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Abstract— As hardware design complexity increases, efficient
Register Transfer Level (RTL) simulation becomes critical for
reducing the long runtime of design and verification. Although
several parallel RTL simulators have been developed, they often
suffer from long compilation times and slow simulation perfor-
mance, especially for large-scale heterogeneous architectures and
deep learning SoC designs that exhibit repetitive and hierarchical
structures. These limitations arise because existing simulators
fail to effectively map heterogeneous architectures onto CPU-
GPU platforms, resulting in underutilized compute resources. In
addition, they repeatedly regenerate and recompile redundant
code, missing the opportunity to exploit the structural paral-
lelism inherent in deep learning accelerators. To address these
challenges, we propose HeteroRTL, a scalable code generation
flow that produces hybrid CPU-GPU parallel RTL simulators for
heterogeneous deep learning accelerator SoCs. Built on the MLIR
infrastructure, HeteroRTL analyzes RTL designs, partitions the
simulation between CPU and GPU targets, identifies structural
repetition to reduce compilation overhead, and generates efficient
simulation executables. Compared to state-of-the-art simulators,
HeteroRTL achieves compilation speedups of three to five orders
of magnitude and delivers up to 9x and 122x simulation
speedups across various designs.

I. INTRODUCTION

Domain-specific accelerators are essential for enhancing the
performance of deep learning workloads, including DNNs
and transformer models, in today’s Al-driven industry [1} 2[].
Register Transfer Level (RTL) simulation is a critical step in
hardware design and verification, used to validate function-
ality prior to physical implementation through tasks such as
regression testing, debugging, and design space exploration.
As accelerators evolve, their design complexity continues to
grow. For instance, the systolic array size in Google’s TPU
has increased from 128128 to 256x256 in the latest TPU
vbe [3]. Consequently, RTL simulation has become increas-
ingly time-consuming. Recent studies report that simulation
can take several hours to days to achieve coverage closure
when validating deep learning accelerators [4]. Therefore,
accelerating RTL simulation is essential for managing growing
design complexity and meeting the fast-paced time-to-market
requirements of the accelerator industry.
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To overcome the prohibitive runtimes of RTL simulation,
researchers have introduced various parallel simulation tech-
niques. One prominent example is Verilator [, a widely
adopted open-source RTL simulator that transpiles hardware
description languages (HDLs) into C++ using abstract syntax
trees (ASTs), and employs disjoint-set-based partitioning to
enable multithreaded execution. RTLflow [4]], built on top
of Verilator, targets GPU acceleration by translating RTL
code into CUDA, but requires thousands of input stimuli to
outperform CPU-based simulators. RepCut [6] converts RTL
designs into FIRRTL [7] and introduces a replication-aided
partitioning algorithm to reduce synchronization overhead dur-
ing parallel simulation. Khronos [8] and BatchSim [9] utilize
the MLIR framework to analyze RTL designs and generate
evaluation functions in LLVM IR. Dedup [10] introduces
deduplication and targets the structural patterns of multi-core
SoC designs. ScaleRTL [11] introduces a scalable deduplica-
tion and code generation approach for RTL simulation of deep
learning accelerators. While these approaches improve per-
formance, they have largely evolved independently, resulting
in fragmented toolchains and missed opportunities for shared
infrastructure. As a result, developing new RTL simulation
algorithms remains time-consuming and error-prone, often
involving redundant engineering efforts and reimplementation
of common optimization techniques.

However, prior research on parallel RTL simulation has
primarily focused on generic RTL designs, without addressing
the unique characteristics of large-scale heterogeneous archi-
tectures and deep learning SoCs. These approaches suffer
from two major limitations. First, they do not effectively
map heterogeneous architectures onto CPU-GPU simulation
platforms, resulting in underutilized compute resources. As
illustrated in Figure|l} a deep learning SoC typically features a
heterogeneous architecture composed of multicore host CPUs
and a systolic array of duplicated processing elements (PEs).
Running such a simulation on CPUs alone fails to exploit
the fine-grained parallelism well-suited to GPUs. Conversely,
executing the entire simulation on GPUs underutilizes the



hardware for complex CPU cores, which are fewer in number
than GPU warp sizes, and may overconsume registers and
memory, leading to suboptimal GPU performance. Second,
existing simulators do not take advantage of structural re-
dundancy. Even when designs contain homogeneous logic
elements, they generate separate evaluation code for each
instance. This results in substantial inefficiencies, as the same
code is repeatedly compiled instead of being reused, failing
to leverage the structural parallelism present in deep learning
accelerators.

To address these challenges, we propose HeteroRTL, a
scalable code generation flow that produces hybrid CPU-GPU
parallel RTL simulators targeting heterogeneous deep learning
accelerator SoCs. Unlike prior works, HeteroRTL introduces
an architecture-aware partitioning method that identifies het-
erogeneous components and structurally parallel modules in
the RTL design. It partitions the system into two parts: com-
plex host cores are simulated on the CPU, while the systolic
array is offloaded to the GPU to exploit massive parallelism.
This partitioning improves load balancing and maximizes
compute resource utilization. In addition, HeteroRTL detects
structural repetition to significantly reduce compilation over-
head. By reusing generated and compiled evaluation functions
during simulation, it avoids the redundant code generation
commonly found in traditional compilers and simulators. To
support a unified code generation flow for hybrid CPU and
GPU simulation, HeteroRTL is built on top of the multi-level
intermediate representation (MLIR) framework [12], which
provides flexible dialects and transformation capabilities. Het-
eroRTL emits evaluation functions in LLVM IR, then lowers
them to native binary code for CPU execution and PTX code
for GPU execution. It also generates simulation wrappers to
invoke and coordinate hybrid simulation tasks across CPU and
GPU platforms. We summarize our technical contributions as
follows:

« We propose a code generation flow that produces hybrid
CPU-GPU parallel RTL simulators for heterogeneous
deep learning accelerator SoCs.

e We develop an architecture-aware partitioning method
that separates heterogeneous components and structurally
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Fig. 1: Schematic of a deep learning accelerator SoC com-
posed of multicore host CPUs and a systolic array of du-
plicated PEs. The heterogeneous architecture enables CPU-
GPU hybrid simulation, while the duplicated components offer
opportunities for simulation code reuse and reduction.

parallel modules for efficient CPU and GPU execution.
« We design a scalable code generation approach that de-

tects structural repetition and eliminates redundant code,

significantly reducing compilation overhead.

We evaluate HeteroRTL on a set of deep learning accelerator
SoC RTL designs. Compared to state-of-the-art simulators,
HeteroRTL achieves compilation speedups of three to five or-
ders of magnitude and delivers up to 9x and 122x simulation
speedups across various designs.

II. BACKGROUND AND MOTIVATION
A. RTL Simulation

RTL designs are typically described using hardware de-
scription languages (HDLs) such as SystemVerilog or Chisel.
For simulation, these designs are translated into intermediate
representations like C++ or LLVM IR, integrated into a
simulation framework, and compiled into executable binaries.
To achieve cycle-accurate simulation and parallel execution,
full-cycle simulators such as Verilator [5], Khronos [8]], and
BatchSim [9]] are commonly used. These tools represent RTL
designs as directed graphs, referred to as RTL graphs, where
nodes correspond to logic elements and edges capture data
dependencies. Each simulation cycle involves evaluating the
RTL graph by propagating input values through logic elements
to compute outputs. This process is repeated thousands to
millions of times to ensure functional correctness [4), [8]].

While these simulators effectively capture functional behav-
ior, they often suffer from significant code redundancy due to
a lack of structural awareness. Verilator [5] and Dedup [10]]
offer only limited support for deduplication in RTL simulation
code generation. Verilator operates at the level of low-level
SystemVerilog statements and does not recognize or optimize
larger structural patterns. Dedup focuses on multi-core SoC-
style designs, emphasizing heterogeneity and connectivity, but
does not address the scalability requirements of deep learning
accelerators with highly repetitive architectures.

B. MLIR

MLIR [12] is a modern compiler infrastructure developed
to streamline the creation of new compiler components within
the LLVM ecosystem [13]. It offers a rich set of composable
abstractions, such as operations, types, attributes, and regions,
that enable the representation of programs at multiple levels
of abstraction. MLIR also allows developers to define custom
dialects and transformation passes, facilitating unified opti-
mization workflows across diverse input languages and target
platforms. To preserve the original design intent and retain
high-level structural information, we build HeteroRTL on top
of FIRRTL [7]] and CIRCT [14], intermediate representations
specifically designed to model RTL semantics directly.

III. HETERORTL

Figure [2] presents an overview of the proposed HeteroRTL
framework. At a high level, HeteroRTL compiles RTL source
code written in FIRRTL into simulation executables targeting
both CPU and GPU platforms. The framework is built on top



of MLIR [12] and CIRCT [14], which provide reusable di-
alects and compilation passes for general-purpose optimization
and hardware modeling. HeteroRTL consists of four key com-
ponents: structural repetition analysis and architecture-aware
partitioning, CPU-parallel code generation, GPU-parallel code
generation, and CPU-GPU hybrid simulation generation.
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Fig. 2: Overview of HeteroRTL.

| Simulation Wrapper |

| CPU-GPU Hybrid Simulation ,}

A. Structural Analysis and Architecture-aware Partitioning

The RTL simulation code generation process begins by
using CIRCT tools to lower the FIRRTL source design into
CIRCT dialects, such as hw, seq, and comb. Listing |I| shows
an example of a deep learning accelerator SoC represented in
the hw dialect.

operate in parallel and can therefore be simulated concurrently.
To construct a highly parallel simulator, we leverage this struc-
tural parallelism by analyzing the design, identifying repetitive
components, and extracting them from the top-level module.
We implement this analysis as a custom MLIR pass that
inspects the hardware module hierarchy. The pass identifies
the top-level module using a method that computes both
direct and flattened instance counts, and returns a mapping
of each module to its total number of instantiations in a
fully flattened design. This enables us to isolate and extract
frequently repeated modules, which can then be simulated
efficiently as parallel instances.

B. CPU-parallel Simulation Code Generation

Following the analysis of architectural heterogeneity and
repetitive structures, we decompose the deep learning accel-
erator RTL design into distinct modules and apply a series
of intermediate representation (IR) transformations. For CPU-
parallel code generation, we target the host CPU cores, which
are typically large and complex. Due to their instruction-
heavy behavior, these modules are well-suited for CPU-based
simulation. Using MLIR, we lower these components from
the hw dialect to the LLVM dialect, enabling efficient parallel
simulation on the CPU. Listing [2]illustrates this transformation
flow.

module {
hw.module @DL_SoC (%arg0: i32, ...) -> i32 {

%$Core_0.io_data_, ... = hw.instance "Core_0"
@QCore(clock: %clock: il, ...) -> (io_data_:
i32, ...)

%$Core_1l.io_data_, ... = hw.instance "Core_1"
@QCore (clock: %clock: il, ...) -> (io_data_:
i32, ...)

$PE_0O.io_data_, ... = hw.instance "PE_0" @PE(
clock: %clock: il, ...) -> (io_data_: ile,
cel)

$PE_1.io_data_, ... = hw.instance "PE_1" Q@PE(
clock: %clock: il, ...) —-> (io_data_: ile,

-)

}
}

module attributes {llvm.data_layout = ""} {
ii&m.mlir.global linkonce_odr @clock () : il
llvm.mlir.global linkonce_odr Q@reset () : il
ii&m.func QCore () {
%éé = llvm.mlir.addressof @reset '1lvm.ptr<il>

%26 = llvm.load %25 '1lvm.ptr<il>
llvm.store %30, %31

llvm.return

'1lvm.ptr<ilé>

}
}

Listing 1: Example Deep Learning SoC Design in HW Dialect.

Unlike generic RTL designs, deep learning accelerator SoCs
exhibit a heterogeneous architecture consisting of a cluster
of host CPU cores and a systolic array composed of repli-
cated processing elements (PEs). To exploit this structure,
we introduce a method that analyzes the architectural het-
erogeneity and partitions the design for subsequent CPU and
GPU code generation. Within each partition, the layout is
highly homogeneous, as cores and PEs are often instantiated
repetitively. From a hardware perspective, these components

Listing 2: Example core evaluation code in LLVM Dialect.

In the LLVM dialect, internal states are commonly allocated
as global variables in the data segment. When lowered to
LLVM IR and compiled into an object file, each evaluation
function, such as @Core, is statically linked to these glob-
als. In a deep learning accelerator SoC with tens of cores
and thousands of PEs, this leads to redundant compilation
of identical logic for each instance, resulting in excessive
code duplication and inflated binary size. To address this
inefficiency, we introduce a simulation model that separates
data from computation. Instead of binding evaluation functions
to global variables, we encapsulate all state variables within
a struct and pass a pointer to this struct as an argument. This
transformation, known as the Global-to-Struct pass,
promotes function reuse across instances and significantly
reduces both compilation time and executable size.

Listing [3] illustrates an evaluation function that takes a
pointer to a struct as its argument, with the struct itself defined
in a header file. During code generation, we record the byte




offsets of all variables within the struct to ensure correct mem-
ory access. This guarantees that the evaluation function can
compute the correct addresses and access the corresponding
data reliably. By decoupling the function from its internal state,
we compile the evaluation logic once and allocate multiple
struct instances at runtime. This design enables concurrent
invocation of the same function on different data, reducing
data hazards and minimizing synchronization overhead. With
both the evaluation function and the struct definition in place,
we leverage OpenMP to execute cycle-level parallel simulation
efficiently across CPU threads.

/ LLVM Dialect
module attributes {llvm.data_layout = ""} {
1lvm.func @Core (%arg0: !llvm.ptr<i8>) {
%0 = llvm.mlir.constant (0 : i64) : i64
%1 = llvm.getelementptr %arg0[%0] ('1llvm.ptr<

i8>, i64) -> !llvm.ptr<i8>
%2 = llvm.bitcast %1 '1lvm.ptr<i8> to !llvm.
ptr<ilé>

llvm.return
}
}

/ C++ header file
typedef struct EvalContext {
Field O Original global: @data Byt ffse

char data([8];

} EvalContext;
void Core (EvalContexts* ctx);

code generation to ensure correct memory access at runtime.
Listing [] provides an example of a GPU evaluation kernel
written in the NVVM dialect, where thread and block IDs are
used to compute global memory addresses. Once the LLVM
and NVVM dialects are generated, we invoke the LLVM static
compiler 11c to lower the code to PTX. To avoid the overhead
of just-in-time (JIT) compilation, where the GPU compiles
PTX to SASS upon first execution, we use the PTX assembler
ptxas to compile the PTX into architecture-specific SASS
binaries. These are packaged as fatbins, which improve per-
formance and maintain compatibility across different GPU
architectures.

module attributes {llvm.data_layout = ""} {
1lvm. func @PE (%arg0: !llvm.ptr<i8>) {

%0 = nvvm.read.ptx.sreg.tid.x : i32
%1 = nvvm.read.ptx.sreg.ctaid.x : 132
%2 = nvvm.read.ptx.sreg.ntid.x : i32

%11 = llvm.getelementptr %arg0[%10] ('1lvm.

ptr<i8>, i64) -> !llvm.ptr<i8>

l1lvm.return
}
}

Listing 3: Example core evaluation code in LLVM dialect with
a struct pointer as an argument, and the corresponding struct
defined in a C++ header file.

C. GPU-parallel Simulation Code Generation

Building on the analysis of architectural heterogeneity and
structural repetition, we partition the deep learning accelerator
SoC RTL design into separate modules and apply a series
of intermediate representation (IR) transformations. For GPU-
parallel code generation, we target the processing elements
(PEs) in systolic arrays, which are typically simple and
compute-light. Due to their data-parallel nature and regular
structure, these modules are well suited for GPU-based simu-
lation. Unlike prior work [15] that leverages the GPU dialect
for simulation code generation, we found that relying solely on
the GPU dialect limits flexibility in kernel control and host-
side optimization. To overcome this limitation, we design a
custom host-side CUDA code generator that programmatically
invokes CUDA driver APIs to load modules, manage device
memory, and launch kernels. On the device side, similar to
CPU-parallel code generation, we emit evaluation functions
in the LLVM dialect.

Given the GPU’s ability to launch thousands of threads
executing the same kernel in a SIMT model, we first allocate
a contiguous block of device memory to store struct instances.
Each thread must compute the correct address of its assigned
struct, which requires calculating both the base address and the
byte offset of each field. These offsets are precomputed during

Listing 4: Example GPU-based PE evaluation code in LLVM
and NVVM Dielact.

D. CPU-GPU Hybrid Simulation Generation

After generating simulation functions for both CPU-parallel
and GPU-parallel modules, we construct a unified simulation
wrapper to enable hybrid execution across CPU and GPU
platforms. This wrapper coordinates the simulation of hetero-
geneous components, executing host cores on the CPU and
processing elements (PEs) on the GPU, in a single simulation
cycle. To achieve this, we assign two host threads: one
responsible for launching the CPU-side simulation function
and the other for invoking the GPU kernel through the CUDA
driver API. These threads are folded into a lightweight runtime
framework that synchronizes execution using a barrier at each
end of the simulation cycle to ensure correctness and data
consistency. Since our simulation scenario involves no shared
inputs or outputs to simplify our simulation model, no explicit
data transfer between host and device memory is required.

During each simulation cycle, the CPU thread invokes
the evaluation functions for complex cores using OpenMP,
while the GPU thread asynchronously launches the evaluation
kernel to simulate thousands of parallel PEs. This hybrid
execution model leverages the strengths of both CPU and
GPU: the CPU efficiently handles control-heavy, instruction-
rich host cores, while the GPU executes lightweight, massively
parallel PEs with high throughput. By balancing workloads
and minimizing idle compute resources, the hybrid simulation
framework improves scalability and simulation efficiency for
heterogeneous deep learning accelerator SoCs.

IV. EXPERIMENTAL EVALUATION

We evaluate the performance of HeteroRTL on four deep
learning SoC RTL designs, each integrating multiple RISC-




V Rocket [[16] cores as the processing host and paired with
one of the following accelerators: Conv2D [17]], GEMM [17],
Gemmini [1]], or SIGMA [18]. Evaluations are performed on
a 64-bit Linux machine with an Intel i5-13500 CPU and an
NVIDIA RTX A4000 GPU. CPU code is generated using
LLVM 17’s clang and 1lc, while GPU code generation
leverages CUDA Toolkit 12.6 with compute capability 8.6.
All generated code is built with the ~02 optimization level.

A. Baseline

We compare HeteroRTL against three CPU-based RTL sim-
ulators: Verilator [5]], Khronos [8], and BatchSim [9]. Verilator
and BatchSim are executed with four threads enabled, while
Khronos operates in a single-threaded configuration due to its
lack of parallel execution support. Since our experiments focus
on single-input stimulus scenarios, we exclude RTLflow [4], a
GPU-based simulator specifically optimized for batch-driven
workloads. ESSENT [19] and its successors [|6, [10] are also
excluded, as they fail to complete code generation due to out-
of-memory errors. To ensure consistency, all simulation results
are averaged over five runs.

B. Code Generation and Compilation Results

Table || shows the end-to-end compilation time and ex-
ecutable size for Conv2D, GEMM, Gemmini, and SIGMA
across various RTL simulators. The compilation time includes
both the transformation from RTL source to simulation code
(C++ or LLVM IR) and the final compilation and linking
steps to produce the executable. Baseline simulators fail to
identify repetitive components, leading to redundant code
generation and substantial compilation overhead. In contrast,
HeteroRTL compiles in just a few seconds, achieving a three
to five order-of-magnitude speedup. This efficiency stems from
HeteroRTL’s ability to detect structural repetition in heteroge-
neous architectures and deep learning accelerators, generating
evaluation functions only for critical components (e.g., cores
and PEs) and reusing them at runtime via corresponding data
structures.

TABLE I: Compilation time (T) and executable size for
Conv2D, GEMM, Gemmini, and SIGMA across different
Rocket core and PE configurations.

Khronos BatchSim HeteroRTL
T(s) Size(MB)| T(s) Size(MB)|T(s) Size(MB)

Verilator

Design #Cores #PEs T(s) Size(MB)

4 27| 25 0.9 16 0.6 11 1.1 5 1.1
ComvaD 4 211 55 43 2643 3.8 310 10 5 1.1
32 27|15 35 229 2.8 79 5.1 7 1.1
32 2180 69 | 2856 6.1 378 14 7 1.1
4 27| 41 0.9 12 0.5 11 1.0 5 1.1
GEMM 4 2| 240 36 1145 26 148 82 5 1.1
32 27| 167 34 226 2.7 79 4.9 7 1.1
32 211 365 6.2 1359 49 215 12 7 1.1
4 27| 39 9 1907 33 | 601 3.8 7 12
Gemmini 4 2.1[17909 132 [357508 47 |92682 52 7 1.2
32 27| 521 11 2121 56 | 669 7.8 8 12
32 2'1018034 135 [357721 49  [92750 56 8 1.2
4 27 |11 2.8 109 13 68 18 |12 14
sicma 4 21114936 35 [22258 16 [10977 20 12 1.4
32 27236 54 323 3.5 136 58 |13 14
32 2105062 38 |22472 18 [11045 24 4 14

To demonstrate HeteroRTL’s scalability, Figure [3] shows
the compilation time of GEMM across RTL simulators as
the number of PEs and Rocket cores increases. HeteroRTL
exhibits sublinear growth in compilation overhead, even as
design size scales exponentially. This trend underscores Het-
eroRTL’s efficiency and scalability for large-scale RTL simu-
lation of heterogeneous architectures and deep learning accel-
erators.

Compilation Time for GEMM with 4 Cores Compilation Time for GEMM with 64 PEs

s
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Number of PEs Number of Cores

Fig. 3: Compilation time of GEMM accelerators across dif-
ferent RTL simulators under varying Rocket core and PE
configurations.

C. Overall Simulation Speedup

Figure [] and Figure [5] show the simulation speedup of
Conv2D, GEMM, Gemmini, and SIGMA on various RTL
simulators under different configurations of Rocket cores and
PEs, relative to the baseline Verilator. In Figure E], HeteroRTL
demonstrates increasing speedup as deep learning accelerator
designs scale from small to large sizes. This improvement
is driven by HeteroRTL’s strategy of assigning thread blocks
to evaluate identical components (PEs) in parallel, leveraging
SIMT execution on the GPU to effectively hide latency. As
a result, it achieves a speedup of 9x to 122x for the largest
designs.

In Figure [5] HeteroRTL outperforms other simulators,
achieving up to 80x speedup. This gain is attributed to
its use of pointer-based struct passing, which enhances data
locality and reduces synchronization overhead. Additionally,
HeteroRTL adopts a hybrid CPU-GPU co-simulation strategy
that balances the workload: complex heterogeneous cores are
simulated on the CPU, while simpler PEs are handled in
parallel on the GPU, reducing pressure on both sides and
achieving better load balancing.

D. Simulation Runtime Analysis

Figure [6] presents the simulation time of Gemmini on
various RTL simulators across different PE counts and Rocket
core configurations. All baseline simulators exhibit super-
linear growth in simulation time due to their CPU-based
execution. With limited CPU threads and instruction counts
scaling proportionally to design size, the simulation imposes
significant memory and compute pressure on the CPU. In
contrast, HeteroRTL demonstrates sublinear growth. As shown
in Figure [6] the simulation time remains around 0.5 seconds
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Fig. 4: Overall simulation speedup of Conv2D, GEMM, Gem-
mini, and SIGMA on various RTL simulators with 32 Rocket
cores while the number of PEs increases exponentially.

with 32 Rocket cores, even as the number of PEs increases
from 2% to 2!, This performance comes from offloading deep
learning accelerator simulation to the GPU. The GPU consists
of multiple streaming multiprocessors (SMs), each capable of
handling thousands of threads. This enables latency hiding
through context switching and allows massive concurrency,
significantly improving simulation throughput.

Figure[6|also shows that HeteroRTL continues to outperform
other simulators as the number of Rocket cores increases
from 2 to 32. This is due to the effective load balancing of
HeteroRTL’s hybrid simulation model: complex heterogeneous
cores (e.g., Rocket cores) are assigned to the CPU, which
is better suited for their instruction-heavy behavior, while
simpler, massively parallel PEs are evaluated on the GPU. As a
result, HeteroRTL’s hybrid CPU-GPU co-simulation approach
achieves high performance and scalability for heterogeneous
architectures with integrated deep learning accelerators.

V. CONCLUSION

This paper presents HeteroRTL, a unified and scalable code
generation flow for hybrid CPU-GPU RTL simulation. By
introducing an architecture-aware partitioning method and a
structural deduplication strategy, HeteroRTL effectively maps
complex host cores to CPUs and highly parallel processing
elements to GPUs. Built on top of the MLIR infrastructure,
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Fig. 5: Overall simulation speedup of Conv2D, GEMM, Gem-
mini, and SIGMA on various RTL simulators with 1024 PEs
while the number of cores increases.
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Fig. 6: Simulation time of Gemmini on various RTL simulators
with different numbers of PEs and Rocket core configurations.

HeteroRTL enables modular, parallel code generation and
simulation, significantly improving performance and resource
utilization. Our evaluation shows that HeteroRTL achieves up
to five orders of magnitude compilation speedup and delivers
up to 122x simulation speedup compared to state-of-the-art
simulators. These results underscore the benefits of leveraging
structural parallelism and heterogeneous hardware to accel-
erate RTL simulation. Inspired by our prior work on task
graph parallelism [4] 20-92]], we plan to extend HeteroRTL to
support additional features such as dynamic graph scheduling.
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