A Scalable Code Generation Flow for
Heterogeneous Parallel RTL Simulation using MLIR

Jie Tong
University of Wisconsin-Madison
Madison, USA
jtong36@wisc.edu

Umit Yusuf Ogras
University of Wisconsin-Madison
Madison, USA
uogras @wisc.edu

Abstract— As hardware design complexity increases, efficient
Register Transfer Level (RTL) simulation becomes critical for
reducing the long runtime of design and verification. Although
several parallel RTL simulators have been developed, they often
suffer from long compilation times and slow simulation perfor-
mance, especially for large-scale heterogeneous architectures and
deep learning SoC designs that exhibit repetitive and hierarchical
structures. These limitations arise because existing simulators
fail to effectively map heterogeneous architectures onto CPU-
GPU platforms, resulting in underutilized compute resources. In
addition, they repeatedly regenerate and recompile redundant
code, missing the opportunity to exploit the structural paral-
lelism inherent in deep learning accelerators. To address these
challenges, we propose HeteroRTL, a scalable code generation
flow that produces hybrid CPU-GPU parallel RTL simulators for
heterogeneous deep learning accelerator SoCs. Built on the MLIR
infrastructure, HeteroRTL analyzes RTL designs, partitions the
simulation between CPU and GPU targets, identifies structural
repetition to reduce compilation overhead, and generates efficient
simulation executables. Compared to state-of-the-art simulators,
HeteroRTL achieves compilation speedups of three to five orders
of magnitude and delivers up to 9x and 122x simulation
speedups across various designs.

I. INTRODUCTION

Domain-specific accelerators are essential for enhancing the
performance of deep learning workloads, including DNNs
and transformer models, in today’s Al-driven industry [1} 2[].
Register Transfer Level (RTL) simulation is a critical step in
hardware design and verification, used to validate function-
ality prior to physical implementation through tasks such as
regression testing, debugging, and design space exploration.
As accelerators evolve, their design complexity continues to
grow. For instance, the systolic array size in Google’s TPU
has increased from 128128 to 256x256 in the latest TPU
vbe [3]. Consequently, RTL simulation has become increas-
ingly time-consuming. Recent studies report that simulation
can take several hours to days to achieve coverage closure
when validating deep learning accelerators [4]. Therefore,
accelerating RTL simulation is essential for managing growing
design complexity and meeting the fast-paced time-to-market
requirements of the accelerator industry.

Zhengxiong Li
University of Wisconsin-Madison
Madison, USA
zhengxiong.li@wisc.edu

Tsung-Wei Huang
University of Wisconsin-Madison
Madison, USA
tsung-wei.huang @wisc.edu

To overcome the prohibitive runtimes of RTL simulation,
researchers have introduced various parallel simulation tech-
niques. One prominent example is Verilator [, a widely
adopted open-source RTL simulator that transpiles hardware
description languages (HDLs) into C++ using abstract syntax
trees (ASTs), and employs disjoint-set-based partitioning to
enable multithreaded execution. RTLflow [4]], built on top
of Verilator, targets GPU acceleration by translating RTL
code into CUDA, but requires thousands of input stimuli to
outperform CPU-based simulators. RepCut [6] converts RTL
designs into FIRRTL [7] and introduces a replication-aided
partitioning algorithm to reduce synchronization overhead dur-
ing parallel simulation. Khronos [8] and BatchSim [9] utilize
the MLIR framework to analyze RTL designs and generate
evaluation functions in LLVM IR. Dedup [10] introduces
deduplication and targets the structural patterns of multi-core
SoC designs. ScaleRTL [11] introduces a scalable deduplica-
tion and code generation approach for RTL simulation of deep
learning accelerators. While these approaches improve per-
formance, they have largely evolved independently, resulting
in fragmented toolchains and missed opportunities for shared
infrastructure. As a result, developing new RTL simulation
algorithms remains time-consuming and error-prone, often
involving redundant engineering efforts and reimplementation
of common optimization techniques.

However, prior research on parallel RTL simulation has
primarily focused on generic RTL designs, without addressing
the unique characteristics of large-scale heterogeneous archi-
tectures and deep learning SoCs. These approaches suffer
from two major limitations. First, they do not effectively
map heterogeneous architectures onto CPU-GPU simulation
platforms, resulting in underutilized compute resources. As
illustrated in Figure|l} a deep learning SoC typically features a
heterogeneous architecture composed of multicore host CPUs
and a systolic array of duplicated processing elements (PEs).
Running such a simulation on CPUs alone fails to exploit
the fine-grained parallelism well-suited to GPUs. Conversely,
executing the entire simulation on GPUs underutilizes the

hardware for complex CPU cores, which are fewer in number
than GPU warp sizes, and may overconsume registers and
memory, leading to suboptimal GPU performance. Second,
existing simulators do not take advantage of structural re-
dundancy. Even when designs contain homogeneous logic
elements, they generate separate evaluation code for each
instance. This results in substantial inefficiencies, as the same
code is repeatedly compiled instead of being reused, failing
to leverage the structural parallelism present in deep learning
accelerators.

To address these challenges, we propose HeteroRTL, a
scalable code generation flow that produces hybrid CPU-GPU
parallel RTL simulators targeting heterogeneous deep learning
accelerator SoCs. Unlike prior works, HeteroRTL introduces
an architecture-aware partitioning method that identifies het-
erogeneous components and structurally parallel modules in
the RTL design. It partitions the system into two parts: com-
plex host cores are simulated on the CPU, while the systolic
array is offloaded to the GPU to exploit massive parallelism.
This partitioning improves load balancing and maximizes
compute resource utilization. In addition, HeteroRTL detects
structural repetition to significantly reduce compilation over-
head. By reusing generated and compiled evaluation functions
during simulation, it avoids the redundant code generation
commonly found in traditional compilers and simulators. To
support a unified code generation flow for hybrid CPU and
GPU simulation, HeteroRTL is built on top of the multi-level
intermediate representation (MLIR) framework [12], which
provides flexible dialects and transformation capabilities. Het-
eroRTL emits evaluation functions in LLVM IR, then lowers
them to native binary code for CPU execution and PTX code
for GPU execution. It also generates simulation wrappers to
invoke and coordinate hybrid simulation tasks across CPU and
GPU platforms. We summarize our technical contributions as
follows:

« We propose a code generation flow that produces hybrid
CPU-GPU parallel RTL simulators for heterogeneous
deep learning accelerator SoCs.

e We develop an architecture-aware partitioning method
that separates heterogeneous components and structurally

fom R =
: | -|l>PE+PE~~- PE >
| Core Core : | ¥ 3) :
| | P PE [PE [eee| PE [1>
| | = 7 |
: | : . W o |
| Core Core : | L
PE Pl PE P e | PE

! DT |
\— ——_—___—__—_—_— — \

T3
Fig. 1: Schematic of a deep learning accelerator SoC com-
posed of multicore host CPUs and a systolic array of du-
plicated PEs. The heterogeneous architecture enables CPU-
GPU hybrid simulation, while the duplicated components offer
opportunities for simulation code reuse and reduction.

parallel modules for efficient CPU and GPU execution.
« We design a scalable code generation approach that de-

tects structural repetition and eliminates redundant code,

significantly reducing compilation overhead.

We evaluate HeteroRTL on a set of deep learning accelerator
SoC RTL designs. Compared to state-of-the-art simulators,
HeteroRTL achieves compilation speedups of three to five or-
ders of magnitude and delivers up to 9x and 122x simulation
speedups across various designs.

II. BACKGROUND AND MOTIVATION
A. RTL Simulation

RTL designs are typically described using hardware de-
scription languages (HDLs) such as SystemVerilog or Chisel.
For simulation, these designs are translated into intermediate
representations like C++ or LLVM IR, integrated into a
simulation framework, and compiled into executable binaries.
To achieve cycle-accurate simulation and parallel execution,
full-cycle simulators such as Verilator [5], Khronos [8]], and
BatchSim [9]] are commonly used. These tools represent RTL
designs as directed graphs, referred to as RTL graphs, where
nodes correspond to logic elements and edges capture data
dependencies. Each simulation cycle involves evaluating the
RTL graph by propagating input values through logic elements
to compute outputs. This process is repeated thousands to
millions of times to ensure functional correctness [4), [8]].

While these simulators effectively capture functional behav-
ior, they often suffer from significant code redundancy due to
a lack of structural awareness. Verilator [5] and Dedup [10]]
offer only limited support for deduplication in RTL simulation
code generation. Verilator operates at the level of low-level
SystemVerilog statements and does not recognize or optimize
larger structural patterns. Dedup focuses on multi-core SoC-
style designs, emphasizing heterogeneity and connectivity, but
does not address the scalability requirements of deep learning
accelerators with highly repetitive architectures.

B. MLIR

MLIR [12] is a modern compiler infrastructure developed
to streamline the creation of new compiler components within
the LLVM ecosystem [13]. It offers a rich set of composable
abstractions, such as operations, types, attributes, and regions,
that enable the representation of programs at multiple levels
of abstraction. MLIR also allows developers to define custom
dialects and transformation passes, facilitating unified opti-
mization workflows across diverse input languages and target
platforms. To preserve the original design intent and retain
high-level structural information, we build HeteroRTL on top
of FIRRTL [7]] and CIRCT [14], intermediate representations
specifically designed to model RTL semantics directly.

III. HETERORTL

Figure [2] presents an overview of the proposed HeteroRTL
framework. At a high level, HeteroRTL compiles RTL source
code written in FIRRTL into simulation executables targeting
both CPU and GPU platforms. The framework is built on top

of MLIR [12] and CIRCT [14], which provide reusable di-
alects and compilation passes for general-purpose optimization
and hardware modeling. HeteroRTL consists of four key com-
ponents: structural repetition analysis and architecture-aware
partitioning, CPU-parallel code generation, GPU-parallel code
generation, and CPU-GPU hybrid simulation generation.

| FIRRTL)
HW Comb Seq Structural Repetition Analysis and
CIRCT Dialects Architecture-aware Partitioning

CPU-parallel Code Generation

LLVM Global-to-Struct

GPU-parallel Code Generation

LLVM/NVVM | | Global-to-Struct

PTX/Fatbin }| CUDA Driver |

| CPU-parallel Evaluation Function ‘J | GPU-parallel Evaluation Function)
—> Input & Output

Existing Dialect

[HeteroRTL Pass
Fig. 2: Overview of HeteroRTL.

| Simulation Wrapper |

| CPU-GPU Hybrid Simulation ,}

A. Structural Analysis and Architecture-aware Partitioning

The RTL simulation code generation process begins by
using CIRCT tools to lower the FIRRTL source design into
CIRCT dialects, such as hw, seq, and comb. Listing |I| shows
an example of a deep learning accelerator SoC represented in
the hw dialect.

operate in parallel and can therefore be simulated concurrently.
To construct a highly parallel simulator, we leverage this struc-
tural parallelism by analyzing the design, identifying repetitive
components, and extracting them from the top-level module.
We implement this analysis as a custom MLIR pass that
inspects the hardware module hierarchy. The pass identifies
the top-level module using a method that computes both
direct and flattened instance counts, and returns a mapping
of each module to its total number of instantiations in a
fully flattened design. This enables us to isolate and extract
frequently repeated modules, which can then be simulated
efficiently as parallel instances.

B. CPU-parallel Simulation Code Generation

Following the analysis of architectural heterogeneity and
repetitive structures, we decompose the deep learning accel-
erator RTL design into distinct modules and apply a series
of intermediate representation (IR) transformations. For CPU-
parallel code generation, we target the host CPU cores, which
are typically large and complex. Due to their instruction-
heavy behavior, these modules are well-suited for CPU-based
simulation. Using MLIR, we lower these components from
the hw dialect to the LLVM dialect, enabling efficient parallel
simulation on the CPU. Listing [2]illustrates this transformation
flow.

module {
hw.module @DL_SoC (%arg0: i32, ...) -> i32 {

%$Core_0.io_data_, ... = hw.instance "Core_0"
@QCore(clock: %clock: il, ...) -> (io_data_:
i32, ...)

%$Core_1l.io_data_, ... = hw.instance "Core_1"
@QCore (clock: %clock: il, ...) -> (io_data_:
i32, ...)

$PE_0O.io_data_, ... = hw.instance "PE_0" @PE(
clock: %clock: il, ...) -> (io_data_: ile,
cel)

$PE_1.io_data_, ... = hw.instance "PE_1" Q@PE(
clock: %clock: il, ...) —-> (io_data_: ile,

-)

}
}

module attributes {llvm.data_layout = ""} {
ii&m.mlir.global linkonce_odr @clock () : il
llvm.mlir.global linkonce_odr Q@reset () : il
ii&m.func QCore () {
%éé = llvm.mlir.addressof @reset '1lvm.ptr<il>

%26 = llvm.load %25 '1lvm.ptr<il>
llvm.store %30, %31

llvm.return

'1lvm.ptr<ilé>

}
}

Listing 1: Example Deep Learning SoC Design in HW Dialect.

Unlike generic RTL designs, deep learning accelerator SoCs
exhibit a heterogeneous architecture consisting of a cluster
of host CPU cores and a systolic array composed of repli-
cated processing elements (PEs). To exploit this structure,
we introduce a method that analyzes the architectural het-
erogeneity and partitions the design for subsequent CPU and
GPU code generation. Within each partition, the layout is
highly homogeneous, as cores and PEs are often instantiated
repetitively. From a hardware perspective, these components

Listing 2: Example core evaluation code in LLVM Dialect.

In the LLVM dialect, internal states are commonly allocated
as global variables in the data segment. When lowered to
LLVM IR and compiled into an object file, each evaluation
function, such as @Core, is statically linked to these glob-
als. In a deep learning accelerator SoC with tens of cores
and thousands of PEs, this leads to redundant compilation
of identical logic for each instance, resulting in excessive
code duplication and inflated binary size. To address this
inefficiency, we introduce a simulation model that separates
data from computation. Instead of binding evaluation functions
to global variables, we encapsulate all state variables within
a struct and pass a pointer to this struct as an argument. This
transformation, known as the Global-to-Struct pass,
promotes function reuse across instances and significantly
reduces both compilation time and executable size.

Listing [3] illustrates an evaluation function that takes a
pointer to a struct as its argument, with the struct itself defined
in a header file. During code generation, we record the byte

offsets of all variables within the struct to ensure correct mem-
ory access. This guarantees that the evaluation function can
compute the correct addresses and access the corresponding
data reliably. By decoupling the function from its internal state,
we compile the evaluation logic once and allocate multiple
struct instances at runtime. This design enables concurrent
invocation of the same function on different data, reducing
data hazards and minimizing synchronization overhead. With
both the evaluation function and the struct definition in place,
we leverage OpenMP to execute cycle-level parallel simulation
efficiently across CPU threads.

/ LLVM Dialect
module attributes {llvm.data_layout = ""} {
1lvm.func @Core (%arg0: !llvm.ptr<i8>) {
%0 = llvm.mlir.constant (0 : i64) : i64
%1 = llvm.getelementptr %arg0[%0] ('1llvm.ptr<

i8>, i64) -> !llvm.ptr<i8>
%2 = llvm.bitcast %1 '1lvm.ptr<i8> to !llvm.
ptr<ilé>

llvm.return
}
}

/ C++ header file
typedef struct EvalContext {
Field O Original global: @data Byt ffse

char data([8];

} EvalContext;
void Core (EvalContexts* ctx);

code generation to ensure correct memory access at runtime.
Listing [] provides an example of a GPU evaluation kernel
written in the NVVM dialect, where thread and block IDs are
used to compute global memory addresses. Once the LLVM
and NVVM dialects are generated, we invoke the LLVM static
compiler 11c to lower the code to PTX. To avoid the overhead
of just-in-time (JIT) compilation, where the GPU compiles
PTX to SASS upon first execution, we use the PTX assembler
ptxas to compile the PTX into architecture-specific SASS
binaries. These are packaged as fatbins, which improve per-
formance and maintain compatibility across different GPU
architectures.

module attributes {llvm.data_layout = ""} {
1lvm. func @PE (%arg0: !llvm.ptr<i8>) {

%0 = nvvm.read.ptx.sreg.tid.x : i32
%1 = nvvm.read.ptx.sreg.ctaid.x : 132
%2 = nvvm.read.ptx.sreg.ntid.x : i32

%11 = llvm.getelementptr %arg0[%10] ('1lvm.

ptr<i8>, i64) -> !llvm.ptr<i8>

l1lvm.return
}
}

Listing 3: Example core evaluation code in LLVM dialect with
a struct pointer as an argument, and the corresponding struct
defined in a C++ header file.

C. GPU-parallel Simulation Code Generation

Building on the analysis of architectural heterogeneity and
structural repetition, we partition the deep learning accelerator
SoC RTL design into separate modules and apply a series
of intermediate representation (IR) transformations. For GPU-
parallel code generation, we target the processing elements
(PEs) in systolic arrays, which are typically simple and
compute-light. Due to their data-parallel nature and regular
structure, these modules are well suited for GPU-based simu-
lation. Unlike prior work [15] that leverages the GPU dialect
for simulation code generation, we found that relying solely on
the GPU dialect limits flexibility in kernel control and host-
side optimization. To overcome this limitation, we design a
custom host-side CUDA code generator that programmatically
invokes CUDA driver APIs to load modules, manage device
memory, and launch kernels. On the device side, similar to
CPU-parallel code generation, we emit evaluation functions
in the LLVM dialect.

Given the GPU’s ability to launch thousands of threads
executing the same kernel in a SIMT model, we first allocate
a contiguous block of device memory to store struct instances.
Each thread must compute the correct address of its assigned
struct, which requires calculating both the base address and the
byte offset of each field. These offsets are precomputed during

Listing 4: Example GPU-based PE evaluation code in LLVM
and NVVM Dielact.

D. CPU-GPU Hybrid Simulation Generation

After generating simulation functions for both CPU-parallel
and GPU-parallel modules, we construct a unified simulation
wrapper to enable hybrid execution across CPU and GPU
platforms. This wrapper coordinates the simulation of hetero-
geneous components, executing host cores on the CPU and
processing elements (PEs) on the GPU, in a single simulation
cycle. To achieve this, we assign two host threads: one
responsible for launching the CPU-side simulation function
and the other for invoking the GPU kernel through the CUDA
driver API. These threads are folded into a lightweight runtime
framework that synchronizes execution using a barrier at each
end of the simulation cycle to ensure correctness and data
consistency. Since our simulation scenario involves no shared
inputs or outputs to simplify our simulation model, no explicit
data transfer between host and device memory is required.

During each simulation cycle, the CPU thread invokes
the evaluation functions for complex cores using OpenMP,
while the GPU thread asynchronously launches the evaluation
kernel to simulate thousands of parallel PEs. This hybrid
execution model leverages the strengths of both CPU and
GPU: the CPU efficiently handles control-heavy, instruction-
rich host cores, while the GPU executes lightweight, massively
parallel PEs with high throughput. By balancing workloads
and minimizing idle compute resources, the hybrid simulation
framework improves scalability and simulation efficiency for
heterogeneous deep learning accelerator SoCs.

IV. EXPERIMENTAL EVALUATION

We evaluate the performance of HeteroRTL on four deep
learning SoC RTL designs, each integrating multiple RISC-

V Rocket [[16] cores as the processing host and paired with
one of the following accelerators: Conv2D [17]], GEMM [17],
Gemmini [1]], or SIGMA [18]. Evaluations are performed on
a 64-bit Linux machine with an Intel i5-13500 CPU and an
NVIDIA RTX A4000 GPU. CPU code is generated using
LLVM 17’s clang and 1lc, while GPU code generation
leverages CUDA Toolkit 12.6 with compute capability 8.6.
All generated code is built with the ~02 optimization level.

A. Baseline

We compare HeteroRTL against three CPU-based RTL sim-
ulators: Verilator [5]], Khronos [8], and BatchSim [9]. Verilator
and BatchSim are executed with four threads enabled, while
Khronos operates in a single-threaded configuration due to its
lack of parallel execution support. Since our experiments focus
on single-input stimulus scenarios, we exclude RTLflow [4], a
GPU-based simulator specifically optimized for batch-driven
workloads. ESSENT [19] and its successors [|6, [10] are also
excluded, as they fail to complete code generation due to out-
of-memory errors. To ensure consistency, all simulation results
are averaged over five runs.

B. Code Generation and Compilation Results

Table || shows the end-to-end compilation time and ex-
ecutable size for Conv2D, GEMM, Gemmini, and SIGMA
across various RTL simulators. The compilation time includes
both the transformation from RTL source to simulation code
(C++ or LLVM IR) and the final compilation and linking
steps to produce the executable. Baseline simulators fail to
identify repetitive components, leading to redundant code
generation and substantial compilation overhead. In contrast,
HeteroRTL compiles in just a few seconds, achieving a three
to five order-of-magnitude speedup. This efficiency stems from
HeteroRTL’s ability to detect structural repetition in heteroge-
neous architectures and deep learning accelerators, generating
evaluation functions only for critical components (e.g., cores
and PEs) and reusing them at runtime via corresponding data
structures.

TABLE I: Compilation time (T) and executable size for
Conv2D, GEMM, Gemmini, and SIGMA across different
Rocket core and PE configurations.

Khronos BatchSim HeteroRTL
T(s) Size(MB)| T(s) Size(MB)|T(s) Size(MB)

Verilator

Design #Cores #PEs T(s) Size(MB)

4 27| 25 0.9 16 0.6 11 1.1 5 1.1
ComvaD 4 211 55 43 2643 3.8 310 10 5 1.1
32 27|15 35 229 2.8 79 5.1 7 1.1
32 2180 69 | 2856 6.1 378 14 7 1.1
4 27| 41 0.9 12 0.5 11 1.0 5 1.1
GEMM 4 2| 240 36 1145 26 148 82 5 1.1
32 27| 167 34 226 2.7 79 4.9 7 1.1
32 211 365 6.2 1359 49 215 12 7 1.1
4 27| 39 9 1907 33 | 601 3.8 7 12
Gemmini 4 2.1[17909 132 [357508 47 |92682 52 7 1.2
32 27| 521 11 2121 56 | 669 7.8 8 12
32 2'1018034 135 [357721 49 [92750 56 8 1.2
4 27 |11 2.8 109 13 68 18 |12 14
sicma 4 21114936 35 [22258 16 [10977 20 12 1.4
32 27236 54 323 3.5 136 58 |13 14
32 2105062 38 |22472 18 [11045 24 4 14

To demonstrate HeteroRTL’s scalability, Figure [3] shows
the compilation time of GEMM across RTL simulators as
the number of PEs and Rocket cores increases. HeteroRTL
exhibits sublinear growth in compilation overhead, even as
design size scales exponentially. This trend underscores Het-
eroRTL’s efficiency and scalability for large-scale RTL simu-
lation of heterogeneous architectures and deep learning accel-
erators.

Compilation Time for GEMM with 4 Cores Compilation Time for GEMM with 64 PEs

s
10
s —@— Verilator . —@— Verilator
5104 —— Khronos §102 —#— Khronos |
e —— BatchSim > —— BatchSim ’
--E 3 ~— HeteroRTL E - HeteroRTL;
= 10 —_— = N—
.2 2
=R =
& 10 B
£ E
] 10! ©
—————— A
26 27 28 29 210 211 212 213 2 4 8 16 32
Number of PEs Number of Cores

Fig. 3: Compilation time of GEMM accelerators across dif-
ferent RTL simulators under varying Rocket core and PE
configurations.

C. Overall Simulation Speedup

Figure [] and Figure [5] show the simulation speedup of
Conv2D, GEMM, Gemmini, and SIGMA on various RTL
simulators under different configurations of Rocket cores and
PEs, relative to the baseline Verilator. In Figure E], HeteroRTL
demonstrates increasing speedup as deep learning accelerator
designs scale from small to large sizes. This improvement
is driven by HeteroRTL’s strategy of assigning thread blocks
to evaluate identical components (PEs) in parallel, leveraging
SIMT execution on the GPU to effectively hide latency. As
a result, it achieves a speedup of 9x to 122x for the largest
designs.

In Figure [5] HeteroRTL outperforms other simulators,
achieving up to 80x speedup. This gain is attributed to
its use of pointer-based struct passing, which enhances data
locality and reduces synchronization overhead. Additionally,
HeteroRTL adopts a hybrid CPU-GPU co-simulation strategy
that balances the workload: complex heterogeneous cores are
simulated on the CPU, while simpler PEs are handled in
parallel on the GPU, reducing pressure on both sides and
achieving better load balancing.

D. Simulation Runtime Analysis

Figure [6] presents the simulation time of Gemmini on
various RTL simulators across different PE counts and Rocket
core configurations. All baseline simulators exhibit super-
linear growth in simulation time due to their CPU-based
execution. With limited CPU threads and instruction counts
scaling proportionally to design size, the simulation imposes
significant memory and compute pressure on the CPU. In
contrast, HeteroRTL demonstrates sublinear growth. As shown
in Figure [6] the simulation time remains around 0.5 seconds

1 Conv2D with 32 Rocket Cores

I Verilator
R Khronos

a BN BatchSim
_é‘ o BB HeteroRTL
3 10 ;
o
w1
10"
6 7 8 9 10 11 12 13
10! GEMM with 32 Rocket Cores
B Verilator |
BN Khronos
a B BatchSim
=] BB HeteroRTL
= 0
2 10 ;
o
v

6 7 8 9 10 11 12 13

Gemmini with 32 Rocket Cores

10° 4 N Verilator
B Khronos
BB BatchSim
10" § EEEN HeteroRTL

4 5 6 7 8 9 10 11

SIGMA with 32 Rocket Cores

10° § EEE Verilator
EE Khronos
N BatchSim
10 EEE HeteroRTL

4 5 6 7 8 9 10 11
Number of PEs (log2)

Fig. 4: Overall simulation speedup of Conv2D, GEMM, Gem-
mini, and SIGMA on various RTL simulators with 32 Rocket
cores while the number of PEs increases exponentially.

with 32 Rocket cores, even as the number of PEs increases
from 2% to 2!, This performance comes from offloading deep
learning accelerator simulation to the GPU. The GPU consists
of multiple streaming multiprocessors (SMs), each capable of
handling thousands of threads. This enables latency hiding
through context switching and allows massive concurrency,
significantly improving simulation throughput.

Figure[6|also shows that HeteroRTL continues to outperform
other simulators as the number of Rocket cores increases
from 2 to 32. This is due to the effective load balancing of
HeteroRTL’s hybrid simulation model: complex heterogeneous
cores (e.g., Rocket cores) are assigned to the CPU, which
is better suited for their instruction-heavy behavior, while
simpler, massively parallel PEs are evaluated on the GPU. As a
result, HeteroRTL’s hybrid CPU-GPU co-simulation approach
achieves high performance and scalability for heterogeneous
architectures with integrated deep learning accelerators.

V. CONCLUSION

This paper presents HeteroRTL, a unified and scalable code
generation flow for hybrid CPU-GPU RTL simulation. By
introducing an architecture-aware partitioning method and a
structural deduplication strategy, HeteroRTL effectively maps
complex host cores to CPUs and highly parallel processing
elements to GPUs. Built on top of the MLIR infrastructure,

10" Conv2D (1024 PEs)
. Vrilator
N BB Khronos
_g BN BatchSim
S 10" § = HetwroRTL B ol [
[%- =
107"
2 4 8 16 32
o GEMM (1024 PEs)
_— Verilator
o EE Khronos
_és B BatchSim
3 10 BN HeteroRTL
=9 TR EEmee
w1

2 4 8 16 32
Gemmini (1024 PEs)

>
10 W Verilator
BN Khronos

S 1o | = Bachsin
S 10
8 BB HeteroRTL
o 0 2
A 10" | g EEEN g BEEE o BEAE e EESN , EEE

10"

2 4 8 16 32
o SIGMA (1024 PEs)
- Verilator = B B

a EE Khronos B Rl el el el
% B BatchSim
g 10 B HeteroRTL
& .

2 4 8 16 32
Number of Rocket Cores

Fig. 5: Overall simulation speedup of Conv2D, GEMM, Gem-
mini, and SIGMA on various RTL simulators with 1024 PEs
while the number of cores increases.

, Simulation Time for Gemmini with 32 Cores 10! Simulation Time for Gemmini with 64 PEs

—@— Verilator |

@~ Verilator |
— -l Khronos = -~ Khronos |
2 @~ BatchSim 3 @~ BuchSim |
< | A HeweroRTL b e — HeteroRTL
L P —— J
g E
[E o
10
£ 8
= =
0 2
g g ———
7] St A 7]
107 10"
4 5 6 7 8 9 10 11 2 4 8 16 32

Number of PEs (log2) Number of Rocket Cores

Fig. 6: Simulation time of Gemmini on various RTL simulators
with different numbers of PEs and Rocket core configurations.

HeteroRTL enables modular, parallel code generation and
simulation, significantly improving performance and resource
utilization. Our evaluation shows that HeteroRTL achieves up
to five orders of magnitude compilation speedup and delivers
up to 122x simulation speedup compared to state-of-the-art
simulators. These results underscore the benefits of leveraging
structural parallelism and heterogeneous hardware to accel-
erate RTL simulation. Inspired by our prior work on task
graph parallelism [4] 20-92]], we plan to extend HeteroRTL to
support additional features such as dynamic graph scheduling.

ACKNOWLEDGMENT

This project is supported by NSF grants 2235276, 2349144,
2349143, 2349582, and 2349141.

(1]

(2]

(3]
(4]

(3]
(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

REFERENCES

Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh
Iyer, Pranav Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew,
Howard Mao, et al. Gemmini: Enabling Systematic Deep-
Learning Architecture Evaluation via Full-Stack Integration. In
2021 58th ACM/IEEE Design Automation Conference (DAC),
pages 769-774. IEEE, 2021.

Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul
Nagarajan, Lifeng Nai, Nishant Patil, Suvinay Subramanian,
Andy Swing, Brian Towles, et al. TPU v4: An Optically Recon-
figurable Supercomputer for Machine Learning with Hardware
Support for Embeddings. In Proceedings of the 50th annual
international symposium on computer architecture, pages 1-14,
2023.

TPU Architecture. https://cloud.google.com/tpu/docs/system-a
rchitecture-tpu-vm. [Online; last accessed 16-May-2025.].
Dian-Lun Lin, Haoxing Ren, Yanqing Zhang, Brucek Khailany,
and Tsung-Wei Huang. From RTL to CUDA: A GPU Acceler-
ation Flow for RTL Simulation with Batch Stimulus. In ACM
International Conference on Parallel Processing (ICPP), pages
1-12, 2022.

Wilson Snyder. Verilator 4.0: Open Simulation Goes Multi-
threaded. In ORConf, 2018.

Haoyuan Wang and Scott Beamer. RepCut: Superlinear Par-
allel] RTL Simulation with Replication-Aided Partitioning. In
Proceedings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems, Volume 3, pages 572-585, 2023.

Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie
Wang, Albert Magyar, Donggyu Kim, Colin Schmidt, Chick
Markley, Jim Lawson, et al. Reusability is firrtl ground:
Hardware construction languages, compiler frameworks, and
transformations. In 2017 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pages 209-216. IEEE,
2017.

Kexing Zhou, Yun Liang, Yibo Lin, Runsheng Wang, and
Ru Huang. Khronos: Fusing Memory Access for Improved
Hardware RTL Simulation. In Proceedings of the 56th An-
nual IEEE/ACM International Symposium on Microarchitecture,
pages 180-193, 2023.

Jie Tong, Liangliang Chang, Umit Yusuf Ogras, and Tsung-Wei
Huang. BatchSim: Parallel RTL Simulation using Inter-cycle
Batching and Task Graph Parallelism. In 2024 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), pages 789-793.
IEEE, 2024.

Haoyuan Wang, Thomas Nijssen, and Scott Beamer. Don’t
Repeat Yourself! Coarse-Grained Circuit Deduplication to Ac-
celerate RTL Simulation. In Proceedings of the 29th ACM
International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 4, pages 79—
93, 2024.

Jie Tong, Wan-Luan Lee, Umit Yusuf Ogras, and Tsung-Wei
Huang. Scalable Code Generation for RTL Simulation of Deep
Learning Accelerators with MLIR. In International European
Conference on Parallel and Distributed Computing (Euro-Par),
2025.

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen,
Andy Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman,
Nicolas Vasilache, and Oleksandr Zinenko. MLIR: Scaling
Compiler Infrastructure for Domain Specific Computation. In
2021 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pages 2—14. IEEE, 2021.

Chris Lattner and Vikram Adve. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In
International symposium on code generation and optimization,
2004. CGO 2004., pages 75-86. IEEE, 2004.

(14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

CIRCT. https://circt.llvm.org/. [Online; last accessed 16-May-
2025.].

Tiago Trevisan Jost, Arun Thangamani, Rapha¢l Colin, Vincent
Loechner, Stéphane Genaud, and Bérenger Bramas. GPU
Code Generation of Cardiac Electrophysiology Simulation with
MLIR. In European Conference on Parallel Processing, pages
549-563. Springer, 2023.

Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott
Beamer, David Biancolin, Christopher Celio, Henry Cook,
Daniel Dabbelt, John Hauser, Adam Izraelevitz, et al. The
Rocket Chip Generator. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 4:6-2,
2016.

Liancheng Jia, Zizhang Luo, Ligiang Lu, and Yun Liang.
TensorLib: A Spatial Accelerator Generation Framework for
Tensor Algebra. In 2021 58th ACM/IEEE Design Automation
Conference (DAC), pages 865-870. IEEE, 2021.

Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella,
Sudarshan Srinivasan, Dipankar Das, Bharat Kaul, and Tushar
Krishna. SIGMA: A Sparse and Irregular GEMM Accelerator
with Flexible Interconnects for DNN Training. In 2020 IEEE
International Symposium on High Performance Computer Ar-
chitecture (HPCA), pages 58-70. IEEE, 2020.

Scott Beamer and David Donofrio. Efficiently Exploiting Low
Activity Factors to Accelerate RTL Simulation. In 2020 DAC,
pages 1-6. IEEE, 2020.

Cheng-Hsiang Chiu, Chedi Morchdi, Chih-Chun Chang, Cunxi
Yu, Yi Zhou, and Tsung-Wei Huang. Optimizing CUDA Graph
Scheduling with Reinforcement Learning: A Case Study in
SSTA Propagation. In ACM/IEEE International Symposium on
Machine Learning for CAD (MLCAD), 2025.

Jie Tong, Wan-Luan Lee, Umit Yusuf Ogras, and Tsung-Wei
Huang. Scalable Code Generation for RTL Simulation of Deep
Learning Accelerators with MLIR. In International European
Conference on Parallel and Distributed Computing (Euro-Par),
2025.

Chih-Chun Chang and Tsung-Wei Huang. Statistical Tim-
ing Graph Scheduling Algorithm for GPU Computation. In
ACM/IEEE Design Automation Conference (DAC), 2025.
Wan-Luan Lee, Shui Jiang, Dian-Lun Lin, Che Chang, Boyang
Zhang, Yi-Hua Chung, Ulf Schlichtmann, Tsung-Yi Ho, , and
Tsung-Wei Huang. iG-kway: Incremental k-way Graph Parti-
tioning on GPU. In ACM/IEEE Design Automation Conference
(DAC), 2025.

Yi-Hua Chung, Shui Jiang, Wan Luan Lee, Yanqing Zhang,
Haoxing Ren, Tsung-Yi Ho, and Tsung-Wei Huang. SimPart: A
Simple Yet Effective Replication-aided Partitioning Algorithm
for Logic Simulation on GPU. In International European
Conference on Parallel and Distributed Computing (Euro-Par),
2025.

Shui Jiang, Yi-Hua Chung, Chih-Chun Chang, Tsung-Yi Ho,
and Tsung-Wei Huang. BQSim: GPU-accelerated Batch Quan-
tum Circuit Simulation using Decision Diagram. In ACM Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2025.

Serhan Gener, Sahil Hassan, Liangliang Chang, Chaitali
Chakrabarti, Tsung-Wei Huang, Umit Ograss, , and Ali Akoglu.
A Unified Portable and Programmable Framework for Task-
Based Execution and Dynamic Resource Management on Het-
erogeneous Systems. In ACM International Workshop on
Extreme Heterogeneity Solutions (ExHET), 2025.

Che Chang, Boyang Zhang, Cheng-Hsiang Chiu, Dian-Lun Lin,
Yi-Hua Chung, Wan-Luan Lee, Zizheng Guo, Yibo Lin, and
Tsung-Wei Huang. PathGen: An Efficient Parallel Critical Path
Generation Algorithm. In IEEE/ACM Asia and South Pacific
Design Automation Conference (ASP-DAC), 2025.

Boyang Zhang, Che Chang, Cheng-Hsiang Chiu, Dian-Lun

https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
https://circt.llvm.org/

[29]

[30]

(31]

(32]

(33]

(34]

(35]

[36]

[37]

(38]

(39]

[40]

[41]

(42]

Lin, Yang Sui, Chih-Chun Chang, Yi-Hua Chung, Wan-Luan
Lee, Zizheng Guo, Yibo Lin, and Tsung-Wei Huang. iTAP:
An Incremental Task Graph Partitioner for Task-parallel Static
Timing Analysis. In IEEE/ACM Asia and South Pacific Design
Automation Conference (ASP-DAC), 2025.

Wan-Luan Lee, Dian-Lun Lin, Cheng-Hsiang Chiu, Ulf
Schlichtmann, and Tsung-Wei Huang. HyperG: Multilevel
GPU-Accelerated k-way Hypergraph Partitioner. In IEEE/ACM
Asia and South Pacific Design Automation Conference (ASP-
DAC), 2025.

Cheng-Hsiang Chiu, Chedi Morchdi, Yi Zhou, Boyang Zhang,
Che Chang, and Tsung-Wei Huang. Reinforcement Learning-
generated Topological Order for Dynamic Task Graph Schedul-
ing. In [EEE High-performance and Extreme Computing
Conference (HPEC), 2024.

Chih-Chun Chang, Boyang Zhang, and Tsung-Wei Huang.
GSAP: A GPU-Accelerated Stochastic Graph Partitioner. In
ACM International Conference on Parallel Processing (ICPP),
pages 565-575, 2024.

Zizheng Guo, Zuodong Zhang, Wuxi Li, Tsung-Wei Huang,
Xizhe Shi, Yufan Du, Yibo Lin, Runsheng Wang, and
Ru Huang. HeteroExcept: Heterogeneous Engine for General
Timing Path Exception Analysis. In IEEE/ACM International
Conference on Computer-aided Design (ICCAD), pages 1-9,
2024.

Shui Jiang, Rongliang Fu, Lukas Burgholzer, Robert Wille,
Tsung-Yi Ho, and Tsung-Wei Huang. FlatDD: A High-
Performance Quantum Circuit Simulator using Decision Dia-
gram and Flat Array. In ACM International Conference on
Parallel Processing (ICPP), pages 388-399, 2024.

Jie Tong, Liangliang Chang, Umit Yusuf Ogras, and Tsung-
Wei Huang. BatchSim: Parallel RTL Simulation using Inter-
cycle Batching and Task Graph Parallelism. In IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), pages 789-793,
2024.

Che Chang, Cheng-Hsiang Chiu, Boyang Zhang, and Tsung-
Wei Huang. Incremental Critical Path Generation for Dynamic
Graphs. In IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pages 771-774, 2024.

Cheng-Hsiang Chiu and Tsung-Wei Huang. An Experimental
Study of Dynamic Task Graph Parallelism for Large-Scale
Circuit Analysis Workloads. In IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pages 766-770, 2024.
Dian-Lun Lin, Tsung-Wei Huang, Joshua San Miguel, and
Umit Ogras. TaroRTL: Accelerating RTL Simulation using
Coroutine-based Heterogeneous Task Graph Scheduling. In
International European Conference on Parallel and Distributed
Computing (Euro-Par), pages 151-166, 2024.

Wan Luan Lee, Dian-Lun Lin, Tsung-Wei Huang, Shui Jiang,
Tsung-Yi Ho, Yibo Lin, and Bei Yu. G-kway: Multilevel GPU-
Accelerated k-way Graph Partitioner. In ACM/IEEE Design
Automation Conference (DAC), pages 1-6, 2024.

Che Chang, Tsung-Wei Huang, Dian-Lun Lin, Guannan Guo,
and Shiju Lin. Ink: Efficient Incremental k-Critical Path Gen-
eration. In ACM/IEEE Design Automation Conference (DAC),
pages 1-6, 2024.

Boyang Zhang, Dian-Lun Lin, Che Chang, Cheng-Hsiang Chiu,
Bojue Wang, Wan Luan Lee, Chih-Chun Chang, Donghao Fang,
and Tsung-Wei Huang. G-PASTA: GPU Accelerated Partition-
ing Algorithm for Static Timing Analysis. In ACM/IEEE Design
Automation Conference (DAC), pages 1-6, 2024.

Shiju Lin, Guannan Guo, Tsung-Wei Huang, Weihua Sheng,
Evangeline Young, and Martin Wong. GCS-Timer: GPU-
Accelerated Current Source Model Based Static Timing Analy-
sis. In ACM/IEEE Design Automation Conference (DAC), pages
1-6, 2024.

Tsung-Wei Huang, Boyang Zhang, Dian-Lun Lin, and Cheng-

[43]

[44]

[45]

[46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

[54]

[55]

[56]

(571

(58]

Hsiang Chiu. Parallel and Heterogeneous Timing Analysis:
Partition, Algorithm, and System. In ACM International Sym-
posium on Physical Design (ISPD), pages 51-59, 2024.
Zizheng Guo, Tsung-Wei Huang, Jin Zhou, Cheng Zhuo,
Yibo Lin, Runsheng Wang, and Ru Huang. Heterogeneous
Static Timing Analysis with Advanced Delay Calculator. In
IEEE/ACM Design, Automation and Test in Europe Conference
(DATE), 2024.

Chedi Morchdi, Cheng-Hsiang Chiu, Yi Zhou, and Tsung-Wei
Huang. A Resource-efficient Task Scheduling System using
Reinforcement Learning. In IEEE/ACM Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 89-95, 2024.
Cheng-Hsiang Chiu, Dian-Lun Lin, and Tsung-Wei Huang.
Programming Dynamic Task Parallelism for Heterogeneous
EDA Algorithms. In IEEE/ACM International Conference on
Computer-aided Design (ICCAD), pages 1-8, 2023.
Chih-Chun Chang and Tsung-Wei Huang. uSAP: An Ultra-Fast
Stochastic Graph Partitioner. In IEEE High-performance and
Extreme Computing Conference (HPEC), pages 1-7, 2023.
Shiu Jiang, Tsung-Wei Huang, and Tsung-Yi Ho. GLARE: Ac-
celerating Sparse DNN Inference Kernels with Global Memory
Access Reduction. In [EEE High-performance and Extreme
Computing Conference (HPEC), 2023.

Shiu Jiang, Tsung-Wei Huang, and Tsung-Yi Ho. SNICIT:
Accelerating Sparse Neural Network Inference via Compression
at Inference Time on GPU. In ACM International Conference
on Parallel Processing (ICPP), pages 51-61, 2023.

Dian-Lun Lin, Yanqing Zhang, Haoxing Ren, Shih-Hsin Wang,
Brucek Khailany, and Tsung-Wei Huang. GenFuzz: GPU-
accelerated Hardware Fuzzing using Genetic Algorithm with
Multiple Inputs. In ACM/IEEE Design Automation Conference
(DAC), pages 1-6, 2023.

Tsung-Wei Huang. qTask: Task-parallel Quantum Circuit Sim-
ulation with Incrementality. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 746-756,
2023.

Elmir Dzaka, Dian-Lun Lin, and Tsung-Wei Huang. Parallel
And-Inverter Graph Simulation Using a Task-graph Computing
System. In IEEE International Parallel and Distributed Pro-
cessing Symposium Workshop (IPDPSw), 2023.

Guannan Guo, Tsung-Wei Huang, and Martin D. F. Wong. Fast
STA Graph Partitioning Framework for Multi-GPU Accelera-
tion. In IEEE/ACM Design, Automation and Test in Europe
Conference (DATE), 2023.

Guannan Guo, Tsung-Wei Huang, Y. Lin, Z. Guo, S. Yel-
lapragada, and Martin Wong. A GPU-Accelerated Framework
for Path-Based Timing Analysis. In IEEE Transactions on
Computer-aided Design of Integrated Circuits and Systems
(TCAD), pages 4219-4232, 2023.

Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. Accelerating
Static Timing Analysis using CPU-GPU Heterogeneous Paral-
lelism. In IEEE Transactions on Computer-aided Design of
Integrated Circuits and Systems (TCAD), pages 4973-4984,
2023.

Tsung-Wei Huang and Leslie Hwang. Task-parallel Program-
ming with Constrained Parallelism. In IEEE High-Performance
Extreme Computing Conference (HPEC), 2022.

Tsung-Wei Huang. Enhancing the Performance Portability of
Heterogeneous Circuit Analysis Programs. In IEEE High-
Performance Extreme Computing Conference (HPEC), 2022.
Cheng-Hsiang Chiu and Tsung-Wei Huang. Composing
Pipeline Parallelism using Control Taskflow Graph. In ACM
International Symposium on High-Performance Parallel and
Distributed Computing (HPDC), pages 283-284, 2022.
Cheng-Hsiang Chiu and Tsung-Wei Huang. Efficient Timing
Propagation with Simultaneous Structural and Pipeline Paral-
lelisms. In ACM/IEEE Design Automation Conference (DAC),

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

(72]

(73]

[74]

[75]

pages 1388-1389, 2022.

Tsung-Wei Huang and Yibo Lin. Concurrent CPU-GPU Task
Programming using Modern C++. In [EEE International
Workshop on High-level Parallel Programming Models and
Supportive Environments (HIPS), pages 588-597, 2022.
Kexing Zhou, Zizheng Guo, Tsung-Wei Huang, and Yibo
Lin. Efficient Critical Paths Search Algorithm using Mergeable
Heap. In IEEE/ACM Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 190-195, 2022.

Dian-Lun Lin and Tsung-Wei Huang. Accelerating Large
Sparse Neural Network Inference using GPU Task Graph Par-
allelism. In IEEE Transactions on Parallel and Distributed
Systems (TPDS), pages 3041-3052, 2022.

McKay Mower, Luke Majors, and Tsung-Wei Huang. Taskflow-
San: Sanitizing Erroneous Control Flow in Taskflow Programs.
In IEEE Workshop on Extreme Scale Programming Models and
Middleware (ESPM2), 2021.

Tsung-Wei Huang. TFProf: Profiling Large Taskflow Programs
with Modern D3 and C++. In IEEE International Workshop on
Programming and Performance Visualization Tools (ProTools),
pages 1-6, 2021.

Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. HeteroCPPR:
Accelerating Common Path Pessimism Removal with Hetero-
geneous CPU-GPU Parallelism. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2021.
Guannan Guo, Tsung-Wei Huang, Yibo Lin, and Martin Wong.
GPU-accelerated Critical Path Generation with Path Constraints.
In IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 1-9, 2021.

Yasin Zamani and Tsung-Wei Huang. A High-Performance
Heterogeneous Critical Path Analysis Framework. In IEEE
High-Performance Extreme Computing Conference (HPEC),
2021.

Cheng-Hsiang Chiu, Dian-Lun Lin, and Tsung-Wei Huang.
An Experimental Study of SYCL Task Graph Parallelism for
Large-Scale Machine Learning Workloads. In International
Workshop of Asynchronous Many-Task systems for Exascale
(AMTE), pages 468—-479, 2021.

Dian-Lun Lin and Tsung-Wei Huang. Efficient GPU Computa-
tion using Task Graph Parallelism. In European Conference on
Parallel and Distributed Computing (Euro-Par), pages 435-450,
2021.

Guannan Guo, Tsung-Wei Huang, Yibo Lin, and Martin Wong.
GPU-accelerated Path-based Timing Analysis. In IEEE/ACM
Design Automation Conference (DAC), pages 721-726, 2021.
Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. A Provably
Good and Practically Efficient Algorithm for Common Path
Pessimism Removal in Large Designs. In IEEE/ACM Design
Automation Conference (DAC), pages 3466-3478, 2021.
Kuan-Ming Lai, Tsung-Wei Huang, Pei-Yu Lee, and Tsung-
Yi Ho. ATM: A High Accuracy Extracted Timing Model for
Hierarchical Timing Analysis. In IEEE/ACM Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 278—
283, 2021.

Tsung-Wei Huang, Guannan Guo, Chun-Xun Lin, and Martin
D. F. Wong. OpenTimer v2: A New Parallel Incremental Timing
Analysis Engine. In IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 2021.
Tsung-Wei Huang, Chun-Xun Lin, and Martin Wong. Open-
Timer v2: A Parallel Incremental Timing Analysis Engine. In
IEEE Design and Test (DAT), 2021.

Tsung-Wei Huang, Dian-Lun Lin, Chun-Xun Lin, and Yibo
Lin. Taskflow: A Lightweight Parallel and Heterogeneous Task
Graph Computing System. In IEEE Transactions on Parallel
and Distributed Systems (TPDS), pages 1303-1320, 2022.
Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin
Wong. Cpp-Taskflow: Fast Task-based Parallel Programming

[76]

(771

(78]

[79]

(80]

(81]

(82]

(83]

[84]

[85]

[86]

(87]

(88]

(89]

[90]

[91]

[92]

using Modern C++. In IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2019.

Tsung-Wei Huang, Dian-Lun Lin, Yibo Lin, and Chun-Xun Lin.
Taskflow: A General-purpose Parallel and Heterogeneous Task
Programming System. In [EEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2022.
Chun-Xun Lin, Tsung-Wei Huang, and Martin Wong. An
Efficient Work-Stealing Scheduler for Task Dependency Graph.
In IEEE International Conference on Parallel and Distributed
Systems (ICPADS), pages 64-71, 2020.

Dian-Lun Lin and Tsung-Wei Huang. A Novel Inference
Algorithm for Large Sparse Neural Network using Task Graph
Parallelism. In IEEE High-performance and Extreme Comput-
ing Conference (HPEC), 2020.

Tsung-Wei Huang. A General-purpose Parallel and Heteroge-
neous Task Programming System for VLSI CAD. In IEEE/ACM
International Conference on Computer-aided Design (ICCAD),
pages 1-2, 2020.

Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. GPU-
accelerated Static Timing Analysis. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2020.
Guannan Guo, Tsung-Wei Huang, Chun-Xun Lin, and Mar-
tin Wong. An Efficient Critical Path Generation Algorithm
Considering Extensive Path Constraints. In ACM/IEEE Design
Automation Conference (DAC), pages 1-6, 2020.

Chun-Xun Lin, Tsung-Wei Huang, Guannan Guo, and Martin
Wong. A Modern C++ Parallel Task Programming Library. In
ACM Multimedia Conference (MM), pages 2284-2287, 2019.
Chun-Xun Lin, Tsung-Wei Huang, Guannan Guo, and Martin
Wong. An Efficient and Composable Parallel Task Programming
Library. In IEEE High-performance and Extreme Computing
Conference (HPEC), 2019.

Kuan-Ming Lai, Tsung-Wei Huang, and Tsung-Yi Ho. A
General Cache Framework for Efficient Generation of Timing
Critical Paths. In ACM/IEEE Design Automation Conference
(DAC), 2019.

Tsung-Wei Huang, Chun-Xun Lin, , and Martin Wong. Dis-
tributed Timing Analysis at Scale. In ACM/IEEE Design
Automation Conference (DAC), pages 1-2, 2019.

Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin
Wong. Essential Building Blocks for Creating an Open-source
EDA Project. In ACM/IEEE Design Automation Conference
(DAC), pages 1-4, 2019.

Tsung-Wei Huang, Chun-Xun Lin, and Martin Wong. DtCraft:
A High-performance Distributed Execution Engine at Scale. In
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), pages 1070-1083, 2019.
Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin
Wong. A General-purpose Distributed Programming System
using Data-parallel Streams. In ACM Multimedia Conference
(MM), pages 1360-1363, 2018.

Chun-Xun Lin, Tsung-Wei Huang, Ting Yu, and Martin Wong.
A Distributed Power Grid Analysis Framework from Sequential
Stream Graph. In ACM Great Lakes Symposium on VLSI
(GLSVLSI), pages 183-188, 2018.

Tsung-Wei Huang, Chun-Xun Lin, and Martin Wong. DtCraft:
A Distributed Execution Engine for Compute-intensive Appli-
cations. In IEEE/ACM International Conference on Computer-
aided Design (ICCAD), pages 757-764, 2017.

T.-Y. Lai, Tsung-Wei Huang, , and Martin Wong. Libabs: An
Effective and Accurate Macro-modeling Algorithm for Large
Hierarchical Designs. In IEEE/ACM International Conference
on Computer-aided Design (ICCAD), pages 1-6, 2017.
Tsung-Wei Huang, Martin Wong, D. Sinha, K. Kalafala, and
N. Venkateswaran. A Distributed Timing Analysis Framework
for Large Designs. In IEEE/ACM Design Automation Confer-
ence (DAC), pages 1-6, 2016.

	Introduction
	Background and Motivation
	RTL Simulation
	MLIR

	HeteroRTL
	Structural Analysis and Architecture-aware Partitioning
	CPU-parallel Simulation Code Generation
	GPU-parallel Simulation Code Generation
	CPU-GPU Hybrid Simulation Generation

	Experimental Evaluation
	Baseline
	Code Generation and Compilation Results
	Overall Simulation Speedup
	Simulation Runtime Analysis

	Conclusion

