanced partition. We then select the longest sub-sequence of vertex

moves by inding the largest index � such that ���_��� [ �] = � (balanced). Finally, we apply all vertex moves in

the longest sub-sequence of vertex moves.

In the example shown in Figure 4, each GPU thread checks if a sub-sequence of vertex moves results in a

balanced partition and writes the result to the ���_��� array. Speciically, the irst thread (�0) checks the balanced

result for the sub-sequence of vertex moves of the irst vertex move, the second thread (�1) checks for the

sub-sequence of vertex moves from the irst to the second vertex moves, and so on. Each thread fetches the

accumulated delta partition weight for each partition from each segment in ���_�_��� , and checks whether

every partition’s current weight plus its accumulated delta partition weight satisies the balance constraint. For

example, assuming the balance constraint is 14, �0 fetches ���_�_��� [0] and ���_�_��� [6] for �0 and �1, and

checks if both��0 + Δ0 ≤ 14 and��1 + Δ6 ≤ 14. If one of the partitions does not satisfy the balance constraint,

the thread writes ’IB’ (imbalanced); otherwise, ’B’ (balanced) to its corresponding index in ���_���.

After each thread inalizes ���_���, we can observe that applying only the irst vertex move results in an

imbalanced partition (���_��� [0] = ��). However, applying the irst ive vertex moves helps to restore the partition

result back to balance (���_��� [4] = �). In the example shown in Figure 4, the longest sub-sequence is from the

irst to the ifth vertex moves. Because the sequence of vertex moves is sorted in descending order of gain, this

allows us to prioritize vertex moves that make a substantial contribution to the overall improvement in cut size.

Finally, we apply all vertex moves in the longest sub-sequence of vertex moves in parallel.
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3.3 Accelerating the Uncoarsening Stage Using CUDA Graph

In this section, we discuss how CUDA Graphs can be beneicial for the uncoarsening stage. In the uncoarsening

stage, the reinement algorithm iteratively applies vertex moves to improve the partitioning result and terminates

when no more vertex moves can be applied. For large benchmarks, the number of reinement iterations can be

substantial (e.g., 2,000), leading to signiicant kernel launch overhead and degraded performance. To mitigate this

overhead, we encapsulate all GPU operations within a CUDA Graph. The CPU (i.e. host) can then launch the

CUDA Graph to perform each uncoarsening level with a single call. This approach signiicantly reduces kernel

launch overhead and minimizes CPU intervention, accelerating the uncoarsening stage. Figure 5 illustrates the

time spent on kernel execution with and without a CUDA Graph. Without CUDA Graphs, the host need to launch

each kernel individually and each kernel launch incurs overhead. When the number of iteration is large, the

accumulated overhead can become a bottleneck. In contrast, using CUDA Graphs signiicantly reduces kernel

launch overhead by allowing the host to launch all GPU kernels with a single host call. In this section, we irst

introduce the CUDA Graph execution model and discuss the recently added feature, the CUDA Graph conditional

node. Finally, we describe the implementation details of our CUDA Graph-based uncoarsening.

Fig. 5. The time spent on kernel execution with and without CUDA Graphs. Each gray box represents a GPU task, while the

blue box indicates a CPU operation. The top graph shows the traditional approach without using CUDA Graphs, where each

kernel launch incurs significant overhead. The botom graph shows the approach using CUDA Graphs, which reduces launch

overhead by encapsulating kernel executions into a single graph, leading to an overall speedup in execution time.

3.3.1 CUDA Graph-based Execution Model. In CUDA, each time the host launches a GPU kernel, a small overhead

incurs. When a large number of kernels are launched, this overhead can accumulate and become signiicant,

degrading overall performance. To address this issue, the CUDA Graph execution model was introduced to enable

more eicient execution of GPU kernels [36]. CUDA Graph allows users to encapsulate all GPU kernels within a

graph, so the host can execute them with a single call (i.e. graph launch), signiicantly reducing kernel launch

overhead. Additionally, encapsulating GPU kernels into a CUDA Graph allows the CUDA driver to optimize the

entire graph as a whole, further enhancing performance [18, 27ś29]. Fig 6 presents the CUDA Graph execution

model, which consists of graph deinition, executable instantiation, graph launch (run), and graph update. Users

irst deine a CUDA Graph by creating nodes and edges to describe GPU tasks and their dependencies. Users

then instantiate an executable graph from a deined graph and oload that executable graph to a GPU using a
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single host call. Between successive launches, users can update the execution parameters of a GPU task or a node

in the graph with small cost.
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Fig. 6. Execution model of CUDA Graph consists of four major steps, graph definition, executable graph instantiation, graph

launch (run), and graph parameter updates.

3.3.2 CUDA Graph with Conditional Node. While CUDA Graphs ofer signiicant performance beneits, con-

structing one requires users to know the graph’s topology at compile time. If a graph involves dynamic control

low, where certain node launches depend on a control variable, users must isolate those nodes into a separate

CUDA Graph. The host then evaluates the control variable to determine whether to launch the separate graph.

This approach limits CUDA’s ability to optimize all GPU kernel as a single CUDA Graph, ties up CPU resources,

and introduces additional overhead from setting up multiple graphs.

To address this issue, CUDA recently introduced conditional nodes in CUDA Graph, enabling conditional or

repeated launch of graph nodes without returning to the host. Each conditional node contains a body graph,

whose execution depends on a control variable. At runtime, the conditional node evaluates the control variable

and determines whether to launch its body graph, allowing dynamic control low directly on the GPU. There

are two types of conditional nodes: an if node and a while node. The body graph of an if node will be executed

once if the condition is met, while the body graph of a while node will be executed repeatedly as long as the

condition is true. Using conditional nodes helps minimize CPU intervention and allows more complex worklows

to be represented within a CUDA Graph, eliminating the overhead of creating multiple graphs and reducing the

number of graph launches required. Figure 7 illustrates the worklow of a sequence of GPU tasks involving a

while dynamic control low, without and with a conditional node. In Figure 7 (a), the absence of a conditional

node requires separating the GPU tasks into two CUDA Graphs, with GPU tasks involving dynamic control

low isolated into a second graph. After the host launches the irst CUDA Graph, it must iteratively evaluate the

condition and launch the second CUDA Graph, introducing signiicant graph launch overhead. In contrast, in

Figure 7 (b) with a conditional node, all GPU tasks can be deined within a CUDA Graph. The host can then launch

the deined graph with a single call, greatly reducing the overhead associated with iterative graph launches.

ACM Trans. Des. Autom. Electron. Syst.



G-kway: Multilevel GPU-Accelerated k-way Graph Partitioner using Task Graph Parallelism • 13

Fig. 7. An example of the workflow of a sequence of GPU tasks involving a while dynamic control flow. In Figure (a), the

workflow is shown without a CUDA conditional node, and in Figure (b), the workflow is shown with a CUDA conditional

node. Each gray box represents a graph node that contains a GPU task, while a blue box represents a CPU operation. The

black box represents a CUDA conditional node. Graph nodes belonging to the same graph are grouped using a black dashed

line.

3.3.3 CUDA Graph for Uncoarsening Stage. In G-kway, both the uncoarsening and coarsening stages involve

a sequence of kernel launches. However, the number of kernel launches in the coarsening stage is typically

small. Therefore, using CUDA Graph does not accelerate the coarsening stage, as its setup overhead outweighs

its performance gains. In contrast, during the uncoarsening stage, the reinement algorithm iteratively moves

vertices to reine the partitioning result, often requiring a large number of iterations (e.g., 2,000). Each iteration

involves multiple GPU kernel launches, accumulating to signiicant kernel launch overhead. To mitigate this, we

encapsulate all GPU kernels used in the uncoarsening algorithm into a CUDA Graph. This approach allows the

host to launch all GPU operations with a single call, improving performance by minimizing host intervention

and reducing the number of host calls. Additionally, the CUDA driver can optimize the CUDA Graph, further

enhancing performance.

To create the uncoarsneing CUDA Graph, we use a while conditional node to manage the iterative control low

in the reinement algorithm. This conditional node then evaluates the number of vertex moves applied in the

previous iteration and repeats the reinement process as long as the number of vertex moves remains greater

than zero. Figure 8 illustrates the topology of our uncoarsening CUDA Graph. In the graph, the irst node is

responsible for executing the GPU kernel restores to previous graph. Then, the while conditional node is executed.

The body graph of this conditional node contains three GPU tasks: ind an independent set of vertex moves (see

Section 3.2.1), calculate delta partition weights (see Section 3.2.2), and select vertex moves (see Section 3.2.3).

Algorithm 4 outlines the process of creating an uncoarsening CUDA Graph. We irst create the graph us-

ing cudaGraphCreate (line 2). Next, we deine a graph node to execute restore to previous graph kernel (line

3) and specify this node’s parameters by setting the grid and block dimensions and kernel arguments in a

cudaKernelNodeParams structure named kernel_params (line 5). We then add this node to the CUDA graph,

����ℎ (line 6). To manage the control low in the reinement algorithm, we irst create a CUDA conditional

node by deining a CUDA Graph conditional handle [36] and attaching it to ����ℎ (lines 7-8). Next, we deine a

cudaGraphNodeParams structure named while_params to store the necessary information for this conditional

node. In while_params, we specify that this conditional node is a while node and provide its size and handle
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Fig. 8. The CUDA Graph encapsulates all GPU kernels used for uncoarsening. Within the graph, a CUDA conditional node

iteratively evaluates the number of vertex moves to manage dynamic control flow on the GPU.

Algorithm 4 Create uncoarsening CUDA Graph

1: Initialize a CUDA Graph: ����ℎ

2: cudaGraphCreate(&����ℎ, 0)

/* Create a node for restore to previous graph kernel and add it to the CUDA Graph */

3: Initialize a CUDA Graph node: �������_����ℎ_����

4: ������_������ ← { 0 }

5: set_kernel_params(������_������)

6: cudaGraphAddKernelNode(&�������_����ℎ_���� , ����ℎ, NULL, 0, ������_������)

/* Create a CUDA condition node and add it to the graph */

7: Initialize a CUDA Graph conditional handle: ℎ�����

8: cudaGraphConditionalHandleCreate(&ℎ����� , ����ℎ, 1, cudaGraphCondAssignDefault)

9: �ℎ���_������ ← { cudaGraphNodeTypeConditional }

10: �ℎ���_������ .conditional.handle← ℎ�����

11: �ℎ���_������ .conditional.type← cudaGraphCondTypeWhile

12: �ℎ���_������ .conditional.size← 1

13: Initialize a CUDA Graph conditional node:�ℎ���_����_����

14: cudaGraphAddKernelNode(&�ℎ���_����_���� , ����ℎ, &�������_����ℎ_���� , 1,�ℎ���_������)

15: �ℎ���_����_����ℎ←�ℎ���_������ .conditional.phGraph_out[0]

/* Populate the condition node’s body graph */

16: Initialize a CUDA Graph node: � ���_�����������_����

17: set_kernel_params(������_������)

18: cudaGraphAddKernelNode(&� ���_�����������_���� ,�ℎ���_����_����ℎ, NULL, 0, ������_������)

/* ... Add other nodes using similar method */

19: return ����ℎ

(lines 9-12). We then add this conditional node to ����ℎ (lines 13-14) and set its dependency so that it runs after

the graph node, restore_graph_node. When the conditional node is created, its body graph is also created. We

retrieve the body graph from while_params (line 15) and populate it by creating nodes for each kernel used in the

reinement algorithm and adding them to the body graph using a similar method (lines 16-19).
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Algorithm 5 Uncoarsening stage with CUDA Graph

1: ����ℎ← creat_uncoarsening_cuda_graph()

2: initialize ����ℎ_���� and ������

3: cudaGraphInstantiate (&����ℎ_���� , ����ℎ, NULL, NULL, 0) ⊲ instantiate an executable graph

4: for each uncoarsening level {

5: update_graph_paramaters() ⊲ update the graph nodes’ parameters

6: cudaGraphLaunch(����ℎ_���� , stream) ⊲ launch the executable graph

7: }

8: cudaGraphDestroy(graph)

Once the CUDAGraph for the uncoarsening algorithm is created, the host can launch it with a single call at each

uncoarsening level, signiicantly reducing kernel launch overhead and minimizing CPU intervention. Algorithm 5

outlines our CUDA Graph-based uncoarsening. Before starting the uncoarsening stage, the CPU host irst calls

the function create_uncoarsening_cuda_graph (as illustrated in Algorithm 4 ) to obtain the uncoarsening

CUDA Graph (line 1). Next, the host instantiates the graph into an executable using cudaGraphInstantiate

(line 3). Finally, the host begins the uncoarsening stage by iteratively uncoarsening the graph level by level. At

each uncoarsening level, the host irst updates the CUDA Graph’s node parameters (line 5) and then uses a single

call to launch the executable graph with the updated parameters (line 6).

4 Computational Complexity of Partitioning Algorithms

In the previous section, we discussed G-kway’s innovative union ind-based coarsening and independent set-based

reinement for accelerating the coarsening and uncoarsening stages. Building on this discussion, we now evaluate

the eiciency of these algorithms by comparing the time complexity of G-kway’s coarsening and uncoarsening

stages with two state-of-the-art parallel partitioners: mt-metis [22] (CPU-based) and GKSG [9] (GPU-based).

Table 1 summarizes the time complexity of the coarsening and uncoarsening stages for mt-metis, GKSG, and

G-kway. In the following sections, we irst analyze and compare the time complexity of the coarsening stage

among the three partitioners, followed by a discussion of the uncoarsening stage.

Table 1. Time complexity analysis of the coarsening and uncoarsening stages for three parallel graph partitioners: mt-

metis (CPU-based), GKSG (GPU-based), and G-kway. The number of vertices is denoted as |� |, and � is the bufer size.

The parameters ��� , ��� , and ���� denote the number of available threads, levels, and refinement passes for mt-metis,

respectively. Similarly, ����� , ����� , ������ and ��� , ��� , ���� represent the corresponding values for GKSG and G-kway,

with �� indicating refinement iterations.

Partitioner Coarsening Stage Uncoarsening Stage

mt-metis (CPU-based) � (��� ×
|� |
���
) O(��� × ���� × � ×

|� |
���
)

GKSG (GPU-based) � (����� ×
|� |

�����
) � (����� × ������ × (� ×

|� |
�����

+
�×��� (�)

�����
))

G-kway (GPU-based) � (��� ×
|� |
���
) � (��� × ���� × (� ×

|� |
���
+
�×��� (�)

���
))

4.1 Coarsening Stage Comparison

During the coarsening stage, the coarsening algorithm reduces the graph size level by level until it falls below

the coarsening threshold, � . In the coarsening algorithm of mt-metis, vertices are distributed among CPU threads,

with each thread responsible for inding a matched neighbor for its assigned vertex. Thus, the time complexity

of this coarsening algorithm is
|� |
���

, where |� | is the number of vertices in the graph and ��� is the number of
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CPU threads. However, since the coarsening algorithm is applied at each level, the time complexity of mt-metis’s

coarsening stage is

� (��� ×
|� |

���
)

, where ��� represents the number of levels required for mt-metis to coarsen the graph below � .

For GKSG, the time complexity of the coarsening stage is similar to that of mt-metis, as it assigns 32 vertices to

a GPU warp (32 threads). Thus, the time complexity of GKSG’s coarsening algorithm is given by:

� (����� ×
|� |

�����
)

, where ����� denotes the number of levels required by GKSG, and ����� is the total number of available GPU

threads. However, since GKSG utilizes signiicantly more GPU threads compared to the CPU threads in mt-metis,
|� |

�����
is much smaller than

|� |
���

, leading to a reduction in the coarsening time.

For G-kway, its coarsening algorithm has a similar time complexity to that of GKSG, as both assign a GPU

warp to cooperatively process 32 vertices. However, unlike GKSG and mt-metis, which only allow two vertices

to be coarsened into a single coarsened vertex, G-kway’s union ind-based algorithm groups multiple vertices

into the same subset and coarsens them together in parallel. This approach signiicantly reduces the number

of required levels, ��� (i.e. ��� ≪ ����� ≈ ��� ) by substantially decreasing the graph size at each level, thereby

improving the eiciency of the coarsening stage.

4.2 Uncoarsening Stage Comparison

During the uncoarsening stage, the reinement algorithm is applied at each level to improve the partitioning result.

In mt-metis, the reinement algorithm consists of multiple passes, where in each pass vertices are distributed

among CPU threads. Each thread determines the destination partition of its assigned vertices by calculating the

gain for each boundary partition, resulting in up to � gain calculations. Thus, the time complexity of mt-metis’s

reinement algorithm is given by ���� × � ×
|� |
���

, where � denotes the number of partitions, ���� represents the

number of passes, and ��� is the number of available CPU threads. Additionally, since the reinement algorithm

is executed at each level, the total time complexity of mt-metis’s uncoarsening stage is

� (��� × ���� × � ×
|� |

���
).

In GKSG, the reinement algorithm assigns each GPU thread to a vertex, determines its destination partition,

and inserts vertices with positive gains into the bufer. The time complexity of this process is � ×
|� |

�����
. However,

to identify the vertices with the highest gains, GKSG requires an additional step to sort the bufer. This sorting step

has a time complexity of
�×���(�)

�����
, where � represents the bufer size. At each uncoarsening level, GKSG iteratively

executes its reinement algorithm until no further vertex movements improve the partitioning. Therefore, the

total time complexity is

� (����� × ������ × (� ×
|� |

�����
+
� × ���(�)

�����
))

, where ������ is the number of reinement iterations. Since ����� is much larger than ��� , GKSG’s reinement

algorithm processes vertices in parallel more eiciently than mt-metis, resulting in a faster runtime despite the

additional sorting cost.

For G-kway, the reinement algorithm has a similar time complexity to that of GKSG, as it also uses a bufer to

store and identify the vertices with the highest gains. However, unlike GKSG, which can move only 8ś16 vertices

per reinement iteration due to memory limitations imposed by its exponential enumeration algorithm, G-kway

can move thousands of vertices simultaneously in parallel. As a result, the number of reinement iterations
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in GKSG is signiicantly smaller than in GKSG (i.e., ���� ≪ ������ ), leading to a substantial speedup in the

uncoarsening stage.

5 Experimental Evaluation

We evaluate the performance of G-kway on six industrial circuit graphs (pci_bridge, vga_lcd, wb_dma, usb, tv80,

and mem_ctrl) generated by [13ś15], where regular graphs are used to represent timing graphs. Additionally, we

test G-kway’s performance on four large non-circuit graphs (ldoor, NLR, delaunay, and asia.osm) from DIMACS

Graph Partitioning Challenge [33] to demonstrate our applicability beyond CAD algorithms. Table 2 lists the

number of vertices and edges of each graph. We implement G-kway using C++17 and CUDA 12.4 and compile it

with nvcc on a host compiler of GCC-8 with -O3 enabled. We run experiments on a 64-bit Linux machine with 40

Intel Xeon Gold 6138 CPU cores at 2.00 GHz and 256 GB RAM. Our GPU is A6000 with 48 GB global memory.

Table 2. Benchmark Sizes

Name # Vertices # Edges

pci_bridge 12,394,539 15,809,551

vga_lcd 13,923,210 24,904,499

wb_dma 19,686,000 20,236,297

usb 25,215,939 31,630,268

tv80 13,102,222 17,759,671

mem_ctrl 6,422,461 8,455,835

ldoor 952,203 22,785,136

NLR 4,163,763 12,487,976

delaunay 16,777,216 50,331,601

asia.osm 11,950,757 12,711,603

Table 3. Overall comparison of runtime (second) and cut size among GKSG, mt-metis (32 threads), and G-kway at � = 2. The

last four columns represent the speedup and cut size improvement of G-kway over GKSG and mt-metis, respectively. The cut

size improvement over one shows that G-kway finds a beter cut size than the competitor.

Benchmark GKSG mt-metis G-kway Speedup vs Cut Size Improvement vs

Name Time (s) Cut Size Time (s) Cut Size Time (s) Cut Size GKSG mt-metis GKSG mt-metis

pci_bridge 0.89 5,114 3.21 4,773 0.27 4,293 3.5× 12.5× 1.2 1.1

vga_lcd 1.33 5,661 3.80 17,237 0.46 4,737 2.9× 8.4× 1.2 3.6

wb_dma 1.21 7,131 3.81 7,844 0.32 6,915 4.6× 14.3× 1.0 1.1

usb 2.03 7,933 6.97 10,283 0.58 6,709 3.5× 12.0× 1.2 1.5

tv80 0.70 2,575 2.46 3,094 0.26 2,457 2.6× 9.3× 1.0 1.3

mem_ctrl 0.62 7,368 1.35 7,126 0.26 6,976 2.4× 5.3× 1.1 1.0

ldoor 0.84 25,676 0.21 25,088 0.13 25,578 6.5× 1.6× 1.0 1.0

NLR 0.16 4,432 0.34 4,262 0.15 4,705 1.1× 2.3× 0.9 0.9

delaunay 0.48 12,650 2.23 8,614 0.27 8,463 1.8× 8.3× 1.5 1.0

asia.osm 0.96 9 1.30 8 0.11 7 9.1× 12.4× 1.3 1.1

Average 3.8× 8.6× 1.1 1.4

5.1 Baselines

We consider mt-metis v0.7.2 [22] and GKSG [9] as baseline partitioners. Mt-metis is a state-of-the-art CPU-parallel

graph partitioner that renovates the sequential Metis algorithm [20] to a parallel target using OpenMP. GKSG is a
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state-of-the-art GPU-accelerated graph partitioner. Since GKSG is not open-source, we implemented its algorithm

on our GPU except for the initial partitioning. Because the coarsest graph is typically very small, we do not

observe any advantage in using GPU. We set the imbalance ratio (�) to 0.03 and the coarsening threshold (� ) to
|� |

20×���2 (� )
. All data is an average of ten runs.

5.2 Overall Performance Comparison

Table 3 compares the overall runtime and cut size results among G-kway, GKSG, and mt-metis at � = 2. We

run mt-metis using 32 threads to achieve the best performance on our machine. In terms of runtime, G-kway

outperforms GKSG and mt-metis across all graphs, with an average speedup of 3.8× and 8.6×, respectively. The

largest speedups we observe are 9.1× over GKSG in asia.osm and 14.3× over mt-metis in wb_dma. The signiicant

improvement on runtime demonstrates the promise of our union ind-based coarsening and independent set-

based reinement algorithms. For the smallest graph, ldoor, G-kway still achieves 6.5× and 1.6× over GKSG and

mt-metis. We attribute this signiicant speedup to our eicient coarsening algorithm that eiciently coarsen

many vertices per subset, thus largely reducing the number of coarsening levels. Regarding cut size, G-kway

outperforms mt-metis and GKSG on nearly all graphs. For instance, on vga_lcd, our cut size is 3.6× better than

mt-metis. We attribute this improvement to our coarsening algorithm, which results in better-coarsened graphs.

Similar improvements can be found when comparing G-kway with GKSG.

5.3 Runtime Analysis

Figure 9 shows the speedup of G-kway over mt-metis (32 threads) and GKSG with diferent � on two circuit

graphs (wb_dma, tv80) and two non-circuit graphs (delaunay, ldoor). Regardless of � , G-kway is always faster

than mt-metis and GKSG. Compared to mt-metis, G-kway achieves over 6× and 10× for more than 80% and

40% of the partitioning problem instances, respectively. For large graphs, such as wb_dma, our speedups are

remarkable. The proposed GPU-accelerated coarsening and reinement algorithms bring signiicant performance

beneits to parallel graph partitioning. Similar speedup values can also be observed in the comparison with GKSG.

For instance, G-kway is 7× faster than GKSG on the wb_dma with � = 32.
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Fig. 9. The speedup of G-kway over mt-metis (top) and GKSG (botom) at diferent � .
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5.4 Cut Size Analysis

Figure 10 shows the cut size improvement ratio of G-kway over mt-metis (32 threads) and GKSG at � =

{2, 4, 8, 16, 32}. In general, G-kway can produce partitions with comparable quality to mt-metis and GKSG.

Compared to GKSG, G-kway inds partitions with signiicantly less cut size for delaunay. We attribute this to

our reinement algorithm. GKSG can only move a few vertices (e.g., eight) at one reinement iteration due to

the memory limitation of its exponential enumeration algorithm. On the other hand, our reinement algorithm

identiies a sequence of vertices through independent set inding and identiies the longest sub-sequence that

satisies the balance constraint. This approach allows G-kway to discover more valid moves in one iteration that

can lead to a better cut size. However, moving too many vertices simultaneously can sometimes trap us in a local

minima that produces a worse cut size than GKSG, such as tv80 at � = 32. Compared to other graphs, tv80 has

longer path connectivity among vertices which can beneit from more ine-grained reinement as GKSG.
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Fig. 10. The cut size improvement ratio of G-kway over mt-metis (top) and GKSG (botom) at diferent � .

5.5 Absolute Eficiency over mt-metis

Figure 11 shows the speedup of G-kway over mt-metis using diferent number of CPU threads at � = 32. Regardless

of the thread count, G-kway is always faster. For example, G-kway is 172× and 16× faster than mt-metis using

one and 32 threads. We observe that the performance of mt-metis begins to saturate at about 32 threads and

becomes worse beyond. For instance, using 40 threads is 20% slower than using 32 threads in mt-metis. We

believe this problem comes from both the internal threading overhead of mt-metis and the limitation of CPU

parallelism on throughput optimization when processing large graph data. Figure 12 illustrates the speedup of

G-kway over mt-metis (32 threads) on partitioning varying circuit sizes at two extreme � , 2 and 32. We randomly

add the vertices and edges of usb to generate diferent graph sizes from 400K to 15.6M. Below 400K, we do not

see much runtime diference between mt-metis and G-kway. However, as the graph size becomes larger than

1M vertices, we can see the absolute eiciency of GPU acceleration over CPU-based mt-metis. The speedup of

G-kway continues to enlarge as we increase the graph size.
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Fig. 11. The speedup of G-kway over mt-metis at various numbers of threads for tv80, wb_dma, and delaunay at � = 32. The

red line indicates the average speedup trend of the three graphs.
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Fig. 12. The speedup of G-kway over mt-metis at varying graph sizes modified from usb at � = 2 and � = 32.

5.6 Analysis of Coarsening with and without Scoring

Table 4 compares the cut size between G-kway with scoring (G-kway) and G-kway without scoring (G-kway−� )

to study the efectiveness of the proposed scoring-based coarsening. Compared to G-kway−� , G-kway achieves

better cut size at all � . G-kway−� fails to ind a solution that meets the balance constraint for the highly connected

ldoor at � = 8 and � = 32. Without scoring, G-kway−� group many vertices into the same subset, resulting in a

highly imbalanced coarsened graph. Such imbalance greatly impacts the partition results at later initial partition

and reinement stages.

Table 4. Cut size comparison in terms of reduction (↓) between G-kway with scoring (G-kway) and G-kway without scoring

(G-kway−� ) for ldoor and delaunay at �= {2, 8, 32}.

ldoor delaunay

� G-kway−� G-kway G-kway−� G-kway

2 44,064 25,578 (↓72%) 10,381 8,463 (↓23%)

8 ✗ 101,639 38,799 33,673 (↓15%)

32 ✗ 290,225 96,274 80,609 (↓19%)
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5.7 Analysis of Coarsening Threshold on Partitioning Performance

Table 5. Cut size and runtime (in seconds) comparisons with three coarsening threshold ( � ): � , 160 × � , and
|� |

20×���2 (� )
, for

partitioning graphs at two extreme � values: 2 and 32. If G-kway fails to find a balanced partition, the result is denoted as ✗.

Benchmark

� = 2 � = 32

� = � � = 160×� � =
|� |

20×���2 (� )
� = � � = 160×� � =

|� |
20×���2 (� )

Cut Size Time Cut Size Time Cut Size Time Cut Size Time Cut Size Time Cut Size Time

pci_bridge 4,271 0.15 4,188 0.14 4,293 0.27 ✗ ✗ 60,075 0.32 60,094 0.40

tv80 2,416 0.15 2,422 0.15 2,457 0.26 ✗ ✗ 7,596 0.17 7,869 0.25

NLR ✗ ✗ 4,519 0.14 4,262 0.15 ✗ ✗ 43,592 0.15 45,030 0.16

delaunay ✗ ✗ 83,482 0.21 8,463 0.27 ✗ ✗ 83,053 0.23 81,320 0.25

Table 5 compares the cut size and runtime achieved by G-kway when partitioning two circuit graphs (pci_bridge

and tv80) and two non-circuit graphs (NLR and delaunay) at two extreme � values, 2 and 32, with three coarsening

thresholds (� ): � , 160 × � , and
|� |

20×���2 (� )
. All data is an average of ten runs.

When � is set to � , G-kway fails to produce a balanced partition for the NLR and delaunay graphs at � = 2

and for all graphs at � = 32. Setting � to a very small value (e.g., �) requires many levels to suiciently reduce

the graph size. At later levels, vertex connections become denser as vertices are coarsened. This increase in

density causes G-kway’s union ind-based algorithm to coarsen many vertices together, leading to imbalances in

coarsened vertex sizes that make the later initial partitioning and uncoarsening stages struggle to ind a balanced

partition. On the other hand, setting � to 160 × � and
|� |

20×���2 (� )
produces a similar cut size. However, setting

� =
|� |

20×���2 (� )
increases the overall partitioning time, as � depends on the input graph size. For large graphs, �

can become signiicantly large, making the initial partitioning computationally expensive. To achieve the best

performance, we set � to 160 × � for the rest of our experiments.

5.8 Performance Enhancement Due to CUDA Graph

To evaluate CUDA Graph’s efectiveness in accelerating the uncoarsening stage, we selected six benchmarks with

diferent numbers of reinement iterations. Table 6 lists the size and maximum number of reinement iterations

for the six benchmarks used to evaluate G-kway with CUDA Graph-based uncoarsening (G-kway�). Additionally,

to demonstrate the importance of accelerating the uncoarsening stage, we analyzed the time distribution across

the three partitioning stagesÐcoarsening, initial partitioning, and uncoarseningÐusing the three largest circuit

graphs. Figure 13 shows the time distribution for partitioning vga_lcd, wb_dma, and aes_core at � = 2 and

� = 32. We observe that for large circuit graphs, uncoarsening can account for more than 80% of the total

partitioning time due to the large number of reinement iterations. The iterative kernel launches for reining

vertices introduce substantial overhead, making CUDA Graph particularly efective in reducing this overhead

and improving performance.

Figure 14 shows the speedup of G-kway� over the default G-kway during the uncoarsening stage for � = {2,

8, 16, 32, 64}. On average, G-kway� achieves a 1.27× speedup over G-kway, regardless of the value of � . The

largest speedup we observed is 1.93× for NLR at � = 64. However, for the benchmark asia.osm, which has a small

number of reinement iterations, G-kway� has a longer runtime than G-kway. This is because the accumulated

kernel launch overhead in asia.osm is relatively small, and the overhead of setting up the CUDA Graph outweighs

its beneits. Conversely, once the number of reinement iterations exceeds 20, the accumulated kernel launch

overhead becomes signiicant, and using CUDA Graph consistently speeds up the uncoarsening stage.
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Table 6. A list of the number of vertices, edges, and the maximum number of refinement iterations for six selected benchmarks

used to analyze CUDA Graph acceleration. The maximum number of refinement iterations is the highest observed across ten

runs for each value of � = {2, 8, 16, 32, 64}

.

Benchmark # Vertices # Edges Maximum # Reinement Iterations

NLR 4,163,763 12,487,976 32

AS365 3,799,275 11,368,076 35

wb_dma 131,240 275,936 1,899

vga_lcd 795,612 1,302,327 6,698

aes_core 200,253 322,340 2,052

asia.osm 1,1950,757 12,711,603 15
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Fig. 13. Time distribution among the coarsening, initial partitioning, and uncoarsening stages for the three largest circuit

graphsÐwb_dma, vga_lcd, and aes_coreÐat � = 2 and � = 32.
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Fig. 14. The speedup of G-kway with CUDA Graph-based uncoarsening, G-kway� , over the default G-kway during the

uncoarsening stage at � = {2, 8, 16, 32, 64}.
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5.9 CUDA Graph Time Breakdown

Figure 15 illustrates the breakdown of time spent on three graph operationsÐgraph creation & update, graph

launch, and graph instantiationÐfor the benchmark with the largest number of reinmenet iterations, vga_lcd.

Among the three operations, graph launch is the most time-consuming operation. Furthermore, because this

operation is called multiple times, the cumulative time spent on graph launches accounts for the majority (87%)

of the total execution time. Graph instantiation is the second most expensive operation; even though G-kway�

only instantiates the graph once, this operation contributes 12% to the total graph execution time. On the other

hand, the cost associated with creating and updating the CUDA Graph is minimal, accounting for just 1% of the

overall execution time.

!"
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Fig. 15. The breakdown of total graph execution time spent on each operation, including creation & update, launch, and

instantiation, for vga_lcd in G-kway� .

Table 7. The maximum number of host calls for graph creation, instantiation, and launch for G-kway� and G-kway�,−����

was observed across ten runs for each value of k = {2, 8, 16, 32, 64}. Both G-kway� and G-kway�,−���� implemented CUDA

Graph-based uncoarsening. However, G-kway� uses a CUDA Graph conditional node to manage control flow on the GPU,

while G-kway�,−���� omits the conditional node, relying on the host for control flow management.

Benchmark
G-kway� G-kway�,−����

Graph Creation Graph Init Graph Launch Graph Creation Graph Init Graph Launch

wb_dma 1 1 3 2 2 1,902

vga_lcd 1 1 4 2 2 6,702

aes_core 1 1 3 2 2 2,055

AS365 1 1 6 2 2 41

NLR 1 1 6 2 2 38

asia.osm 1 1 6 2 2 21

5.10 Analysis of CUDA Graph with and without CUDA Graph Conditional Nodes

Table 5 compares the number of host calls for graph creation, instantiation, and launch between G-kway� , which

employs a CUDA Graph with a conditional node, and G-kway�,−���� which employs a CUDA Graph without

a conditional node. All data is an average of ten runs. With a conditional node, G-kway� enables the GPU to

manage the iterative control low of the reinement algorithm, encapsulating all GPU kernels within a single

CUDA Graph. As a result, only one graph creation and instantiation call is needed, and each uncoarsening level
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requires just a single host call to launch the uncoarsening graph. This approach minimizes the number of host

calls, leading to a more eicient execution of the uncoarsening stage. In contrast, without a conditional node,

G-kway�,−���� requires the host to manage the iterative control low by isolating the GPU kernels that involve

control low into a separate CUDA Graph. Consequently, for all benchmarks, G-kway�,−���� needs twice as many

graph creation and instantiation calls as G-kway�, introducing additional overhead in setting up the CUDA

Graphs. Furthermore, for each iteration, the host must iteratively evaluate the control low condition and launch

the graph involved in control low. As a result, G-kway�,−���� invokes graph launches numerous times, leading

to substantial overhead due to frequent host intervention and graph launches.

Table 8. Cut size and runtime (in seconds) comparisons with varying imbalance ratio (�) of 0.03 and 0.3, when partitioning

graphs at two extreme � values: 2 and 32.

Benchmark

� = 2 � = 32

� = 0.03 � = 0.3 � = 0.03 � = 0.3

Cut Size Time Cut Size Time Cut Size Time Cut Size Time

pci_bridge 4,188 0.14 4,001 0.14 61,612 0.32 8,618 0.17

tv80 2,422 0.15 2,302 0.15 8,141 0.17 5,353 0.16

NLR 4,519 0.14 4,477 0.14 43,592 0.15 43,101 0.15

delaunay 9,664 0.21 9,194 0.21 83,053 0.23 80,673 0.23

5.11 Impact of Imbalance Ratio on Partitioning Performance

Table 8 compares the cut size and runtime of G-kway when partitioning two circuit graphs (pci_bridge and tv80)

and two non-circuit graphs (NLR and Delaunay) at two extreme values of � (2 and 32), with two imbalance ratios

�: 0.03 and 0.3. All data is an average of ten runs. Regardless of the � value, a higher imbalance ratio enables

G-kway to consistently achieve a better cut size by allowing more vertices to move across partitions, thereby

improving partition quality. However, while a larger imbalance ratio allows G-kway to move more vertices

to enhance partition quality, it does not increase partitioning time. We attribute this eiciency to G-kway’s

independent set-based reinement, which can simultaneously move thousands of vertices.

6 Conclusion

In this paper, we have introduced G-kway, an eicient GPU-accelerated multilevel �-way graph partitioner.

G-kway features a union ind-based coarsening algorithm that signiicantly reduces the number of levels and an

independent set-based reinement algorithm that can move many vertices in parallel. For graphs with signiicant

kernel launch overhead, G-kway leverages CUDA Graph-based coarsening to reduce the overhead and further

enhance performance. Experimental results have shown that G-kway outperforms the state-of-the-art CPU-based

and GPU-based parallel partitioners by 8.6× and 3.8× faster while achieving comparable partitioning quality.

Additionally, G-kway with CUDA Graph-based uncoarsening can further accelerate graph partitioning, achieving

up to 1.93× speedup over the default G-kway. As part of our on-going work [23, 24], we plan to accelerate

hypergraph partitioning using CUDA Graph.
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