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Abstract—CUDA Graph has shown potential in recent GPU-accelerated
statistical static timing analysis (SSTA) propagation applications. By rep-
resenting dependent SSTA tasks as a task graph and reusing the execution
flow, CUDA Graph eliminates repetitive kernel launch overhead and
improves task asynchrony. This enables more efficient scheduling of SSTA
propagation tasks across logic gates. However, application-given CUDA
graphs are often suboptimal, as they focus on capturing circuit structures
while overlooking GPU resource availability and scheduling constraints.
Unfortunately, the latter heavily relies on the CUDA Graph runtime,
which is essentially a black box. To tackle this challenge, we propose
a Reinforcement Learning (RL)-based framework that optimizes CUDA
graphs by learning to restructure SSTA graphs through interactions with
the CUDA Graph runtime. Specifically, we formulate graph restructuring
as a node-level adjustment problem and solve it by dynamically appending
auxiliary edges to the graph during RL decision-making. To enable more
informed decisions for our RL agent, we leverage Graph Neural Networks
(GNNs) to encode both the graph structure and the application needs.
Compared to the original application-given CUDA graph, our optimized
CUDA graph can achieve up to a 12% runtime improvement.

I. INTRODUCTION

Statistical static timing analysis (SSTA) is a critical step in Electronic
Design Automation (EDA) as it enables more accurate delay estimation
than traditional static timing analysis (STA) by modeling on-chip
process variation (OCV) as random variables [1], [2]. For example,
[3] uses numerical integration to estimate circuit yield by exploring
device parameter combinations, while [4] models gate delays as random
variables and propagates rise and fall arrival time statistically through
the timing graph. As design complexity continues to grow, manufac-
turing variations have introduced a broad range of OCVs that SSTA
algorithms must evaluate during propagation. Despite the daunting
computational cost, many computations are structurally independent
across gates, transitions, and variation dimensions, revealing substan-
tial opportunities for data parallelism. This parallelism makes SSTA
propagation well-suited for GPU acceleration, which has emerged as a
promising solution to meet its growing performance demands [5]-[9].

However, conventional GPU execution models (e.g., CUDA streams)
face significant challenges in efficiently scheduling SSTA workloads.
In practice, SSTA workloads involve repeated propagation over the
circuit graph across different inputs and statistical values [1]. This
leads to frequent kernel launches, which can accumulate to expensive
synchronization costs when kernels are iteratively offloaded through
one or more CUDA streams. To address this challenge, the recent state-
of-the-art [5] leverages CUDA Graph to model SSTA propagation as a
GPU task graph. Specifically, instead of launching kernels individually,
CUDA Graph allows the execution flow to be constructed once and
replayed multiple times with minimal CPU intervention, eliminating
redundant kernel launches and reducing synchronization costs. This
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particularly benefits many SSTA propagation algorithms, where similar
computational patterns are repeatedly executed across different timing
scenarios [5].
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Fig. 1: The original SSTA CUDA graphs leave at least 8% to 20%
performance on the table, with the baseline derived from the minimum
of 10,000 sampled graphs.

Despite the runtime improvement of CUDA Graph on SSTA work-
loads [5], application-given CUDA graphs are often suboptimal. For
instance, in Figure 1, we evaluate six SSTA benchmarks by generating
multiple variants of the application’s original CUDA graph. Each
sampled graph is created by randomly inserting a small number of
auxiliary edges. When comparing runtime performance, we observe
that the original graph was 11% slower on cI7 and 20% slower
on s27 than the best-performing sampled graph. This highlights the
potential for graph restructuring to enhance execution efficiency. A
key factor behind this performance gap is that the application’s CUDA
graphs prioritize capturing circuit structure but overlook GPU resource
availability and scheduling constraints. This oversight often results in
resource contention (e.g., multiple tasks competing for limited GPU
resources) and reduced task parallelism, as tasks are forced to wait
instead of executing concurrently. Unfortunately, the CUDA Graph
runtime operates as a black box, with scheduling details hidden as
proprietary information. This constraint makes it challenging to design
a general-purpose heuristic that can optimize SSTA CUDA graphs
across different GPU environments.

Despite the black-box challenge, this problem is particularly well-
suited for Reinforcement Learning (RL) [10]-[13], as RL can effi-
ciently explore the complex graph search space and adapt to hidden
scheduling behaviors through interactions with the CUDA Graph run-
time. For instance, existing work [12] uses RL to adaptively optimize
task scheduling for resource efficiency, while DRAS [13] leverages
RL to automatically learn and converge to optimal scheduling policies



in HPC clusters. Inspired by the success of RL-based schedulers
in adaptively optimizing decisions under complex constraints and
dynamic runtime conditions, we propose an RL-based framework to
optimize CUDA Graph scheduling for SSTA propagation workloads.
We summarize our technical contributions as follows:

o« We formulate the CUDA Graph scheduling on SSTA propagation
workloads as a node-level adjustment problem. With this problem
formulation, we transform a complex scheduling challenge into a
learnable problem that adjusts node levels in the application’s CUDA
graph.

« We leverage Graph Neural Networks (GNNs) to capture structural
information from both the application workload and the CUDA
graph, enabling informed decisions and enhancing the scheduling
optimization process.

« We introduce an RL-based framework to solve the node-level adjust-
ment problem. By interacting with the CUDA Graph runtime, the RL
agent adaptively learns to restructure the graph, ultimately generating
an optimized CUDA graph for improved scheduling performance.
We have evaluated our framework on a set of industrial SSTA

benchmarks [5]. For an application-given CUDA graph (i.e., original

input CUDA graph), which mainly considers circuit graph structures,
our framework generates an optimized CUDA graph by learning to
restructure the original input CUDA graph through interactions with the

CUDA Graph runtime, achieving up to 12% runtime improvement over

the application-given CUDA graphs. Notably, our framework requires

no changes to application-level algorithms, but instead restructures
the given CUDA graph to guide the CUDA runtime toward better
scheduling performance.

II. SCHEDULING SSTA PROPAGATION GRAPH ON GPU

In this paper, we consider the SSTA propagation workload in [5] as
our problem formulation: Given an SSTA propagation graph, as illus-
trated in Figure 2(a), timing variations for gates and interconnections
are modeled with random variables and stored in arrays, including
voltage fluctuations (AV), temperature shifts (AT'), channel length
deviations (A L), and so on. In order to deal with various corner cases,
each gate has up to 65536 data points where each point represents one
statistical phase.! During timing propagation through the circuit, each
gate contributes the gate delay to the arrival times at its fan-in edges
using statistical min/max operations. Delay computations are repeatedly
performed for early and late modes, as well as for rise and fall
transitions, across multiple corner cases within the SSTA propagation
graph. Due to their structural independence across gates, rise/fall
transitions, and variation dimensions, these computations exhibit a high
degree of data parallelism and are well-suited for GPU acceleration.

Figure 2(b) illustrates how [5] leverages CUDA Graph to execute an
SSTA propagation graph from Figure 2(a). The algorithm (1) models
circuit pins as CUDA kernels and timing dependencies as edges to
capture the graph structure, and (2) inserts a unique memory copy
operation before each kernel to transfer the corresponding statistical
data points from an array. After the construction, the algorithm outputs
a CUDA graph that represents the SSTA propagation graph. Our goal
here is to restructure the CUDA graph provided by the application.
Instead of modifying application-level algorithms or kernels, we insert
a small set of auxiliary edges to guide the CUDA Graph runtime toward
better scheduling performance.

III. PROPOSED FRAMEWORK

We propose an RL-based framework to generate an optimized CUDA
graph of SSTA workloads through interactions with CUDA Graph

IThis problem formulation originates from a real-world challenge faced by
our industry partners at a leading EDA company. While proprietary details
cannot be disclosed, we abstract the core scheduling difficulties and practical
constraints into a high-level formulation.
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Fig. 2: (a) An SSTA propagation graph. Gate timing (blue) and arrival
timing (red) are modeled as random variables in arrays and propagated
through the circuit graph using statistical max and min operators. (b)
The corresponding CUDA graph of (a). Circles are kernel operations
and gray rectangles are memory copy operations.

runtime. We formulate the generation of an optimized CUDA graph
as a node-level adjustment problem, which simplifies the scheduling
to an appending of edges in the graph and is easy for the RL agent to
learn in the decision-making process. Specifically, we move nodes to
new levels through the insertion of auxiliary edges, which results in a
new CUDA graph without violating the topology order of the original
graph description. Figure 3 shows this formulation.
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Fig. 3: Illustration of the node-level adjustment formulation. The red
edge moves node 2 from level 1 to level 3, resulting in a new graph
that potentially alleviates the contention among nodes 3, 4, and 5.

With the node-level adjustment formulation, our RL-based frame-
work comprises two modules. The first module generates a latent node
embedding, encapsulating both node attributes and graph topology. The
second module uses the node embedding to adjust node levels and
generate a new CUDA graph for the CUDA Graph runtime to execute.
The framework learns from the feedback returned by the CUDA Graph
runtime to iteratively improve our CUDA graph. Figure 4 illustrates an
overview of the proposed framework.

A. Graph Neural Network Module

To generate a better CUDA graph, we need structural information
in making the decisions. The information we consider includes both
node attributes, which capture the inherent characteristics of each
kernel, and the graph topology, which reflects the dependencies and
connectivity between kernels. To encode the information, we employ
GNN [14] as the first module, as shown in Figure 4. The GNN
module comprises three essential components: adjacency matrix, which
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Fig. 4: Overview of the framework. The framework consists of two modules: The first module is GNN and is used to encode the node attributes
and graph topology and generate a latent representation node embedding. The second module is an RL model that uses the node embedding as
a state and generates a new CUDA graph for the CUDA Graph runtime to run.

encodes the connectivity between nodes; node feature, which represents
the initial attributes of each node; and message passing mechanism,
which enables information propagation across the graph. Using these
components, the GNN module effectively captures complex relation-
ships and dependencies within the CUDA graph, providing a rich
representation for subsequent decision-making.

1) Adjacency Matrix: The adjacency matrix is the first component
and is used to define the connectivity structure of the graph and
guide the process in the third component message passing. The matrix
represents the relationships between nodes. A non-zero entry at position
(4,7) indicates the presence of an edge pointing from node 4 to node
j, while a zero entry signifies the absence of such a connection. In the
third component message passing, the adjacency matrix acts as a filter,
determining which nodes exchange information with each other.

2) Node Feature: The node feature is responsible for incorporating
both node attributes and graph topology into a unified representation.
Each node in the input graph represents a kernel operation (preceded by
an implicit memory copy) and is characterized by six distinct elements.
Three of these elements represent the node’s resource requirements.
Thread counts indicate the number of threads needed for a kernel
execution, block counts indicate the number of blocks required,
and memory copy size represents the data size copied from the
CPU to the GPU for that node. The remaining three elements en-
code the graph topology, capturing both local and global properties
of the graph. Node level indicates the node’s level within the
graph, fanin count represents the number of incoming edges, and
fanout count represents the number of outgoing edges. Figure 5
illustrates the node feature for all nodes. To avoid larger-magnitude
features from overshadowing others and ensure that all features con-
tribute equally to the learning process, we normalize every element
between 0 and 1.
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Fig. 5: Example of the node feature for all nodes on the left graph.

3) Message Passing: The message passing, the third component of
our GNN, serves as the fundamental mechanism for encoding node
feature and generating the latent representation node embedding. This
process involves iteratively propagating information between neighbor-
ing nodes, enabling the network to learn complex relationships within

the graph. During each iteration, each node aggregates information
from its neighbors’ previous representations and combines it with the
node’s own features. For example, for the graph in Figure 5, node
6 aggregates information from both nodes 3 and 5. This aggregation
process allows information to flow between nodes across the graph.
By repeating this message passing procedure multiple times, we can
capture increasingly long-range dependencies, allowing the network to
learn sophisticated representations that reflect the global structure of
the graph. In this framework, we employ a two-hop message passing
approach, meaning every node propagates its information to nodes two
hops away (e.g., node 2 propagates information to node 6 in Figure 5).
We utilize a popular graph convolutional network (GCN) [15] as the
underlying network architecture because we do not observe significant
runtime difference in our evaluations using other architectures, such as
GraphSAGE [16].

B. Reinforcement Learning Module

We leverage an RL agent as the second module to learn to generate
an optimized CUDA graph through interactions with the CUDA Graph
runtime. The RL agent receives node embedding, which encapsulates
structural information, from the GNN module. Based on these em-
beddings, the agent suggests actions, which correspond to node-level
adjustments, ultimately resulting in a new CUDA graph. After the
CUDA Graph runtime executes the new graph, the agent receives the
execution time as feedback. We model this learning process using RL’s
four fundamental components:

« State (s): A representation of the current situation of the environment
that the agent perceives, which is the node embedding in the work.
Action (a): A choice made by the agent that influences the envi-
ronment, which is the level adjustment of nodes in this work. As
each node resides at a specific level, the agent adjusts a target node
from its current level to a new level. The action space is limited
to three elements: {0, 1, 2}. Action 0 denotes that the target node
remains at its current level. Action 1 denotes a transition to the next
level (current level plus one) and Action 2 denotes a transition to
the level two steps away (current level plus two). We intentionally
limit the action space to avoid higher-level adjustments, as they tend
to serialize CUDA Graph execution and degrade performance.
State transition: The change in the environment’s state that occurs
as a result of the agent taking an action, including the changes of
level, fanin and fanout.

Reward (r): A signal that CUDA Graph runtime provides to the RL
agent after the agent takes an action in a particular state. In this work,
we focus on minimizing the execution time (ET) of a CUDA graph.
Therefore, we design the reward function to reflect this objective:

ey

reward = 7(ETafter _ ETbefore),



where ET™™* and ET*"" denote the normalized execution times

before and after the action, respectively. Note that minimizing ET is

equivalent to maximizing the reward.

To solve the RL problem, we leverage the Deep Q-learning (DQN)
algorithm [17]. We do not choose traditional methods [18], such as
value iterations, because they are computationally intractable in high-
dimensional environments. DQN solves the problem by employing
deep neural networks to approximate the Q—function, which rep-
resents the expected cumulative reward for taking an action (@) in a
given state (s), denoted as Q(s,a). The Q-function effectively maps
state-action pairs to their corresponding Q-values, enabling the agent
to make informed decisions. Next, we discuss how to adapt the DQN
algorithm to suggest an action and obtain a CUDA graph with the
components, policy network, target network, replay buffer, and action
to graph, as shown in Figure 4.

1) Policy and Target Network: The policy network, a fully connected
neural network, maps a state (represented by node embedding) to
an action, which corresponds to node-level adjustments. The policy
network has a layered architecture comprising 3072 neurons in the
input layer, 256 neurons in the second layer, 64 neurons in the third
layer, and 3 neurons in the output layer. The network receives the node
embedding, forwarded by the GNN module, as its input state. Then
the network processes this state information through the two hidden
layers. Finally, the network outputs a set of three Q-values. Each Q-
value corresponds to the expected reward associated with a specific
action that adjusts the level of a target node in the graph. The first Q-
value corresponds to action 0, which does not adjust the target node’s
level. The second Q-value corresponds to action 1, which increments
the current level by 1, and the third Q-value corresponds to action
2, which increments the current level by 2. To balance exploration
and exploitation during the learning process, we employ the e-greedy
strategy [18] in determining the action. This strategy allows the agent
to explore new actions with probability € and exploit the learned policy
with probability 1 — e.

In addition to the policy network, we incorporate a separate network,
the rarget network, which plays a crucial role in stabilizing the training
process. The target network maintains an identical architecture to
the policy network, but its weights are updated less frequently. This
separation is essential for mitigating the overestimation bias [19],
a common issue in DQN that can lead to unstable training. We
periodically copy the weights from the policy network to the target
network using a soft update mechanism [20], expressed in the equation:

0 =10+ (1 ~-1), 2)

where ' denotes the parameters of the farget network, 6 denotes the
parameters of the policy network, and 7 denotes the update rate of
the target network. This soft update approach allows for a gradual and
controlled transfer of learned information from the policy network to
the rarget network. We use the target network to evaluate the expected
Q-value of the action suggested by the policy network. This evaluation
provides an unbiased estimate of the Q-value for the next state, crucial
for accurate learning. The expected Q-value is calculated using the
equation:

Qea:pected =r4q ID(?,X Q(S/, a)7 (3)

where v represents the discount factor, reflecting the importance of
future rewards, and s’ denotes the state after the action is executed,
reflecting the updated environment.

During the training phase, we employ the Huber loss function [21]
to address the challenge of outliers in noisy Q-value estimates, which
are common in RL. Our objective is to minimize the Huber loss. The
mathematical definition of the Huber loss is shown below:

L= {lé Zeararen(l) if 0] <1,

ﬁ D (sarsenl0] — o otherwise.

where

5= Q(S, a) _ Qezpected- (4)

Once we calculate the loss, we leverage backpropagation to propa-
gate the error signal through the entire model. To improve convergence,
we stop propagating the error signal to the GNN model after 10 epochs
in our evaluation. Finally, we utilize the Adam optimizer [22].

2) Action to Graph: The action-to-graph component serves as the
link between the policy network’s output and the physical modification
of the CUDA graph. It performs a transformation that converts the
action proposed by the policy network into a concrete change within
the graph, that is, the appending of a new auxiliary edge. Each action,
taking values of 0, 1, or 2, corresponds to a level adjustment for a
given target node. These adjustments are : (1) maintaining the current
level (action 0), (2) incrementing the level by one (action 1), or (3)
incrementing the level by two (action 2). When action 0 is suggested
by the policy network, it implies that no change is needed for the
target node’s level. However, when actions 1 or 2 are suggested, they
necessitate the addition of an auxiliary edge to facilitate the target
node’s transition to the new level.
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Fig. 6: Illustration of using bucket list to convert an action to an edge.
(a) A graph with 5 edges and 6 nodes within 3 layers. (b) A bucket

list for node 2. (¢c) A new graph after moving node 2 from level 1 to
level 3. The red dash edge is the auxiliary edge.

To add a new auxiliary edge for a target node, a straightforward
approach is to connect the target node at its new level to a randomly
selected node at the immediately preceding level. For example, as
illustrated in Figure 6(a), an edge from node 1 to node 2 facilitates
node 2’s transition from level 1 to level 2. However, this design can
introduce cycles within the graph, particularly when a successor node
is involved in the random selection process. Consider Figure 6(a), if
node 5, which is a successor of node 2 and randomly selected from
level 2, is connected to node 2 to transition node 2 to a new level
(level 3), a cycle is immediately introduced. Therefore, we require a
mechanism to explicitly exclude successors of a target node from the
random selection process, ensuring that the graph remains acyclic.

To prevent cycles while introducing an auxiliary edge for a target
node, we construct a bucket list for each node. Each bucket list is an
associative container that stores key-value pairs. The key represents a
level, and the value is a set of nodes located at that level. Crucially,
this bucket list excludes all the successor nodes of the target node.
For instance, as illustrated in Figure 6(b), the bucket list for node 2 in
Figure 6(a) contains two entries: {level 1: node 1} and {level 2: {nodes
3,4} }. Notably, this bucket list intentionally omits node 2’s successors,
nodes 5 and 6. This design enables a straightforward selection of a non-
successor node, such as node 4 at level 2, to add a new edge to node 2.
This edge addition transitions node 2 from level 1 to level 3, as shown
in Figure 6(c). With this design, we can efficiently convert an action
suggested by the policy network into a new edge without introducing
any cycles into the resulting CUDA graph.

3) Replay Buffer: Replay buffer serves as a memory mechanism in
the RL module for a stable and effective learning. We store a collection
of transitions which consists of the current state, the suggested action,
the received reward, and the next state. By storing these transitions, the
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Fig. 7: Training loss and rewards achieved by the RL policy.

agent is able to learn from past interactions. During training, the agent
randomly samples batches from the replay buffer, which breaks the
correlation between consecutive transitions and enables more efficient
learning.

IV. EXPERIMENTAL RESULTS

We implemented our framework using C++17 and CUDA 12.2 and
compiled the program with the nvcc compiler on a host compiler of
g++11.4 with -std=c++17 and -O3 enabled. We used Pytorch to train
and test the model. We ran all the experiments on a Ubuntu Linux
22.04 machine with 20 Intel i5-13500 CPU cores at 4.8 GHz and 128
GB RAM, and an Nvidia RTX A4000 GPU.

A. Benchmarks and Baseline

We evaluated the runtime performance on 12 circuit graphs derived
from the [5]. Each circuit graph represents an SSTA propagation graph,
as detailed in Section II. The statistical timing quantities of varying
batch size B for each pin were sampled from a normal distribution.
Table I presents the statistics of the 12 circuit graphs used in the
evaluation, with the default batch size B set to 64, meaning that we
calculated a pin’s 64 data points concurrently per iteration. To finish
65536 data points, each benchmark requires 1024 iterations. We used
the application’s original CUDA graph as the baseline, which also
represents the GPU-accelerated solution provided by [5], [23].

B. Training

We trained our model on a synthetic circuit derived from [5]. To
ensure generalization, the training and testing phases used different
circuit instances. We used the following hyper-parameters: target net-
work update rate of 0.005, discount factor of 0.99, training iterations
of 100, initial € of 1.0, final € of 0.05, € decay rate of 0.997, learning
mini batch size of 16, and Adam optimizer learning rate of 0.0001.
Figure 7 shows the training error and the rewards achieved by the
RL policy. The left plot demonstrates a rapid decay in training loss,
indicating effective policy learning. The right plot shows the RL policy
converging to rewards between 5 and 7.

C. Overall Performance Comparison

Table I presents the runtime performance of the baseline and our
solution. Our solution consistently outperforms the baseline across all
benchmarks with batch size 64. For instance, our solution achieves
a 12% runtime improvement over the baseline for s27. Similarly,
for c2670, we observe a 3.6%. The reason is the following. The
baseline exhibits excessive task parallelism, which, while seemingly
beneficial, can introduce resource contention that ultimately degrades
runtime performance. Our framework appends edges within the CUDA
graph to slightly reduce task parallelism in favor of improved resource
utilization. This controlled parallelism aims to achieve a balance
between task execution and scheduling management, leading to overall
improved performance compared to the baseline. Note that the runtime
improvement may appear small for some benchmarks (e.g., 3% on
usb_phy), but in practice, the gain can accumulate to hours as SSTA
applications must run many iterations across different input values

TABLE I: Runtime comparison and circuit statistics of the benchmarks.
The batch size in this table is 64. T2 and T denote the runtime of
the baseline and ours, respectively. At denotes the runtime difference
between the baseline and ours. Impr. denotes the runtime improvement
of our CUDA graph over the baseline. ||E ||l denotes the number of
edges in the new CUDA graph generated by our framework.

Benchmark | [V [[E|| | TE(s) T9(s) At(s) Impr |E|
cl7 75 78 33281 306.19 2661 8% 89
27 81 87 332.84  292.89 3995 12% 95
cl7_2 150 156 | 33347  314.8 1867  56% 162
$27.2 243 261 335.8 308.6 272 81% 271
432 483 619 | 360.51 33023 3028 84% 633
c499 604 742 | 34254 32062 2192  64% 760
344 526 625 338 31772 20.28 6% 640
$349 550 649 | 340.63  325.64 1499  4.4% 664
2670 1365 1665 | 437.76 422 1576  3.6% 1685
s1196 1854 2344 | 49474 47495  19.79 4% 2366
$1494 2292 2925 | 53996  524.84 1512  2.8% 2950
usb_phy 2447 2999 | 5408 52458 1622 3% 3036
Average 2223 s 6%
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Fig. 8: Plot of runtime improvement of our framework over the baseline
on seven benchmarks with five different batch sizes.

and configurations [5]. More importantly, this runtime gain comes
at little cost to developers, as our framework requires no changes to
application-level algorithms but simply restructures the CUDA graph
to guide the runtime toward better scheduling performance.

These results highlight that batch size is a critical factor in maxi-
mizing the benefits of our optimized CUDA graph. We observe that
the runtime improvement becomes smaller at a larger batch size. For
example, in Figure 8, when running s27_2, the improvement decreases
from 8.1% with batch size 64 to 2.6% with batch size 4096. We
attribute this result to the increased computational load associated
with larger batch sizes. Apparently, as kernel computation begins to
dominate overall runtime, the relative benefit of improved scheduling
diminishes. However, we should also notice that larger batch sizes incur
higher GPU memory usage, which in turn limits the maximum circuit
size that can be processed on a single GPU.

Our RL algorithm always brings positive benefits, as it does not
modify any application-level algorithms, but restructures the given
CUDA graph to guide the CUDA runtime toward better scheduling
performance. These edges facilitate improved scheduling by adapt-
ing the application’s needs (i.e., application-level information) to the
changing environment on GPU. However, excessive edge additions can
potentially serialize CUDA Graph execution, leading to performance
degradation. Our framework strikes a balance by minimizing the num-
ber of auxiliary edges added. In Table I, our framework consistently
introduces a small number of auxiliary edges. For instance, in the
usb_phy circuit with batch size 64, our CUDA graph includes only 37
additional edges. Figure 9 visualizes the application’s original CUDA
graph and the optimized CUDA graph from our RL algorithm. Our
framework added two edges to reduce scheduling overhead caused by
excessive task parallelism in the application’s CUDA graphs.

D. Quality of Result

In addition to the runtime comparison, we evaluate the Quality
of Result (QoR) by judging how close each CUDA graph is to



(a) Original CUDA graph

(b) RL-optimized CUDA graph

Fig. 9: Partial c/7 CUDA graph visualization: (a) application’s original,
(b) our optimized CUDA graph. Blue/red dashed cycles indicate
changes due to blue/red edge additions. White circles denote kernels
and gray denote memory copies.
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Fig. 10: QoR between the application-given and our optimized CUDA
graphs. A value closer to 1 indicates better QoR.

the potentially best result. Specifically, we generated 10,000 distinct
CUDA graphs per benchmark by randomly appending auxiliary edges
to the application’s original CUDA graph. Then, from these 10,000
sampled graphs, we extracted the minimum and maximum runtimes
and normalized them to [0, 1] to establish the potentially best and worst
performance bounds. We can express QoR as follows,

=1- :
QOR (Tmaz — Tmin

) (%)
where 7™ and T™*" denote the sampled minimum and maximum
runtime, respectively. In Figure 10, our optimized graph consistently
exhibits a higher QoR compared to the baseline. For example, on the
¢2670 benchmark with batch size 128, our solution achieves a normal-
ized QoR of 0.96, compared to 0.9 for the baseline. Furthermore, the
majority of our optimized CUDA graphs have QoR over 0.8, indicating
a close proximity to the best sample, whereas the baseline typically
falls between 0.6 and 0.8. This result highlights the effectiveness of
our approach in consistently generating higher-quality CUDA graphs.
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Fig. 11: Histogram of the random edge insertion approach on c¢/7 and
usb_phy. 2000 different CUDA graphs were generated by randomly
appending the same amounts of auxiliary edges as our solution to the
application’s original CUDA graph. Only a small portion (~ 5%) of
the 2000 CUDA graphs perform better runtime performance as our
optimized CUDA graph (indicated by the vertical red line).

E. Comparison with Random Edge Insertion

To further validate the effectiveness of our framework, we imple-
mented a method that randomly inserts the same quantity of auxiliary
edges as ours into the original CUDA graph. The goal is to show that
blindly inserting edges without a learning-guided process yields limited
or even negative performance improvement. As shown in Figure 11,
we randomly inserted 11 and 37 edges into the application’s c/7 and
usb_phy CUDA graphs, ran this experiment 2000 times, and recorded
the runtime for each run. We notice that only a small fraction of
CUDA graphs can achieve performance comparable to our RL-based
solution. For example, on the usb_phy benchmark, fewer than 5% of
CUDA graphs match the performance of our RL-optimized CUDA
graph. We attribute this finding to the fact that our framework learns to
identify beneficial edge insertions by interacting with the CUDA Graph
runtime and adapting to its hidden scheduling mechanisms. In contrast,
the non-learning approach inserts edges randomly without leveraging
system feedback. While random insertion may occasionally yield good
performance after many attempts, most resulting CUDA graphs fail to
deliver decent improvements.

V. CONCLUSIONS

We have proposed a reinforcement learning-based framework to
optimize CUDA Graph scheduling on SSTA propagation workloads.
We have formulated the CUDA Graph scheduling as a node-level ad-
justment problem. To solve the problem formulation, we have leveraged
a graph neural network to encode structural information and employed
a deep Q learning algorithm to interact with CUDA Graph runtime
and generate an optimized CUDA graph. Compared to the baseline, we
achieved up to 12% runtime improvement. Notably, this performance
improvement is almost free, as our framework requires no changes to
application-level algorithms, but simply restructures the application’s
given CUDA graph to guide the CUDA Graph runtime toward better
scheduling performance. In the future, we plan to extend our algorithms
to other applications powered by task graph parallelism [7]-[9], [11],
[12], [23]-[91].
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