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Abstract—Graph partitioning is fundamental in many computer-aided
design (CAD) applications, as it decomposes large problems into more
manageable subproblems. State-of-the-art frameworks often count on the
Fiduccia-Mattheyses (FM) algorithm to iteratively refine partition quality.
However, the solution quality of FM heavily depends on the quality of
the initial partition, which is typically generated randomly and can lead
to suboptimal results. To address this issue, we propose a reinforcement
learning (RL)-based algorithm to generate high-quality initial partitions
that improve the final solution quality of the FM algorithm. By designing a
reward function that promotes cut size reduction while penalizing partition
imbalance, our RL agent learns to produce balanced graph partitions
with minimized cut sizes. Evaluated on a set of industrial circuits, our
experiments show that running FM on our RL-based initial partitions
yields significantly better cut sizes than with random initialization.

I. INTRODUCTION

Graph partitioning is fundamental in many computer-aided design
(CAD) applications, as it decomposes large problems into smaller,
manageable subproblems while minimizing interconnect between them.
For example, static timing analyzers [1], [2] and RTL simulators [3],
[4] partition the circuit graph into dependent pieces for multithreading;
placement and routing tools [5] partition the graph to implement divide-
and-conquer algorithms. As a result, high-performance graph partition-
ing libraries, such as METIS [6], KaHyPar [7], and G-kway [8], [9],
have been developed and widely adopted in both academia and industry.

While existing graph partitioners adopt different strategies (e.g.,
multilevel [6], [7], data parallelism [8]), nearly all of them count on
Fiduccia-Mattheyses (FM)-inspired variants [10] to perform greedy
refinements. Specifically, for a given initial partition, FM is applied
to iteratively refine the partition quality by moving vertices between
partitions to locally reduce the cut size. Despite the efficiency, this
type of local refinement is highly sensitive to the quality of the initial
partition, often leading to suboptimal results if the initial partition is
poor. As shown in Figure 1, where we randomly sampled different
initial partitions as input to FM, the solution quality in terms of
cut size can vary dramatically. For instance, on circuit aes core, the
maximum difference reaches up to 12×. Notably, only a few initial
partitions achieve very small cut sizes (below the red line). Although
existing partitioners have attempted to address this issue using different
heuristics (e.g., random assignment [6], greedy clustering [11]), they
often lack a global perspective of the underlying graph structure,
leading to only moderate-quality initial partitions for FM.

To address this challenge, we propose a reinforcement learning (RL)-
based algorithm that generates high-quality initial partitions to guide
FM toward better solutions. Our motivation stems from the fact that RL
is a powerful framework for iterative decision-making, which aligns
well with the refinement steps of FM. Specifically, FM improves a
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Fig. 1. Different initial partitions can result in significantly varying cut sizes
for the FM partitioner.

given partition by iteratively moving vertices across partitions, guided
by a gain value that quantifies the reduction in cut size. Similarly, an
RL agent performs actions (e.g., moving vertices) and receives a reward
reflecting the quality of those actions. This alignment between FM’s
gain-driven local optimization and RL’s reward-based learning suggests
that RL can serve as a generalizable framework for learning effective
partitioning strategies. We summarize our technical contributions as
follows:

• We design an RL-based initializer to generate high-quality input
partitions for FM. By creating a reward function that promotes cut
size reduction and penalizes partition imbalance, our RL agent learns
to produce balanced partitions with minimal interconnect. Using
these RL-initialized partitions, FM achieves significantly better cut
sizes and converges faster than with greedy initializations.

• We design an RL state that captures both local and global graph
structure. Locally, it encodes the distribution of partition assignments
among neighbors, while globally, it includes partition sizes. This
design enables the policy to make high-quality decisions, leading to
higher rewards.

• We introduce two strategies to optimize the scalability of RL infer-
ence with large graphs, vectorized balance filtering and incremental
state computation. These strategies leverage vectorized operations
and efficient data access patterns to significantly improve testing
runtime performance.

We have evaluated on a set of large-scale industrial circuits. Com-
pared with baselines, running FM on RL-initialized partitions yields
significantly better cut sizes than random or greedy initializations.
We plan to open-source our partitioner to benefit both the CAD and
machine learning communities in graph partitioning research.



II. PRELIMINARIES

A. Graph Partitioning

Given an undirected graph, G = (V,E), where V is the set
of vertices and E is the set of edges. Each edge e(u, v) ∈ E
connects a pair of vertices (u, v) and has unit weight. We denote
{p0, p1, ..., pk−1} as a k-way partition of V , and use P (v) to indicate
the partition to which vertex v belongs. In this work, we focus on
the fundamental 2-way partitioning problem as a starting point, laying
the groundwork for future extensions to the general k-way partitioning
problem.

The goal of graph partitioning is to find a partitioning that minimizes
the cut size, defined as the number of edges e(u, v) that connect
vertices in different partitions, i.e., P (u) ̸= P (v). Cut size is a widely
used metric for evaluating partition quality, as it reflects the amount
of interconnections between partitions. In addition to minimizing cut
size, the partitions must satisfy a balance constraint, which limits the
number of vertices in each partition. Specifically, for all partitions pi,
the size must satisfy |pi| ≤ (1+δ) |V |

k
, where |·| denotes the cardinality

and 0 < δ ≪ 1 is the imbalance ratio specified by the application.

B. Reinforcement Learning

Reinforcement Learning (RL) is a powerful framework for learning
optimal decision-making in dynamic environments [12], [13]. The
interaction between the RL agent and the environment is described
by the following Markov Decision Process (MDP).

1) Markov Decision Process: MDP is defined as a tuple
(S,A,P, r), where S denotes a collection of states that represent
possible configurations of the environment, A denotes a collection of
actions that the agent can take, P denotes the state transition kernel
that specifies the probability of transitioning from one state to the next
given a particular action, and r denotes a reward signal that the agent
receives from the environment.

The following equation (1) illustrates the trajectory of MDP.

(MDP): s0
π(·|s0)−→ a0

P(·|s0,a0)−→ (s1, r0)
π(·|s1)−→ a1 · · · (1)

To elaborate, at each timestep t, the agent observes the current state st
of the environment, based on which it samples an action at following
its policy π. After this action is taken, the current state transfers to the
next state st+1 following the state transition kernel P, and the agent
receives a reward rt. The agent aims to learn the optimal policy π∗ that
maximizes the cumulative reward, i.e., π∗ = argmaxπ E[

∑∞
t=0 γ

trt |
π], where γ ∈ (0, 1) is a discount factor specifying the importance of
future rewards relative to recent rewards.

2) Deep Double Q-Learning Algorithm: To learn the optimal pol-
icy, a widely used RL algorithm is Deep Double Q-learning [14],
which estimates a state-action value function to guide decision-making.
Specifically, the value function Q(s, a) represents the expected cumu-
lative reward obtained by taking action a in state s and subsequently
following the optimal policy. This function satisfies the modified, well-
known Bellman equation:

Q(st, at) = rt + γE
[
Q(st+1, argmax

a
Q(st+1, a))

]
. (2)

Once the optimal state-action value function is learned, it naturally
induces a policy that selects the action associated with the highest value
in a certain state st, i.e., π(at|st) = argmaxa Q(st, a). In modern RL,
we usually parameterize the state-action value function Q(s, a) using
a neural network Qθ , where θ represents the network parameters. In
particular, the network model training process involves the following
steps:

• Collecting MDP data: At each timestep t, the agent takes an action
at (using ϵ-greedy strategy), the environment transfers from state st
to st+1, and the agent receives a reward signal rt. We store this

transition data (st, at, rt, st+1) over the past N timesteps in a so-
called experience replay memory.

• Sampling data: To train the Q-network, at each training iteration,
we first randomly sample a mini batch of B data samples from
the experience replay memory and compute the target yT = rT +
γQθ′(sT+1, argmaxa Qθ(sT+1, a)) for all data T ∈ B based on
Equation 2. Here, Qθ′ denotes the target network whose parameters
are periodically copied from θ every K iterations. The purpose is to
decouple the original Q-network from the target network in order to
allow proper use of backpropagation later.

• Updating network parameters: We compute the batch MSE loss
L = 1

B

∑
t∈B (yt −Qθ(st, at))

2 and update the parameters θ via
backpropagation.

III. RL-BASED GRAPH PARTITIONING

We formulate graph partitioning as an MDP and leverage RL
techniques to learn a good partition policy. Later in the experiments, we
observe that such an RL approach can generate balanced partitions with
low cut size. Moreover, it can significantly enhance the performance
of the FM algorithm when used as an initialization.

Fig. 2. System overview.

Figure 2 shows an overview of our system. The RL agent begins
the partitioning process for the input graph by suggesting partition
assignments for batches of vertices, each represented as a state vector.
We pass these batched assignments (i.e., actions) through a vectorized
balance filtering to enforce partition constraints. We then use the filtered
actions to update the state vectors incrementally, recomputing only
the affected ones for efficiency. This loop continues until the agent
assigns partitions to all vertices, completing one epoch. We repeat this
process across multiple epochs to progressively improve the partition
quality. Afterward, we refine the RL-initialized partition using the FM
algorithm to get a final partition.

A. RL Formulation for Graph Partitioning

We provide an RL formulation for the graph partitioning problem
by modeling it as an MDP. Consequently, one can train a policy by
following the RL approach described in Section II-B. Consider the case
of two partitions. At timestep t, let vt denote the vertex to be assigned
to a partition. Let N(vt) be the set of neighbors of vt, and P (vt)
denote the partition to which vt is currently assigned. We define the
MDP as follows:
• State: The state st associated with vertex vt is a vector with dimen-

sion 2k (k = 2 partitions in our work): the first k elements represent
the number of neighbors vt has in each partition j ∈ {0, ..., k− 1}.
The other k elements represent the total number of vertices of the
current partitions. This state encodes local information about the
partition assignments of vt’s neighbors and global information about
the balance among the total size of different partitions. For instance,
consider the vertex 1 in Figure 3. From a local perspective, it has
no neighbors in partition 0 (gray) and one neighbor in partition 1
(black). From a global perspective, partition 0 contains a total of four
vertices, while partition 1 contains two. Hence, the state of vertex 1
can be represented by the tuple {0, 1, 4, 2}, which encodes its local
and global partition context.
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Fig. 3. Illustration of our RL state representation for two partitions before
normalization. Partition 0 is shown in gray, and partition 1 is shown in black.

We divide the first k elements of the state by the maximum degree
of the graph and divide the other k elements by the total number of
vertices |V | to normalize numerical values.

• Action: The agent can assign each vertex to one of the k partitions
based on the state vector.

• State transition: After the agent takes an action and assigns vertex
vt to a new partition, the state vectors of its neighbors will change
accordingly. This new state vector is calculated every time we query
a new vertex.

• Reward: We design the following reward to encourage actions that
reduce cut size and balance partitions,

rt = ∆cut + α ·∆balance, (3)

where α > 0 is a hyperparameter, and ∆cut, ∆balance re-
spectively denote the changes in cut size and partition balance
resulting from the action. Here, partition balance is defined as
1 − max(|p0|, ..., |pk−1|) k

|V | , where max(|p0|, ..., |pk−1|) denotes
the cardinality of the largest partition, |V | the number of vertices
in the graph and k the number of partitions. Intuitively, partition
balance becomes zero when the partitions are perfectly balanced.

B. Improving RL Inference Throughput

During the testing phase, we apply the trained RL policy to parti-
tioning unseen graphs by processing batches of vertices. Specifically,
we sample a batch of vertices and compute their corresponding states,
which are then fed into the policy network to generate a batch of pre-
dicted actions, i.e., partition assignments, for each vertex in the batch.
To ensure that these actions lead to balanced partitions, we introduce
a balance filter that sequentially checks whether each action satisfies
the balance constraint. This approach, though simple, introduces two
major challenges. The first is the balance filter overhead. The balance
filter sequentially evaluates each action’s impact and discards those that
violate the balance constraint. However, this method incurs significant
computation time overhead during inference due to the cost of checking
each action sequentially. The second is the state computation cost.
For each batch of vertices, the corresponding state vectors need to be
computed from scratch for every vertex. Performing these computations
sequentially in a loop introduces significant computation overhead.

These two challenges significantly degrade runtime performance,
particularly on large graphs. To address them, we introduce two
optimization strategies: Vectorized Balance Filtering (VBF) and In-
cremental State Computation (ISC).

1) Vectorized Balance Filtering: We propose VBF (see Algorithm
1) to efficiently process a batch of actions while enforcing partition
balance. To elaborate, let A ∈ {0, 1}B denote the array of model-
generated actions for a batch of B vertices. VBF operates as follows:

• Step 1: Based on the batch of actions A, we identify the sets of
vertices transitioning from partition 0 to 1 and from 1 to 0, denoted
as T0→1 and T1→0, respectively. This step is performed efficiently
using vectorized operations.

• Step 2: Next, for partition 1, we compute the net increase in the
size as ∆ = |T0→1| − |T1→0|. If this increase would violate the
balance constraint, we flip the actions of ⌈∆−(Lmax−|p1|)

2
⌉ number

of vertices in T0→1 back to 0, keeping them in partition 0. Here,
Lmax = (1 + δ) |V |

2
denotes the maximum allowed size for each

partition. The same process is also applied to partition 0.
• Step 3: After applying the necessary action flips, the filtered action

array A is used to update the partition assignments, and the partition
size counters are updated accordingly.

Algorithm 1 Vectorized Balance Filtering
1: Compute T0→1, T1→0, and ∆ = |T0→1| − |T1→0|
2: if ∆ > Lmax − |p1| then
3: Flip actions of ⌈∆−(Lmax−|p1|)

2
⌉ vertices in T0→1

4: else if −∆ > Lmax − |p0| then
5: Flip actions of ⌈−∆−(Lmax−|p0|)

2
⌉ vertices in T1→0

6: end if
7: Update vertex partition assignment with filtered actions

To illustrate how VBF works, consider a batch of actions generated
by the RL agent. Suppose these actions would move four vertices from
partition 0 to 1 and one vertex from 1 to 0 (i.e., |T0→1| = 4, |T1→0| =
1), while the rest of the vertices remain unchanged, resulting in a net
increase of ∆ = 4− 1 = 3 vertices in partition 1. If this violates the
balance constraint, VBF restores balance by flipping the actions of a
minimal number of vertices in T0→1, as determined by Algorithm 1.
In summary, VBF leverages vectorized operations to improve runtime
performance compared to the sequential filtering approach.

2) Incremental State Computation: After applying the filtered ac-
tions, the state information must be updated. Instead of recalculating
the full state vector for each vertex sequentially, we adopt a vec-
torized strategy that maintains a sparse state matrix for all vertices
and incrementally updates their states. The state vector consists of
four elements: the first two encode local neighborhood information,
while the last two capture global partition balance. Since applying
actions only affects the neighbors of the vertices that change partitions,
we update the first two elements only for the neighbors of those
transitioning vertices. In contrast, the last two elements, representing
global partition balance, are updated for all vertices simultaneously.
Taking Figure 2 as an example, suppose the filtered actions change
the partitions of vertices 1 and 2. Since vertex 3 is a neighbor of
both, we update the first two elements of its state vector, represent-
ing local neighborhood information. In contrast, the corresponding
elements in the state vectors of non-neighboring vertices 4, 5, and
6 remain unchanged. Additionally, we update the last two elements
of each state vector, which encode the global partition balance, for
all vertices. This selective update mechanism exemplifies how ISC
efficiently avoids redundant computations while maintaining accurate
state representations.

Specifically, given an array A of filtered actions applied to the
corresponding batch of B vertices, we first retrieve the previously
computed T0→1 and T1→0. Let N0→1 and N1→0 denote the sets
of neighbors of the vertices in T0→1 and T1→0, respectively. These
neighbor sets are retrieved in a vectorized fashion using a sparse
adjacency matrix. We then use a bincount [?] operation to count how
many times each vertex appears in N0→1 and N1→0. For example,
if vertex vi appears l0→1 and l1→0 times in N0→1 and N1→0,
respectively, then this indicates that vi has l0→1 neighbors moving from
partition 0 to partition 1 and l1→0 neighbors moving from partition 1
to partition 0. The first two elements of vi’s state vector si should be
updated as follows:

si[0]+ =
l1→0 − l0→1

max degree
and si[1]+ =

l0→1 − l1→0

max degree
.



We divide by the maximum degree of the graph to normalize
numerical values. In addition to that, we update the last two elements
of all the states for all the vertices as follows:

si[2] =
|p0|
|V | and si[3] =

|p1|
|V | ,

where |p0| and |p1| are the updated partition loads after applying the
filtered actions. We divide by the total number of vertices in the graph
to normalize numerical values. These updates are done using vectorized
operations on the sparse state matrix that contains the state vectors for
all the vertices. This significantly improves the runtime performance
by removing a large amount of redundant computation compared to
the sequential state calculation approach.

IV. EXPERIMENTAL RESULTS

We evaluated the cut size and runtime performance on industrial
circuit graphs generated by OpenTimer [2]. These circuit graphs are
significantly larger and more challenging to partition than the typical
benchmarks used in [6], [7], and have been increasingly adopted by
recent graph partitioning research [8], [9], [15]. We trained the RL
model using PyTorch on an NVIDIA RTX 4090 GPU, and compiled
programs using g++ 11.4 with -std=c++20 and -O3 enabled to
partition graphs. We ran all the experiments on a Ubuntu 22.04.3
machine with 20 Intel i7-11700 CPUs at 2.50 GHz and 125 GB RAM.
We set the imbalance ratio to δ = 3% in the experiment, as this is a
commonly used setting in many existing works [8], [16].

A. Baselines

We chose the classical FM algorithm [10] as our 2-way graph
partitioner, as it is widely adopted in many existing partitioning
frameworks [6]–[9], [15]. FM operates in multiple passes, where each
pass scans the entire vertex set to identify the best subsequence of
vertex moves between partitions. Specifically, FM iteratively selects
the vertex whose move yields the highest improvement in cut size
(i.e., the highest gain), moves it, and then locks it to prevent repeated
moves within the same pass. This process continues until all vertices are
locked. Once complete, FM identifies and commits to the subsequence
of consecutive moves that yields the maximum total gain.

We chose two popular initialization strategies as the baselines.
The first one is random initialization, which partitions the vertex set
randomly into two halves. The second one is a BFS-based strategy
where, at each iteration, the vertex with the highest connectivity to the
current frontier is selected. This process is repeated until all vertices
have been assigned to a partition. Due to the simplicity and fast runtime,
BFS-based initialization has been widely adopted by many existing
partitioners [6], [8], [15].

B. Training and Testing the RL Agent

1) Training phase: To train our RL-based graph partitioner, we
implemented the Deep Double Q-learning algorithm [14]. The training
graphs are non-overlapping with the testing graphs listed in Table I.

We used the following hyperparameters: training batch size B =
128, reward discount factor γ = 0.2, reward weight α = 0.7, expe-
rience replay memory size N = 10k, target network synchronization
period K = 10k steps. For the ϵ-greedy strategy used when collecting
the MDP data, we initialized ϵ = 1.0 and multiplied it by a factor of
ϵ decay = 0.9999997 with a lower bound set for ϵ as ϵ min = 0.01.
We trained for 200 epochs, where each training epoch corresponds to
traversing the training graph once. We designed a deep Q-network with
an input linear layer, followed by two residual blocks inspired by the
ResNet architecture [?] and an output linear layer. The Q-network takes
as input a state vector of dimension = 4 and outputs a vector of two
Q-values corresponding to the two possible actions. Figure 4 illustrates
the network architecture. We used the standard Adam optimizer with

Fig. 4. Illustration of the Q-network architecture. The network takes the state
vector as input, propagates the state through a linear layer, two residual blocks,
and a linear layer, and outputs a vector of two Q-values corresponding to the
two possible actions. The chosen action is the one corresponding to the highest
Q-value.

learning rate η = 0.001 to update the Q-network parameters θ via
backpropagation.

Figure 5 plots the training loss and the training cut size achieved by
the RL policy during the training process. From the left figure, it can
be seen that the training loss decays quickly, indicating that the learned
policy performs well on the training data. The right figure illustrates
the progressive reduction in cut size on the training graph throughout
the training process. This figure shows that the policy effectively learns
to reduce the cut sizes over time.

2) Testing phase: After training the RL agent, we evaluated its
performance on unseen test graphs. Given a test graph, we feed batches
of vertex states to the trained RL agent and apply the VBF-filtered
actions to the corresponding vertices. This process continues until all
the vertices in the graph have been traversed, which constitutes one
test epoch. We then repeated this for 100 test epochs to obtain a high-
quality result.
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Fig. 5. Left: Decreasing training loss with more train epochs. Right: Decreasing
cut size during the training phase. Every train epoch corresponds to traversing
all the vertices in the training graph once.

C. Overall Performance Comparison

We compare the cut size and runtime performance of the two
baselines (random+FM and BFS+FM) and our proposed approach
(RL+FM) across different graphs. We also report the cut size (CRL)
obtained by the RL agent (without applying FM). Table I summarizes
the results. We report the results corresponding to a test batch size
of 1–3% of the graph size as this range yields high-quality results.
As shown in Table I, our method outperforms both baselines on most
benchmarks in terms of final cut size due to our high-quality initial
partitions generated by the RL agent. For example, when partitioning
the tv80 benchmark, we achieve a cut size of 169 (starting from
an initial cut size of 90,934), significantly lower than the baseline
1’s 83,381 (from 763,712) and baseline 2’s 78,105 (from 763,603).
We attribute the improved cut size to our RL state design, which
incentivizes the agent to learn from both global and local graph contexts
and optimize long-term rewards. This design enables more informed
partitioning decisions, yielding higher-quality initial partitions that
guide FM toward superior final cut sizes.



TABLE I
GRAPH STATISTICS, TEST BATCH SIZES, INITIAL AND FINAL CUT SIZES, AND RUNTIME BETWEEN THE BASELINES AND OURS. BASELINE 1 REFERS TO FM
USING THE RANDOM INITIALIZATION AND BASELINE 2 USING BFS-BASED INITIALIZATION. CRL DENOTES THE CUT SIZE OBTAINED BY OUR RL AGENT.

ALL RUNTIMES (IN SECONDS) INCLUDE BOTH THE INITIALIZATION AND THE FM REFINEMENT. WE RAN 100 TEST EPOCHS FOR OUR RL-BASED
INITIALIZATION.

Baseline 1 (Random+FM) Baseline 2 (BFS+FM) Ours (RL+FM)
Initial

cut size
Final

cut size Time Initial
cut size

Final
cut size Time Batch CRL

Final
cut size Time

c2670 1,365 1,665 846 109 0.033 812 106 0.019 32 124 71 7.53
c7552 3,802 4,791 2,392 288 0.08 2,363 257 0.065 64 334 230 10.18

ac97 ctrl 42,438 53,586 27,647 2,833 9.49 27,114 3,132 5.91 1,024 3,729 3,102 28.55
aes core 133,502 172,892 88,590 4,645 31.29 86,496 4,265 21.84 4,096 11,479 72 32.82
des perf 607,380 774,582 399,048 22,315 471.22 396,658 22,227 627.74 16,384 39,477 2,203 343.99

tv80 1,090,432 1,477,568 763,712 83,381 406.16 763,603 78,105 629.39 16,384 90,934 169 183.93
vga lcd 1,591,236 1,995,464 1,024,728 132,676 1,427.97 1,023,236 134,779 1,088.26 16,384 145,265 73,519 1,698.24

ac97 ctrl 2 2,037,024 2,572,128 1,327,056 128,688 1,889.18 1,326,859 129,856 2,176.37 32,768 80,009 4,923 1,058.08
usb phy 2,505,728 3,070,976 1,615,872 131,783 804.87 1,615,808 130,312 846.86 32,768 235,640 1,203 571.03

Graph ∥V ∥ ∥E∥

Regarding runtime performance, we observe that the runtime of our
method becomes increasingly competitive with, and eventually faster
than, the baselines as the graph size (and test batch size) increases.
The runtime reported for RL+FM includes the time required for 100
test epochs of the RL agent, as well as the time taken by the FM
algorithm initialized from the RL-generated partition. For instance, on
the aes core benchmark, our method took 32.82 seconds compared to
the BFS-based baseline 2’s 21.84 seconds. Notably, when partitioning
the larger des perf benchmark, our method’s runtime was 343.99
seconds, significantly faster than the baseline 2’s 627.74 seconds.
We attribute this trend to two factors. First, larger graphs tend to
require more FM passes to converge, making them more sensitive
to the quality of the initial partition. In this scenario, RL-initialized
partitions provide a high-quality starting point, which significantly
accelerates convergence. Second, our optimizations (VBF and ISC)
scale efficiently, offering greater runtime benefits on larger graphs.

D. Impact of Test Batch Sizes on CRL

In the testing phase, we evaluate the impact of varying test batch
sizes on the cut size CRL obtained by our RL agent (without applying
FM). As shown in Figure 6, increasing the batch size generally
improves CRL up to a certain threshold. Beyond this point, however,
larger batch sizes lead to a degradation in cut size performance.
Initially, increasing the test batch size improves CRL because it reduces
variance in the agent’s decisions, leading to more stable and consistent
partitioning. Larger batches also provide richer global context per
decision as each update step aggregates information from more data
points or graph parts simultaneously, allowing the agent to better
estimate gradients and recognize structural patterns in the graph that
help minimize cut size. For instance, for the ac97 ctrl 2 benchmark,
the test batch size 32,768 gives the best CRL. However, beyond a
certain test batch size threshold, performance degrades, which we
attribute to two reasons: First, as more assignments are proposed, the
vectorized balance filtering becomes less precise, potentially flipping
high-quality actions to enforce partition balance. Second, with large
batches, the state vectors are not updated between individual actions,
but only after the whole batch is processed. As the test batch size
becomes too large, this leads to reduced freshness of state information
when making decisions, which degrades the accuracy of the agent’s
actions. These dynamics create a trade-off, indicating the existence
of an optimal test batch size that balances decision stability and
responsiveness. Empirically, this optimal size is found to be around
1–3% of the total graph size.

E. Impact of Test Epochs on CRL

Given that our RL agent provides the initial partition for the FM
algorithm in our RL+FM method, it is crucial to analyze how the
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Fig. 6. Effect of varying the RL test batch size on CRL. Test batch sizes
between 1–3% of the graph size yield the best CRL.

quality of these initial solutions (CRL) evolves over test epochs. Figure
7 presents the improvement of CRL during the testing process. The
steady decrease in CRL as the number of test epochs increases indicates
the RL agent in providing progressively better starting points for FM
refinement. The most significant improvement occurs within the initial
20 test epochs. Following this rapid improvement, the rate of reduction
slows, and CRL starts to plateau around test epoch 40, suggesting
a convergence in the quality of the RL initialization. We attribute
the observed trend to the RL agent’s ability to generalize its learned
partitioning policy to unseen graphs. This improvement in CRL over
test epochs shows the effectiveness of the learned policy, driven by
the reward design that explicitly encourages cut size reduction while
penalizing partition imbalance.
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Fig. 7. The improvement of cut sizes obtained by our RL agent (CRL) over
test epochs on three benchmarks.

F. Effect of Optimization Strategies on Runtime

To gain a detailed insight of the runtime improvements contributed
by our optimization strategies (VBF and ISC) within the RL agent



TABLE II
RUNTIME BREAKDOWN (IN SECONDS) WITH (W/) AND WITHOUT (W/O) THE

OPTIMIZATION STRATEGIES FOR INFERENCE.

State computation Balance filtering
w/ w/o w/ w/o

c2670 0.18 1.58 6.5 52.71
c7552 0.18 6.28 8.25 119.25

ac97 ctrl 0.28 61.74 19.33 869.62
aes core 0.06 201.85 23.16 3,980.28
des perf 0.38 914.11 68.06 17,738.48

tv80 0.37 1,619.4 132.21 33,140.9
vga lcd 1 2,413.4 203.2 47,578.8

ac97 ctrl 2 0.76 2,990.5 246.24 60,989.2
usb phy 0.97 3,611.6 270.3 75,844.6

Graph

of our RL+FM method, we present a runtime breakdown during the
inference phase in Table II. The runtime mainly comprises two compo-
nents: state computation time and balance filtering time (which ensures
partition size balance on model-generated actions). Table II reveals that
ISC and VBF yield significant reductions in both state computation
and balance filtering times. Specifically, the state computation time
decreases because ISC efficiently updates the state representation only
for the affected portions when a vertex changes partition, avoiding
a full state recalculation. The balance filtering time is significantly
improved because VBF performs the partition size balance checks
using vectorized operations. For instance, on the usb phy benchmark,
state computation time decreases from 3,611.6 to 0.97 seconds (3723×
speedup), and balance filtering time improves from 75,844.6 to 270.3
seconds (280× speedup). These significant reductions demonstrate the
effectiveness of VBF and ISC in accelerating the RL agent’s runtime.

G. Comparison of FM Passes

Figure 8 compares the number of passes required by FM to con-
verge between the baselines and our method. Here, the number of
passes, representing the iterations FM takes to converge to a stable
solution, directly indicates the efficiency of its refinement process,
where fewer passes signify faster convergence. Across all benchmarks,
our method consistently completes FM refinement in fewer passes than
the baselines. For instance, on the usb phy benchmark, our method
requires only 64 passes, compared to 150 for both baselines, which
reach the termination condition. This improvement is attributed to
the higher quality of our initial partitions, which guide FM toward
better solutions more efficiently. These results align with the runtime
advantage reported in Table I, further demonstrating the effectiveness
of our learning-based initialization.
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Fig. 8. The number of FM passes between the baselines and ours, with an
upper limit of 150 passes to avoid excessive runtime.

TABLE III
DETAILED RUNTIME BREAKDOWN (IN SECONDS) FOR THE BASELINES AND

OURS, SHOWING TIMES OF THE INITIALIZATION (INIT.) AND FM. THE
INITIALIZATION TIME INCLUDES BOTH PARTITIONING AND THE SETUP OF
THE CORRESPONDING DATA STRUCTURES (E.G., BUCKETLIST) FOR FM TO

START WITH.

Random BFS Ours
Init. FM Init. FM Init. FM

c2670 0.02 0.013 0.01 0.009 7.52 0.01
c7552 0.01 0.07 0.01 0.055 10.1 0.08

ac97 ctrl 0.09 9.4 0.09 4.82 20.27 1.28
aes core 0.29 31 0.29 21.55 23.89 8.93
des perf 2.22 469 2.24 625.5 70.99 273

tv80 2.16 404 2.19 627.2 132.23 51.7
vga lcd 4.97 1,423 4.96 1,083.3 207.24 1,491

ac97 ctrl 2 4.18 1,885 4.17 2,172.2 249.58 808.5
usb phy 4.87 800 4.86 842 274.03 297

Graph

H. Detailed Runtime Breakdown

Table III shows the detailed runtime breakdown. Apparently, RL-
based initialization incurs higher computational cost than both base-
lines. Taking c2670 for example, RL-based initialization takes 7.52
seconds to finish, while random- and BFS-based initializations both
finish within 1 second. This high cost for RL arises because it processes
each vertex through a trained neural network (involving multiple matrix
operations and nonlinear transformations) to determine the partition
assignment. In addition, the Python-based inference introduces non-
negligible overhead compared to C++-based baselines. While RL-
based initialization incurs higher computational cost, it significantly
accelerates FM convergence and improves final cut sizes due to higher-
quality initial partitions. For example, on usb phy, FM converges
in 800, 842, and 297 seconds with random-, BFS-, and RL-based
initializations, respectively, while RL achieves over 100× better final
cut size (see Table I) compared to both baselines. In this case, the end-
to-end runtime of RL (571.03 seconds) is also faster than baselines
(804.87 and 846.86 seconds).

V. CONCLUSION

We have proposed a RL-based initialization to generate high-quality
initial partitions for the FM algorithm. We have designed a tailored
reward function that balances cut size reduction with partition balance.
We have introduced a state representation that captures both local
and global graph structure. We have developed two scalable RL
inference throughput optimizations, VBF and ISC, to improve the
runtime efficiency. Our experiments on a set of industrial circuit graphs
demonstrate that applying FM to our RL-generated initial partitions
results in significantly better cut sizes compared to both random and
BFS-based initializations. Our work highlights the potential of data-
driven, machine learning methods for tackling the fundamental graph
partitioning problem. As future work, we plan to extend our approach to
the more general k-way partitioning setting, using recursive bisection
as a scalable strategy. We plan to also apply the similar method to
optimize task graph parallelism, inspired by our prior research [2]–[4],
[8], [9], [12], [13], [15], [17]–[82].
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