
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A portable framework with generalized runtime features for task graph

execution and concurrent multi-application deployment on heterogeneous
systems

Serhan Gener a,∗, Sahil Hassan a, H. Umut Suluhan a, Liangliang Chang b,
Chaitali Chakrabarti b, Tsung-Wei Huang c, Umit Ogras c, Ali Akoglu a,∗

aUniversity of Arizona, 1230 E Speedway Blvd, Tucson, 85719, Arizona, USA
bArizona State University, 650 E Tyler Mall, Tempe, 85281, Arizona, USA
cUniversity of Wisconsin at Madison, 500 Lincoln Dr, Madison, 53706, Wisconsin, USA

a r t i c l e i n f o

Keywords:
Auto parallelization
Dynamic scheduling
Heterogeneous runtime

 a b s t r a c t

Heterogeneous computing platforms are widely adopted to meet the diverse performance demands of modern
applications, but they present a key challenge of balancing programmability with performance portability. This
work introduces a unified and portable framework that addresses this trade-off by integrating the CEDR run-
time system with the Taskflow task-graph programming model. By combining CEDR’s dynamic scheduling with
Taskflow’s parallelization capabilities, our system simplifies application development while enabling efficient
execution across CPUs, GPUs, and FPGAs. We demonstrate its portability on a broad range of heterogeneous
SoC and HPC-scale systems. The framework supports concurrent execution of multiple applications through a
centralized coordination layer, overcoming limitations of isolated execution contexts and achieving up to 1.23×
speedup on highly heterogeneous platforms. Our solution further generalizes runtime features such as streaming
input handling and cached scheduling across applications, yielding up to 6.08× improvements in execution time
and a 29.60× reduction in scheduling overhead. Experimental evaluations demonstrate consistent improvements
in execution time, validating the effectiveness of this integrated and extensible design.

1. Introduction

Modern computing platforms are increasingly built around hetero-
geneous architectures, combining CPUs with specialized accelerators
such as GPUs, FPGAs, and domain-specific processors. This architectural
trend spans from large-scale High-Performance Computing (HPC) sys-
tems to compact System-on-Chip (SoC) platforms, offering an opportu-
nity to match diverse application demands to the most suitable compute
resources. However, the benefits achieved by heterogeneity are limited
due to issues with the higher complexity of application development and
runtime management, particularly in managing dynamic workloads that
compete for shared heterogeneous resources.

To address these challenges, recent efforts have introduced run-
time systems that abstract low-level hardware details and dynami-
cally assign workloads to appropriate processing elements (PEs) based
on system state and resource availability [1–3]. One such system,
the Compiler-Integrated Extensible DSSoC Runtime (CEDR) [3,4], pro-
vides a hardware-agnostic, API-based programming model that enables

∗ Corresponding authors.
 E-mail addresses: gener@arizona.edu (S. Gener), sahilhassan@arizona.edu (S. Hassan), suluhan@arizona.edu (H.U. Suluhan), lchang21@asu.edu (L. Chang),
chaitali@asu.edu (C. Chakrabarti), tsung-wei.huang@wisc.edu (T.-W. Huang), uogras@wisc.edu (U. Ogras), akoglu@arizona.edu (A. Akoglu).

dynamic scheduling across CPUs, FPGAs, and GPUs. Fig. 1 illustrates the
transformations in a sample application 1⃝ with Fast Fourier Transform
(FFT) and Complex Vector Multiplication (Mult) operations. In Fig. 1 2⃝,
nodes labeled FFT correspond to CEDR API calls, while nodes labeled
Mult represent non-API computations. While the Mult computation can
be expressed as an API and executed on accelerators such as FPGAs or
GPUs, in this discussion, it is treated as a non-API operation to simplify
the illustration of the challenges faced by such applications. CEDR ef-
ficiently utilizes PEs for the parallel execution of API-mapped (FFTs)
regions of the application across heterogeneous PEs. Since it provides
limited visibility into the application’s full control flow, it misses opti-
mization opportunities for non-API (Mults) regions, such as user-defined
loops.

To improve coverage of such regions and capture additional par-
allelism, task-graph computing frameworks like Taskflow [5] have
emerged as a complementary approach. These frameworks promote
fine-grained parallelism by requiring developers to express applications
as directed acyclic graphs (DAGs) of dependent tasks with minimal

https://doi.org/10.1016/j.future.2025.108184
Received 30 June 2025; Received in revised form 22 September 2025; Accepted 29 September 2025

Future Generation Computer Systems 176 (2026) 108184

Available online 13 October 2025
0167-739X/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://orcid.org/0000-0002-8163-1191

$\times $

$\times $

$\times $

$\times $

$\times $

$\times $

$\times $

$\times $

$\times $

$\mu $

$\times $

$\times $

$\times $

$\times $

$\times $

$\times $

$\times $

$\times $

$\times $

$\times $

$\times $

$\times $

$\times $

$\times $

$\times $

$\times $

$\times $

https://orcid.org/0000-0002-4574-9555
https://orcid.org/0009-0009-5398-5708
https://orcid.org/0009-0001-2067-0306
https://orcid.org/0000-0002-9859-7778
https://orcid.org/0000-0001-9768-3378
https://orcid.org/0000-0002-5045-5535
https://orcid.org/0000-0001-7982-8991
mailto:gener@arizona.edu
mailto:sahilhassan@arizona.edu
mailto:suluhan@arizona.edu
mailto:lchang21@asu.edu
mailto:chaitali@asu.edu
mailto:tsung-wei.huang@wisc.edu
mailto:uogras@wisc.edu
mailto:akoglu@arizona.edu
https://doi.org/10.1016/j.future.2025.108184
https://doi.org/10.1016/j.future.2025.108184
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2025.108184&domain=pdf

S. Gener et al.

modifications to existing application code. As shown in Fig. 1 3⃝, Task-
flow exposes additional parallelism opportunities (e.g., Mult) for regions
of code where task dependencies expose parallelism opportunities across
CPU cores. However, these frameworks typically require static task-to-
resource mapping and lack dynamic scheduling mechanisms, which can
lead to inefficient resource utilization, especially when multiple work-
loads with overlapping compute demands run concurrently on the sys-
tem.

Our prior work [6] introduces a novel integration of Taskflow and
CEDR, bridging these frameworks to leverage their respective strengths
and enabling applications to benefit from both dynamic scheduling and
holistic task graph representations. As illustrated in Fig. 1 4⃝, the com-
bined system enables a single application to exploit fine-grained par-
allelism and adapt at runtime to the system’s state while remaining
portable across heterogeneous SoC platforms. However, real-world sys-
tems often execute multiple applications concurrently, each with its own
set of tasks and performance requirements. When such applications run
independently, traditional runtime approaches instantiate separate ex-
ecution contexts per application, each operating with only a local view
of CPU resources, as shown in Fig. 1 Single Application View. This lack of
a global view of the system prevents coordinated scheduling, increases
contention, and reduces system-wide efficiency. In this work, we extend
our initial integration efforts to support coordinated multi-application
execution through a shared execution layer as illustrated in Fig. 1 Multi
Application View, enabling centralized task scheduling across all appli-
cations while preserving their individual control flows.

This coordination is achieved without requiring developers to refac-
tor application logic or manually synchronize across workloads. By
maintaining a single global visibility into all executing applications, our
extended runtime framework enhances overall platform utilization and
balances CPU workloads. This paper presents the design, implementa-
tion, and evaluation of an enhanced runtime framework that offers a
generalizable and portable solution for managing concurrent applica-
tions on modern heterogeneous platforms. A preliminary version of this
work was presented at the Fourth International Workshop on Extreme
Heterogeneity Solutions (ExHET 2025), held in conjunction with PPoPP
2025, where we focused on supporting a single-application execution
model. In this extended version of our preliminary work, we enable
concurrent execution of multiple applications (beyond the prior single-
application model), generalize runtime features such as streaming input
handling and cached scheduling to work seamlessly across applications,
and enhance portability by validating on diverse platforms, including an
HPC-scale system with CPUs, GPUs, and FPGAs. The overall technical
contributions of our work are as follows:

• We present a unified runtime-task programming framework that in-
tegrates dynamic scheduling with task-graph-based application mod-
eling, enabling hardware-agnostic and platform-portable execution
across CPUs, GPUs, and FPGAs without requiring changes to appli-
cation code.

• We propose a general, reusable methodology for interfacing run-
time systems with task-based programming frameworks, facilitating
seamless, modular, and scalable integration.

• We introduce advanced runtime features such as streaming input
execution and cached scheduling to improve adaptability and per-
formance.

• We enable concurrent and coordinated multi-application execution
through a centralized coordination layer that provides a global sys-
tem view and, in turn, improves CPU core utilization and eliminates
inefficiencies associated with isolated execution contexts.

• We design global, cross-application scheduling mechanisms that
eliminate the need for manual inter-process coordination, allowing
applications to be managed through a unified runtime control flow.

• We demonstrate the effectiveness of the proposed framework across
a range of platforms, from embedded SoCs to HPC-scale hetero-
geneous systems, achieving consistent improvements in workload

Fig. 1. CEDR and Taskflow integration flow for a base C/C++ application.

efficiency, including performance gains of up to 1.23× for signal pro-
cessing workloads on the most heterogeneous system.

The remainder of this paper is organized as follows. Section 2 pro-
vides background on runtime systems and programming models, with a
focus on their trade-offs. Section 3 presents the integration of the CEDR

Future Generation Computer Systems 176 (2026) 108184

2

S. Gener et al.

Table 1
Overview of key components and APIs.
 Position Name Type Description

Application
CEDR_∗ API CEDR APIs for task execution
for_each_index API Taskflow API for parallel loop
emplace API Taskflow API for standalone single tasks

Taskflow
tf::Taskflow Class Taskflow semantic for DAG
tf::Executor Class Taskflow semantic for executing the DAG

CEDR

CEDR_DAG_EXTRACT New API CEDR API for extracting the DAG from tf::Taskflow
CEDR_RUN_DAG New API CEDR API for executing the DAG from tf::Taskflow
cedr_task_config

 struct Optional CEDR variable storing
 Variable configuration information for CEDR APIs

runtime and the Taskflow framework, including application preparation
steps, runtime coordination mechanisms, and communication protocols.
Section 4 describes the experimental setup, and Section 5 evaluates the
proposed system across a variety of heterogeneous platforms and work-
loads, including single- and multi-application scenarios, mixed work-
loads, and HPC-scale experiments. Section 6 reviews related efforts in
heterogeneous task scheduling and runtime design integrations. Finally,
Section 7 concludes the paper.

2. Background

A runtime system with a built-in scheduler is crucial for making task-
to-PE mapping decisions in real time, especially when workloads arrive
dynamically and target a heterogeneous set of PEs. Multiple runtime
systems [1–4,7–13] have been developed to support dynamic resource
management. These systems aim to maximize performance by adapting
to runtime resource availability and workload variability while leverag-
ing heterogeneity at the PE level.

The design and usability of runtime systems strongly influence their
adoption. Most systems follow one of two programming models. The
first model employs an application programming interface (API)-based
approach [3,13], where developers utilize predefined functions to initi-
ate tasks. This model favors ease of use and simplifies application devel-
opment but restricts control over task dependencies and execution se-
quencing. The second model organizes applications as directed acyclic
graphs (DAGs) of tasks [1,4,12], enabling the runtime system to ob-
serve the application’s global structure. This visibility allows more fine-
grained optimizations and flexible scheduling. However, it also shifts
the burden to developers, who must explicitly define task dependen-
cies and execution flows, which complicates support for applications
with dynamic control flow, where task sequences are determined at run-
time and conditional branches and dependencies are created adaptively
rather than statically represented in a traditional application DAG.

Among the DAG-based programming models, Taskflow [5] is a
prominent state-of-the-art open-source parallel programming model
that tackles the challenges of expressing task-based parallelism by auto-
matically generating the task dependency graph within an application.
Unlike traditional task-based frameworks [14–19], Taskflow features
a lightweight runtime that efficiently scales parallel execution across
many processors. Although Taskflow effectively exposes parallelism, it
relies on static task-to-PE mappings defined by the developer. This static
mapping limits its ability to adapt to dynamic workload variations or
heterogeneous execution environments. For instance, when multiple ap-
plications assign the same type of task to a single PE type, such as a
hardware accelerator, that resource can become oversubscribed–even if
other PEs remain idle and are equally qualified to execute the task. To
address this issue, we integrate Taskflow with a runtime system that dy-
namically schedules tasks to PEs capable of running them (e.g., CPUs
and supported accelerators), allowing for more efficient resource uti-
lization and improved performance under dynamic workloads.

Although several runtime systems support either API-based or DAG-
based programming models, there are very few systems that are de-

signed around both. In order to combine the ease of programming of
API-based models with DAG-based detailed application representation,
this work integrates Taskflow with the open-source Compiler-integrated,
Extensible DSSoC Runtime (CEDR) [3,4]. CEDR stands out by offer-
ing both programming models, initially introducing DAG-based sup-
port [4] and later extending its capabilities to include an API-based
interface [3]. With its hardware-agnostic API, CEDR enables develop-
ers to build, compile, and deploy applications seamlessly on hetero-
geneous platforms. CEDR runs as a daemon process on Linux-based
systems, ensuring portability across a broad range of platforms and
reducing the effort needed to migrate between them. Each submit-
ted application is dynamically loaded by the runtime daemon, which
spawns a dedicated thread to run the application’s main function. This
thread-based execution model allows multiple applications to coexist
within a single runtime instance. Beyond portability, CEDR supports a
broad range of programming environments–including GNURadio [20]
and PyTorch [21]–and is capable of targeting multiple hardware ar-
chitectures, such as x86, RISC-V [22], FPGAs, GPUs, and ARM-based
SoCs [4,23]. These features make CEDR a versatile runtime solution for
heterogeneous computing. The following section details our integration
approach.

3. CEDR-taskflow integration

Both CEDR and Taskflow expose their APIs through header-based in-
terfaces, allowing developers to begin the integration process by includ-
ing both headers in the application source file. However, the integration
involves more than simply invoking existing APIs to ensure seamless ap-
plication deployment. To enable interaction between the two systems,
the application must also transfer the DAG generated by Taskflow to
CEDR for runtime execution. Table 1 summarizes the key components
and APIs-both reused and newly introduced in Taskflow and CEDR that
support this integration. Using a subset of these components, Listing 3
illustrates how to combine CEDR and Taskflow within a C/C++ ap-
plication. This integration flow not only unifies the capabilities of both
frameworks but also showcases the performance and programmability
benefits of their combined use.

3.1. Application preparation

We begin with a base application that does not use either CEDR or
Taskflow APIs. Listing 1 shows a simple C/C++ program that executes
512 128-point FFTs-referred to as the FFT for loop (lines 9–18) or API
region-followed by 512 128-point vector multiplications, for the pur-
poses of this example, referred to as the Multiplication for loop (lines
19–27) or non-API region. To add CEDR support to this application
source code, we highlight the changes made to the base C/C++ code
with red in Listing 2, which involves including the libcedr.h header
(line 1) and replacing the original FFT function with the hardware-
agnostic CEDR API call CEDR_FFT on line 14.

Future Generation Computer Systems 176 (2026) 108184

3

S. Gener et al.

Next, we incorporate Taskflow constructs into the application, as
shown in Listing 3. We include the taskflow.hpp header on line 2 and
replace the original for loop of API-region with Taskflow’s for_each_index
construct on line 10, which parallelizes the loop using specified start,
end, and increment values (set to 1 in this case). The loop index i, de-
fined on line 13, is used inside a lambda function that captures necessary
variables. We capture any variables that require updates (e.g., output)
by reference, as shown in line 12. With these modifications, the FFT for
loop (lines 9-18) now includes both CEDR and Taskflow API support. The
Multiplication for loop (lines 19-27 in Listing 1) remains unchanged with
CEDR-specific modifications in this example for clarity. In practice, Mult
can also be exposed as a CEDR API and executed on CPU, GPU, or FPGA
resources, but here we illustrate it as CPU-only to keep the example
focused and easy to follow. With the lack of API support, it remains un-
changed with CEDR-specific modifications as shown in Listing 2, but is
parallelized when we integrate Taskflow constructs. We apply the same
for_each_index modification to the loop on line 23 in Listing 3, allowing
Taskflow to handle the parallel execution of this non-API region that
CEDR lacks support for.

For applications containing tasks outside of a for loop, the Taskflow
API emplace can be used instead of for_each_index. After creating tasks,
we initialize a tf::Executor instance, which manages the execution of
the task flow graph, represented by the tf::Taskflow class. We con-
struct the task flow graph by defining tasks (e.g., task0 and task1 on
lines 10 and 20 of Listing 3) and connecting them using predecessor-
successor relationships (line 27 in Listing 3). Once the graph is ready,
we submit it to the tf::Executor instance (line 30 in Listing 3), which
starts execution from the head node. Although Taskflow offers many ad-

vanced features, the features utilized in the presented examples involve
the core APIs that are essential for our integration effort with CEDR.

In this combined programming model shown in Listing 3, CEDR’s
APIs are placed within Taskflow tasks. When the tf::Executor begins
executing the task flow graph, any task node that invokes a CEDR API
triggers a call to CEDR, which then schedules and executes the task
on a suitable PE based on its scheduling policy. This dynamic runtime
mechanism eliminates the need to assign tasks to specific PEs stati-
cally during graph construction. During application execution, Task-
flow’s tf::Executor handles thread-to-CPU-core assignments for par-
allel execution of tasks. At the same time, CEDR manages the dispatch
and execution of tasks across CPUs, FPGA-based accelerators, and GPUs
when the task involves a CEDR API call. With this integration, applica-
tions continue to benefit from CEDR’s capability of efficiently utilizing
heterogeneous platforms, while leveraging Taskflow’s DAG representa-
tion and capability to optimize/parallelize task thread execution onto
CPU cores.

While Listings 1–3 illustrate the porting process for a C/C++ base-
line, the same flow applies to applications originally written with frame-
works such as CUDA, HIP, or OpenCL. In those cases, only the underly-
ing kernel calls (e.g., FFT) change, while the integration with CEDR and
Taskflow follows the same steps.

3.2. CEDR and taskflow communication

With the CEDR and Taskflow APIs now integrated into the applica-
tion, the next step is to enable CEDR to acquire the DAG constructed
by Taskflow. To support this, we introduce the CEDR_DAG_EXTRACT

Future Generation Computer Systems 176 (2026) 108184

4

S. Gener et al.

Fig. 2. Comparison of CEDR runtime execution with local and global CPU views for multi-application execution. (a) Each application maintains its own view of
available CPUs, leading to isolated scheduling decisions. (b) A shared global view of CPUs is maintained by CEDR, allowing coordinated scheduling across applications.

API within CEDR, which allows Taskflow to transmit its generated DAG
to the runtime. This API has two arguments: (1) the graph produced
by Taskflow (tf::Taskflow) and (2) a configuration map that provides
additional metadata about each graph task. This optional configuration,
cedr_task_config, allows users to embed pre-scheduling task-to-PE as-
signment decisions for specific APIs during CEDR_DAG_EXTRACT call if
desired. CEDR uses this information to identify and execute task nodes
that involve CEDR API calls. Once invoked, CEDR_DAG_EXTRACT trans-
lates the Taskflow structure into CEDR’s native DAG format [4] and
performs an initial scheduling step for any task nodes involving CEDR
APIs. If only a single application is running, users can apply this schedul-
ing result directly by passing the cedr_task_config argument to CEDR
API calls. Otherwise, CEDR continues with its default runtime schedul-
ing strategy, where each API call is scheduled at the time the executing
thread issues it.

After extracting the DAG using CEDR_DAG_EXTRACT, the appli-
cation can execute it using tf::Executor, following the standard
Taskflow execution model. In our prior work [6], we introduced
CEDR_RUN_DAG, an API that transfers the creation of tf::Executor
within the CEDR runtime, which also enables repeated execution of a
single application’s DAG directly within CEDR. Specifically, modifying
the application in Listing 3 to utilize this API would involve replac-
ing lines 29 and 30 with CEDR_RUN_DAG(taskflow, repeat_count), with a
repeat_count of one. This design eliminated redundant graph initial-
ization and supported efficient stream-based processing. However, the
prior CEDR_RUN_DAG model was still limited to managing execution of
a single application.

When multiple applications call CEDR_RUN_DAG function, each one
creates its own tf::Executor instance as illustrated in Fig. 2a. Similar
to Taskflow [5], frameworks such as Intel TBB [14] and OpenMP [24]
also adopt this model. Each runtime initializes a private thread pool,
performs work stealing only within that pool, and assumes exclusive
ownership of the available CPU cores. While this design is effective for
single-application execution, the concurrent execution of multiple ap-
plications fragments CPU visibility, oversubscribes cores, and results in
independent scheduling decisions that are unaware of the global sys-
tem state. For example, Taskflow executors cannot coordinate across
processes. TBB employs per-process task arenas but still lacks inter-

application resource sharing. OpenMP constructs pools based on user-
specified environment variables or defaults, without global coordina-
tion. Consequently, all of these frameworks operate with only a local
view of the CPU pool, which restricts system-wide load balancing and
increases context switching overhead, leading to oversubscription, un-
derutilization, and degraded overall performance.

To address these challenges, we designed new runtime mechanisms
in CEDR that: (1) extend Taskflow’s work-stealing queues to allow
cross-application task stealing, and (2) enforce global CPU schedul-
ing policies that ensure fairness and prevent starvation across appli-
cations. Unlike Linux daemons or process-level services, which rely
on coarse-grained context switching or inter-process communication
(IPC) mechanisms, our solution coordinates tasks at fine granularity
within the runtime itself. This design provides a globally visible exe-
cution context where multiple DAGs can coexist and be dynamically
balanced, significantly reducing oversubscription and improving overall
throughput.

Implementing this model requires decoupling DAG creation from
DAG execution. Applications generate DAGs in their own threads,
but rather than binding them to local executors (Fig. 2a), they sub-
mit them through the CEDR APIs (CEDR_RUN_DAG) to a centralized
tf::Executor (Fig. 2b), allowing the runtime to view all application
DAGs simultaneously and make coordinated scheduling decisions across
CPUs. This API-level modification ensures applications can remain ag-
nostic to whether DAGs are executed locally or centrally.

In order to manage the execution of multiple applications, we ex-
tend our prior work by enabling coordinated multi-application
execution under a shared runtime-managed tf::Executor. From the
user perspective, applications invoke CEDR_RUN_DAG in the same man-
ner as before, but the runtime automatically binds them to the global
executor rather than creating per-application executors. Unlike the pre-
vious version of CEDR_RUN_DAG API, instead of instantiating separate
executors for each application, CEDR now orchestrates the execution of
multiple task graphs from distinct applications using a single globally
visible tf::Executor as illustrated in Fig. 2b. This change enables Task-
flow to monitor system-wide CPU load, perform cross-application task
stealing, minimize context switching for CPUs, and dynamically balance
execution across all active workloads.

Future Generation Computer Systems 176 (2026) 108184

5

S. Gener et al.

Fig. 3. Execution timelines of two applications under local and global CPU views. (a) Applications 1 and 2 are scheduled independently, causing oversubscription
and longer per-application task executions across CPUs. (b) Applications 1 and 2 are scheduled with awareness of shared resources, resulting in more balanced and
efficient execution across CPUs.

In summary, in addition to supporting streaming-style execution us-
ing repeated execution capability, the globally visible tf::Executor
model enables cross-application scheduling policies and runtime
mechanisms that unify execution under a shared coordination layer.
In existing systems, coordinating multiple task graphs across concur-
rently running applications typically requires developers to construct
IPC mechanisms, MPI [25] structures, or rely on external libraries such
as Boost.Process [26] to ensure that a common execution context man-
ages all tasks. These workarounds are both tedious for the applica-
tion developer and error-prone during execution. By centrally man-
aging multiple graphs under CEDR’s runtime, our approach preserves
Taskflow’s fine-grained CPU scheduling and extends it across applica-
tion boundaries, enabling globally informed task execution coordination
the need for explicit IPC between applications or manual application-
level refactoring. This coordination remains fully portable, requiring no
hardware-specific assumptions, and can be seamlessly deployed across
heterogeneous SoC platforms.

As an illustrative example of how the applications in Fig. 2 execute
on a system with four CPU cores, we present a Gantt chart of DAG node
executions in Fig. 3. Each node is modeled to complete in two time steps
when it has exclusive access to a core. When multiple nodes contend for
the same CPU, additional overhead from context switching and resource
contention extends their completion time to three steps. This simplified
model captures the imbalance that arises when executors operate with-
out global coordination.

The executor assigns nodes sequentially to the lowest-numbered
available CPU, mirroring a greedy assignment policy behavior when
each executor operates independently with a local CPU view. In Fig. 3a,
where each application maintains its own executor, this local view re-
sults in imbalanced scheduling, where two nodes are mapped to CPU1,
one to CPU2, while CPUs 3 and 4 remain idle. At timestamp 3, for exam-
ple, Application 1’s Node 3 and Application 2’s Node 2 are both placed
on CPU1, extending their execution due to contention. A similar situa-
tion arises in the final region (timestamps 6-8), which mirrors the im-
balance observed in the initial region (timestamps 0-2). Multiple nodes
accumulate on CPU1, while a single node is on CPU2, leaving other
CPUs underutilized and prolonging execution.

In contrast, Fig. 3b shows the case with a single executor and a
global CPU view. Here, nodes are distributed across idle CPUs with
awareness of cross-application workloads. By eliminating redundant
executor instances and coordinating at the runtime level, the global
executor prevents oversubscription on a subset of CPUs and achieves
higher system-wide utilization. As a result, execution finishes by times-
tamp 5 instead of 8, with fewer idle cores throughout execution. This
example illustrates the key research challenge addressed in this section,
where, without global coordination, multiple executors fragment the

CPU pool and cause avoidable contention. A unified executor provides
globally informed node assignment that improves fairness, utilization,
and overall completion time.

3.3. Broader applicability

Although this work focuses on a specific integration of CEDR and
Taskflow, the proposed methodology has broader relevance for run-
time system design in heterogeneous computing environments. The core
ideas are not restricted to these two frameworks–they can be extended
to other runtime systems and task-based programming models as long
as developers understand the necessary integration steps and architec-
tural constraints. For example, the approach for communicating task-
flow graphs or DAGs between frameworks can be adapted to suit dif-
ferent runtime systems. Likewise, an API-centric runtime like IRIS [1]
could be combined with a DAG-based library to gain greater flexibility
and performance tuning for complex workloads. While our implemen-
tation centers on CEDR and Taskflow, the integration strategy outlined
here provides a general foundation for enhancing resource coordination
and promoting interoperability across various runtime systems.

4. Experimental setup

To comprehensively study the performance trends of our proposed
runtime, we consider four different platforms. We utilize the Xilinx Zynq
Ultrascale+ development board (ZCU102) [27] to prototype and eval-
uate heterogeneous architectures. The ZCU102 features a Cortex-A53
with four ARM-based hard CPU cores and five custom hardware accel-
erators implemented on its programmable logic. These include (1) two
FFT accelerators capable of processing up to 2048-point FFTs, (2) two
GEMM accelerators, and (3) one ZIP accelerator for point-wise vector
operations. The FFT accelerator is generated using Xilinx FFT IP, while
the GEMM and ZIP accelerators are developed using High-Level Syn-
thesis (HLS). The CPUs run at 1.2GHz, and all accelerators operate at
300MHz. To validate the portability of our approach, we also conducted
experiments on the NVIDIA Jetson Xavier AGX platform (Jetson) [28],
which features a 512-core Volta GPU clocked at 1.3GHz and supports
FFT, GEMM, ZIP, and CONV_2D (Convolution 2D) computations, along
with an eight-core ARM-based CPU running at 2.3GHz. We utilize a
24-core system 12th Gen Intel Core i9-12900 [29] (I9CPU) with a max
frequency of 5GHz to demonstrate how the multi-application approach
scales with a high number of CPU cores. To evaluate performance in an
HPC-like environment, we also test on the most heterogeneous system
available to us, which includes HPC-scale GPUs and FPGAs. This system
(I7CGF) consists of a 12-core Intel Core i7-5820K processor [30] oper-
ating at 3.3GHz, an NVIDIA Tesla K40c GPU [31] running at 745MHz,

Future Generation Computer Systems 176 (2026) 108184

6

S. Gener et al.

and an Alveo U280 FPGA [32] with a kernel clock rate of 500MHz. The
CPU and GPU support the FFT, GEMM, and ZIP APIs, while the Alveo
FPGA supports only the ZIP as an accelerator. In all platforms, for any
accelerator (GPU or FPGA), data transfers between CPU and accelerators
are managed through CEDR APIs, which encapsulate both computation
and the necessary data movement. For example, when a task is mapped
to the GPU, the API internally issues the corresponding cudaMalloc, cu-
daMemcpy, and cudaFree operations. Accordingly, the execution times
reported in the Gantt charts include both data allocation, transfer, and
computation.

In the Taskflow-integrated CEDR context, each application thread
uses Taskflow constructs to create its DAG. In the multi-executor config-
uration, each thread creates and manages its own tf::Executor. In the
single-executor configuration, application threads only generate their
DAGs, which are then submitted to CEDR for centralized scheduling
through a shared tf::Executor.

We evaluate the integration of CEDR and Taskflow using bench-
mark applications drawn from the signal processing domain, includ-
ing Radar Correlator (RC), Temporal Mitigation (TM), WiFi-TX, Pulse
Doppler (PD), and Synthetic Aperture Radar (SAR). The benchmark ap-
plications used in this study, including Taskflow-only, CEDR-only, and
CEDR-Taskflow implementations, are publicly available.1 These appli-
cations introduce a variety of workload patterns ideal for testing runtime
behavior. RC processes incoming radar pulses to estimate range, apply-
ing three 256-point FFTs at a rate of 1000 samples per second. Its main
control path involves two FFT stages, followed by a spectral correlation
and a final inverse FFT (IFFT). TM targets interference suppression by
removing weak radar echoes masked by stronger communication sig-
nals, leveraging GEMM and ZIP operations. WiFi-TX implements a WiFi
transmission pipeline, where each of the 10 packets passes through a
128-point IFFT. PD performs three sequential phases of 256-, 128-, and
128-way parallel 128-point FFTs to compute object range and velocity
from Doppler frequency shifts. SAR focuses on reconstructing 3D terrain
imagery, executing 1537 FFTs and 768 ZIP operations, with high degrees
of parallelism distributed across two main computational phases.

To demonstrate the generality of the framework beyond signal pro-
cessing applications, we also developed an image-processing workload
in the form of a lane-detection application. This pipeline consists of
grayscale conversion followed by two Gaussian blur stages (each imple-
mented using the CONV_2D APIs). Sobel filters then process the blurred
image in the x- and y-directions (again using CONV_2D), and their out-
puts are merged. A region-of-interest (ROI) stage and a Hough trans-
form complete the pipeline, yielding a typical lane-detection workflow.
In total, this application uses multiple chained and parallel CONV_2D
APIs while combining them with non-API tasks such as ROI extraction,
thereby offering a different domain and execution structure compared
to the signal processing workloads.

5. Experimental evaluations

In this section, we first evaluate single-application execution to val-
idate the correctness and efficiency of the integration. We then extend
our experiments to multi-application scenarios to demonstrate scalabil-
ity and the benefits of coordinated application executions.

5.1. Performance analysis

Fig. 4 presents the makespan of a single PD application instance ex-
ecuted on a system configured with 3 CPU cores and 2 FFT accelerators
deployed on the ZCU102 platform. Three execution scenarios are eval-
uated: (a) Taskflow-only, (b) CEDR-only, and (c) the integrated CEDR
and Taskflow setup. The execution time in each Gantt chart, marked by

1 https://github.com/UA-RCL/CEDR_applications/tree/taskflow

Fig. 4. Single instance of PD running on ZCU102 with (a) Taskflow-only imple-
mentation, (b) CEDR-only implementation, and (c) both CEDR and Taskflow-
based implementation. (a) Taskflow application, (b) CEDR application, (c)
CEDR-Taskflow application.

Fig. 5. Single instance of PD running on Jetson with integrated CEDR-Taskflow
implementation.

a vertical dashed blue line, indicates the makespan from the first API call
to the last API call, excluding memory initialization, cleanup, allocation,
or deallocation.

In the Taskflow-only setup (Fig. 4a), all FFT API calls are statically
mapped to the FFT accelerators, and non-API regions are parallelized
across the available CPU cores. Although CPU cores are capable of exe-
cuting FFT tasks, they remain idle due to the static assignment of tasks
to PEs, resulting in contention on the FFT accelerators and leading to
suboptimal performance.

With CEDR alone (Fig. 4b), using a simple Round Robin (RR) sched-
uler, APIs are dynamically scheduled across all available PEs, including

Future Generation Computer Systems 176 (2026) 108184

7

https://github.com/UA-RCL/CEDR_applications/tree/taskflow

S. Gener et al.

Table 2
Execution time comparison when applications are deployed
as a single instance through CEDR only, Taskflow only, and
CEDR-Taskflow Integrated setup on ZCU102.

App Name Taskflow only CEDR only CEDR and
 (ns) (ns) Taskflow (ns)

 RC 120,972 120,612 120,162
 TM 2,597,770 2,575,658 1,762,166
 WiFi-TX 714,621 712,721 651,685
 PD 5,144,564 3,868,427 3,790,988
 SAR 37,351,722 38,111,968 28,980,316

CPU cores and FFT accelerators, which alleviates accelerator contention
and improves execution time. However, non-API regions are executed
serially on a single CPU core due to CEDR’s lack of support for paral-
lelization in these regions. Despite this limitation, dynamic scheduling
reduces the makespan from 4.39 ms to 3.30 ms.

The integrated setup (Fig. 4c) combines CEDR’s dynamic API
scheduling with Taskflow’s parallelization of non-API regions. As a re-
sult, both types of tasks are efficiently distributed across the heteroge-
neous resources, further reducing the makespan to 3.15 ms.

Table 2 reports the execution time for a single instance of each
benchmark application on the ZCU102 platform across three configu-
rations: Taskflow-only, CEDR-only, and the integrated CEDR-Taskflow
implementation using Earliest Finish Time (EFT) as CEDR’s scheduling
policy. These measurements reflect the full execution time, including
memory allocation, initialization, and deallocation.

The integrated implementation consistently outperforms the stan-
dalone versions across all benchmarks. For example, the TM application
achieves a speedup of 1.47× over Taskflow-only and 1.46× over CEDR-
only. The RC application, which offers limited opportunities for paral-
lelization in both API and non-API regions, shows only minimal gains,
suggesting that the integration provides little benefit for such workloads.
In the API-heavy PD application, the combined approach yields a 1.36×
improvement over Taskflow-only and 1.02× over CEDR-only. For WiFi-
TX, the integrated version delivers a modest 1.09× improvement over
both standalone implementations. Finally, the SAR application, which
contains substantial parallelism in both API and non-API regions, ben-
efits significantly from the integration, with speedups of 1.28× over
Taskflow-only and 1.31× over CEDR-only.

These results indicate that the performance gains from the CEDR-
Taskflow integration depend on the workload characteristics, particu-
larly the balance between API and non-API regions. Nevertheless, the
integrated runtime consistently improves execution efficiency, with im-
provements of up to 1.47×.

5.2. Portability

The CEDR-Taskflow integration demonstrates portability across SoC
platforms. Fig. 5 presents the execution of the PD application on the Jet-
son platform without any modifications to the application code used for gen-
erating the Gantt chart in Fig. 4c. This seamless portability is enabled by
Taskflow’s adaptive parallelism, which automatically utilizes the avail-
able CPU cores on the Jetson platform. At the same time, CEDR con-
tinues to provide dynamic resource management for hardware-agnostic
API calls, demonstrating robustness across various hardware configura-
tions. Given the Jetson’s higher core count compared to the ZCU102,
non-API regions of the PD application scale automatically across the
additional CPU cores. Simultaneously, FFT tasks are dynamically dis-
tributed to available CPU cores whenever the GPU is occupied. As a
result, the total execution time on the Jetson platform is reduced to
1.04 ms, compared to 3.15 ms on the ZCU102. This seamless portability
highlights the flexibility and efficiency of the integrated runtime ap-
proach, enabling optimized execution across heterogeneous platforms
without requiring additional developer effort.

Table 3
Time spent on scheduling for each application when repeated 1000
times on the ZCU102 platform.
 App API Stream Stream+Cached

Improvement Name Count (𝜇s) (𝜇s)
 RC 3 2376 283 8.37x
 TM 5 3759 643 5.84x
 WiFi-TX 10 7662 723 10.59x
 PD 512 291,790 10,769 27.09x
 SAR 2305 1,405,034 47,475 29.60x

5.3. Features enabled by CEDR-taskflow integration

5.3.1. Streaming input processing
Fig. 6a illustrates the execution of 10 SAR instances run sequen-

tially using the CEDR-Taskflow integrated setup. Each color-coded re-
gion represents one SAR instance executed on a system with 3 CPU
cores, 2 FFT accelerators, and 1 ZIP accelerator emulated on the ZCU102
board. The white spaces between SAR instances indicate time spent
on repeated memory allocation, deallocation, and initialization. By
leveraging the repeated execution functionality provided by Taskflow-
integrated CEDR, which allows multiple runs of an application with
a single graph initialization, these gaps are significantly reduced, as
shown in Fig. 6b. This improvement enables the application to process
consecutive input streams without reinitializing context, thereby reduc-
ing the total makespan from 2,334.54 ms to 383.42 ms.

While it is well understood that the repeated execution of the same
task graph reduces the overhead of frequent memory allocation, deallo-
cation, and initialization, we explicitly quantify this effect on our het-
erogeneous SoC platform here. We compare complete application ex-
ecution against isolated graph executions, and this empirical evidence
establishes a baseline that motivates subsequent design decisions.

5.3.2. Cached scheduling
The streaming-enabled execution model also enables the reuse of

scheduling decisions across multiple instances of an application by
caching the task-to-PE mapping from a prior execution. To evaluate
the impact of caching, we measure the scheduling overhead for each
benchmark application under streaming execution, both with and with-
out schedule caching. Each application is executed 1000 times using the
EFT scheduler, and the results are presented in Table 3. The API Count
column lists the number of API calls in each application. The Stream col-
umn reports the total scheduling time in 𝜇s without caching, while the
Stream+Cached column shows the time required to extract the DAG and
apply cached scheduling decisions. The results demonstrate a significant
reduction in scheduling overhead when caching is used. As shown in
Table 3, applications with higher API counts benefit more from caching,
indicating that this approach is particularly suitable for API-intensive
applications when processing streaming input.

5.4. Multi-application execution experiments

We present the benefits of the proposed single-executor approach,
which maintains a global view of the system, compared to the de-
fault multi-executor setup when executing multiple applications con-
currently. Fig. 7 presents the average makespan results of an experiment
that utilizes the PD application with a repetition count of 1000 to sim-
ulate a streaming input scenario under concurrent workloads. On the
x-axis, each point corresponds to a separate experiment and represents
the total number of concurrently running PD instances, all launched si-
multaneously at the start of the experiment. We use the RR scheduler
for task placement, as its deterministic behavior helps isolate the effects
we aim to measure, and we do not use cached scheduling for any of
the experiments in this section. The number of application instances is
increased up to the first integer divisible by five, which exceeds the plat-
form’s total CPU core count by at least ten. In each experiment, for both

Future Generation Computer Systems 176 (2026) 108184

8

S. Gener et al.

Fig. 6. Ten SAR instances running back to back on ZCU102 by (a) direct injections from CEDR, (b) repeating the task flow graph. Labels Nx show instances N and
N+5. (a) SAR processing 10 inputs as application instances, (b) SAR processing 10 inputs in a streaming manner.

single and multi-executor configurations, the ZCU102 utilizes 3 CPUs,
2 FFTs, and 1 ZIP, while the Jetson utilizes 7 CPUs and 1 GPU as PEs.
Min-max ranges are shown in the figure to capture the variability among
concurrently running instances within each experiment.

Fig. 7(a) and (b) show the scaling behavior of concurrently running
applications on ZCU102 and Jetson platforms. As the number of con-
current PD instances increases, both platforms exhibit a generally lin-
ear growth in average makespan, with the single-executor configura-
tion consistently outperforming the multi-executor baseline. The single-
executor setup results in up to 1.20× and 1.47× speedups on ZCU102
and Jetson, respectively, compared to the multi-executor setup.

On Jetson, under the multi-executor setup, we observe a slight sat-
uration in the 3-8 instance range (Fig. 7b), where the increase in aver-
age makespan slows as the number of instances approaches the number
of available CPU cores (8 for Jetson). Once this threshold is crossed,
the linear scaling trend continues. On ZCU102, which has only 4 CPU
cores, this saturation pattern is not noticeable due to the platform’s lim-
ited core count. To examine this trend in more detail and investigate
whether a setup with more CPU cores available than needed causes a
similar trend in the single-executor setup, we extend the experiment to
the I9CPU platform with 24 CPU Cores, which is homogeneous.

Fig. 7c presents the results for the I9CPU platform. The multi-
executor setup again shows a clear saturation trend, starting around 13
concurrent PD instances and continuing until it reaches the number of
available cores, after which the trend returns to a linear increase. Addi-
tionally, we observe that the slope of the makespan curve is steeper be-
fore this region begins and becomes more gradual afterward. In contrast,
the single-executor configuration maintains a consistent linear trend
throughout, highlighting its scalability. On this platform, the single-
executor approach achieves a speedup of up to 2.92× before, 2.71× dur-
ing, and 1.84× after the saturation region.
Mix of Applications: Next, we conduct an experiment with multiple
distinct applications executing concurrently. Table 4 presents the re-
sults using the same three platforms, comparing the single-executor and

multi-executor configurations. The experiment follows the same setup as
Section 5.4, including the platform-specific configurations for ZCU102
and Jetson. Each PD and SAR application instance is set up with a re-
peat count of 1000 to simulate processing streaming inputs. In the Single
Application Multiple Instance setup, we report the average execution time
across five application instances, each processing 1000 input streams. In
the Mix of Applications setup, the PD columns present the average exe-
cution time across the five PD instances, the SAR column shows the av-
erage time for a single SAR execution, and the Total column reports the
overall makespan–from the start time of the earliest application to the
end time of the last completed one. The bottom row for each platform in-
dicates the speedup achieved by the single-executor configuration over
the multi-executor baseline.

In this experiment, we use five applications for the Single Application
Multiple Instance setup and a total of six applications for the Mix of Ap-
plications setup. While this configuration showcases the system’s ability
to handle diverse concurrent workloads, it also provides representative
cases that correspond to different saturation regions observed in prior
experiments–post-saturation on ZCU102, near-saturation on Jetson, and
pre-saturation on I9CPU.

On the ZCU102 platform, we observe improvements of 1.20× for PD
and 1.14× for SAR in the Single Application Multiple Instance configura-
tion. In contrast, the Mix of Applications workload causes modest im-
provements, with application-specific and total speedups ranging from
1.06× to 1.07×, primarily due to the platform’s limited number of CPU
cores. On Jetson, which offers more CPU cores, we observe better scal-
ing, 1.31× for PD and 1.67× for SAR in the Single Application Multiple In-
stance setup. For the mixed workload, the total speedup reaches approx-
imately 1.21×, highlighting the increased flexibility in CPU core man-
agement enabled by a higher core count when using the single-executor
setup.

On the I9CPU platform, which offers much more CPU resources, the
single-executor setup achieves improvements of 2.21× and 1.82× for PD
and SAR, respectively, in the Single Application Multiple Instance case. In

Future Generation Computer Systems 176 (2026) 108184

9

S. Gener et al.

Fig. 7. Number of application instances versus average makespan for single-
executor (proposed) and multi-executor implementations of the PD application
on different platforms. (a) ZCU102 - 4 CPU Cores, (b) Jetson - 8 CPU Cores, (c)
I9CPU - 24 CPU Cores.

the Mix of Applications scenario, speedups range from 1.59× to 2.19×,
demonstrating the system’s ability to make more informed decisions
when application execution distribution is globally managed across a
large number of cores.

In all platforms, we observe a consistent slowdown in PD’s aver-
age execution time when moving from the Single Application Multiple
Instance to the Mix of Applications setup, despite both scenarios running
five PD instances. This behavior is expected as SAR competes for shared
resources in the mixed configuration, reducing the availability of re-
sources for PD compared to the single-application scenario.

Looking more closely at the PD results, the values in the Single Ap-
plication Multiple Instance setup directly match the results for five in-

stances presented in Fig. 7. In the Mix of Applications setup, the average
PD execution time closely aligns with the six-instance region, as all PD
applications typically finish before the SAR instance completes. Since
SAR is also running together with the 5 PDs, a total of six applications
are running on the system during the execution of PDs. The slight vari-
ations occur due to the different characteristics of SAR in terms of the
resources it uses.

Overall, across all platforms and configurations, the single-executor
system consistently outperforms the multi-executor baseline, demon-
strating improved parallelization and resource awareness when execu-
tion is managed globally with a complete system view.

5.5. HPC scale experiments

To evaluate the system’s performance in an HPC-scale heterogeneous
environment, we perform an experiment on the I7CGF platform. This
system, which represents the most heterogeneous configuration avail-
able to us, includes CPUs and a GPU, both of which support FFT and
ZIP operations, as well as an Alveo FPGA that supports ZIP operations
only. The workload comprises four PD applications and one SAR appli-
cation, each configured to process 100 streaming inputs using cached
scheduling and the EFT policy for scheduling, just as in Section 5.3.2.
Compared to earlier experiments, the number of streaming inputs is
reduced from 1000 to 100, to make the Gantt charts more readable,
as shown in Fig. 8. The SAR application and the first PD instance are
submitted simultaneously at the beginning of the experiment, with the
remaining PD applications introduced at 500 ms intervals. We select
500 ms as the interval based on the observation that, when running SAR
and PD concurrently, each PD instance completes in approximately 350-
450 ms. This timing ensures that one PD remains active during the SAR
execution window. Sending four PD instances is sufficient to cover the
span of the SAR’s execution in the fastest system configuration. This ex-
periment combines all key features–streaming inputs, cached schedul-
ing, dynamic load balancing, and heterogeneous execution–to demon-
strate that the system operates efficiently while seamlessly leveraging
all introduced capabilities under complex workloads on a system with
a high degree of heterogeneity.

Fig. 8(a) and (b) show the Gantt charts of this experiment un-
der multi-executor and single-executor configurations, respectively.
Overall, the single-executor setup achieves a 1.23× speedup, demon-
strating improved coordination between applications and CPU core
utilization.

Examining specific regions, particularly between 0.25- 0.50 sec,
1.75-2.00 sec, and on the alveo_0 PE, we observe that the multi-
executor configuration shows noticeable idle periods and large execu-
tion gaps, indicating poor CPU workload balancing and underutilization
of available accelerators. In contrast, the single-executor setup elimi-
nates most of these idle gaps, reflecting more efficient handling of non-
API regions and improved overlap across applications.

Similarly, around the 1.00-1.25 sec interval, the multi-executor setup
is dominated by PD tasks, resulting in the SAR application being de-
layed and trailing behind all PD executions. As a result, SAR completes
roughly 0.5 sec after the last PD finishes. In comparison, the single-
executor setup achieves a tighter blend of SAR and PD APIs, enabling
both applications to complete almost simultaneously. While this syn-
chronized completion is a result of our specific experimental setup (uti-
lizing four PDs with 500 ms intervals), it highlights another outcome. If
another PD application were submitted at 2.00 sec, the single-executor
configuration would already have completed SAR and could dedicate
all resources to the new PD. In contrast, under the multi-executor setup,
SAR would still be running, and the new PD workload would further
delay SAR completion due to resource contention.

These results highlight the runtime’s ability to coordinate application
workloads, minimize idle time, and achieve improved overall execution
when utilizing a centralized execution model.

Future Generation Computer Systems 176 (2026) 108184

10

S. Gener et al.

Table 4
Single and multiple application results on ZCU102, Jetson, and I9CPU.

Platform Executor View
 Single Application Multiple Instance Mix of Applications

5 PD (ms) 5 SAR (ms) 5 PD and 1 SAR (ms)
 PD SAR Total

ZCU102
 Multi 19,747.39 194,709.74 24,375.81 59,035.02 59,563.37
 Single 16,444.32 169,394.47 22,688.54 55,358.64 55,595.45
 Improvement 1.20× 1.14× 1.07× 1.06× 1.07×

Jetson
 Multi 3,404.96 31,955.72 4,228.41 8,972.76 9,113.61
 Single 2,597.72 19,133.92 3,360.01 7,435.44 7,529.02
 Improvement 1.31× 1.67× 1.25× 1.20× 1.21×

I9CPU
 Multi 770.83 4,697.44 895.95 1,487.10 1,527.65
 Single 348.15 2,571.19 408.10 918.74 955.95
 Improvement 2.21× 1.82× 2.19× 1.61× 1.59×

Fig. 8. Mix of applications with different injection rates running on HPC scale platform I7CGF for (a) multi executor and (b) single executor (proposed) setups. (a)
Multi executor, (b) Single executor.

5.6. Application domain extension

To demonstrate the generality of our approach beyond the signal pro-
cessing domain, we repeated the multi-executor versus single-executor
experiment (shown earlier in Fig. 7b) using the lane detection (LD) ap-
plication introduced in Section 4. In this experiment, each instance pro-
cesses 50 streaming inputs while utilizing cached scheduling and the
EFT scheduler. Fig. 9 reports the makespan as the number of concur-
rently executing LD applications increases. Similar to the PD workload,
we observe that the multi-executor model results in fragmented resource
usage and increasing makespan as the number of applications grows. In
contrast, the single-executor model achieves coordinated scheduling and
improved load balancing, reducing overall makespan by up to 4.45 s.

These results confirm that the benefits of centralized coordination ex-
tend across domains and demonstrate the portability of our integration
to workloads with different computational patterns.

5.7. Case study

As a final experiment, we compare our single- and multi-executor
implementations with another state-of-the-art runtime system. For this
study, we selected IRIS [1] and adapted one of its example applications.
Specifically, we modified the SAXPY kernel provided by IRIS to increase
complexity by switching to floating-point vector-vector multiplication
(ZIP-MULT) and introducing task dependencies. In the modified ver-
sion, each application instance computes two independent ZIP-MULTs,

Future Generation Computer Systems 176 (2026) 108184

11

S. Gener et al.

Fig. 9. Number of application instances versus average makespan for single-
executor (proposed) and multi-executor implementations on Jetson platform
using LD application.

Fig. 10. Scaling trends for multi-instance execution of the ZIP-MULT work-
load on the Jetson platform. Results show IRIS alongside the single- and multi-
executor models of the proposed CEDR-Taskflow integration.

whose results are consumed by a third ZIP-MULT. This setup retains
simplicity while incorporating both parallel execution and inter-task
dependencies. In our experiments, we use a vector size of 1,024, and
each application repeats the ZIP-MULT triple 1000 times on the Jetson
platform.

Results are shown in Fig. 10. For the CEDR-Taskflow integrated ap-
proach, the single- and multi-executor setups achieve similar scaling,
with up to 1.72× improvement in the single-executor case. For IRIS,
we observe a reduction in the growth rate between 6 and 9 instances,
similar to the single- and multi-executor results in Section 5.4. Beyond
10 instances, the average execution time scales approximately linearly
with the number of concurrent applications. We also note that IRIS and
CEDR follow different execution models. IRIS treats all CPU cores as
a single device and executes parallel regions internally using OpenMP,
while CEDR assigns each API execution to a single designated core. Be-
cause of these differences, we do not make direct runtime-to-runtime
performance claims; instead, we emphasize that the trend lines demon-
strate how both runtimes scale with multi-application workloads.

6. Related work

The evolving landscape of heterogeneous computing, from embed-
ded SoCs to large-scale HPC environments, demands runtime frame-
works that balance programmability, performance, and efficient re-
source utilization. Recent works explore programming model de-
sign [33], runtime interoperability [34,35], and dynamic scheduling
across heterogeneous devices [35]. The approach presented in this work
offers a unified and portable solution for task-based execution and co-
ordinated runtime management across diverse heterogeneous architec-
tures.

In [33], the authors focus on achieving performance portabil-
ity across different hardware platforms. They provide a generic and
portable C++ interface for data-parallel computation on accelerators.
Built on the HPX [36] asynchronous runtime and incorporating a SYCL-
based [37] backend, Copik and Kaiser[33] enables single-source pro-
gramming for OpenCL-compatible devices. Like our framework, it ab-
stracts hardware-specific details and streamlines portable development,
notably by being orthogonal to vendor-specific extensions and not re-
quiring additional compiler markups. However, in [33], the authors
primarily target kernel-based execution in HPC environments, whereas
our work exposes and manages workloads through a holistic application
view that includes both API and non-API regions of the code, enabling
the parallelization of segments that were previously executed serially.

In [34], the authors explore asynchronous execution models by in-
tegrating multiple programming layers. They demonstrate the interop-
erability of HPX [38], an asynchronous many-task runtime system, and
Kokkos [39], a programming model for portable compute kernels, via
SYCL [37]. This integration enables asynchronous execution of GPU ker-
nels without blocking CPU threads by treating SYCL events as HPX tasks,
thus integrating them into the HPX task graph. Their approach, particu-
larly using an event polling scheme within the HPX scheduler, achieves
improved throughput in Octo-Tiger [40], a real-world astrophysics ap-
plication. In contrast, our work integrates Taskflow and CEDR at the
application level, where Taskflow provides a holistic task graph view,
including CPU-only computations (non-API regions), and CEDR dynam-
ically schedules tasks across heterogeneous PEs. Additionally, our sys-
tem supports multi-application execution under centralized runtime co-
ordination, a capability not addressed by the single-application context
of [34].

The challenge of coordinating distinct programming paradigms has
been addressed in [35], where the authors introduce an interoperability
mechanism between OmpSs-2 [41] and OpenACC [42], both directive-
based solutions. Their approach establishes a dominant-subordinate re-
lationship, where OmpSs-2 (task-parallel) orchestrates application con-
trol while delegating computation-heavy regions to OpenACC (data-
parallel). This relationship is achieved by extending the OmpSs-2 com-
piler and runtime to support OpenACC as well. While both approaches
support hybrid programming, our integration blends Taskflow’s DAG-
based task parallelism with CEDR’s dynamic API scheduling. Our frame-
work further supports centralized execution coordination across multi-
ple active applications and heterogeneous PEs.

In contrast to systems that focus on portable kernel abstractions or
single-application pipelines, our work offers a unified framework de-
signed for broader applicability and multi-application coordination. It
fully exposes parallelization opportunities by converting entire appli-
cations into task graphs, regardless of whether the code resides within
APIs or non-API regions. APIs are then dynamically scheduled across
available resources, including CPU, FPGA, and GPU, based on the sys-
tem state, while applications’ overall CPU workloads are managed under
centralized coordination. The runtime includes support for stream input
processing and cached scheduling decisions, all of which are generalized
to operate across concurrent application workloads. This design is evalu-
ated across a range of platforms, from SoCs to HPC-grade resources, and
demonstrates improved resource utilization and reduced execution time.
By providing a centralized execution layer and a global view of system
resources and task dependencies, our framework bridges the gap be-
tween productive application development and efficient heterogeneous
execution.

7. Conclusion

This paper introduces a unified runtime-task programming frame-
work that bridges CEDR and Taskflow to address the growing com-
plexity of executing applications on heterogeneous systems. Our design
supports both task-graph-based parallelization and dynamic schedul-
ing, enabling high resource utilization without requiring hardware-

Future Generation Computer Systems 176 (2026) 108184

12

S. Gener et al.

specific knowledge or extensive code modifications. Through this inte-
gration, we further extend the system to manage multiple applications
concurrently under a globally coordinated runtime framework, resolv-
ing inefficiencies introduced by fragmented execution contexts. Ex-
perimental results across a range of platforms–from embedded SoCs
to HPC-class systems–demonstrate consistent improvements in perfor-
mance, scalability, and scheduling efficiency. The system also supports
advanced features such as cached scheduling and streaming input execu-
tion across concurrent workloads, showcasing its robustness in dynamic
execution environments.

CRediT authorship contribution statement

Serhan Gener: Writing – review & editing, Writing – original draft,
Visualization, Validation, Software, Methodology, Investigation, Formal
analysis, Data curation, Conceptualization; Sahil Hassan: Writing – re-
view & editing, Writing – original draft, Visualization, Validation, For-
mal analysis, Conceptualization; H. Umut Suluhan: Writing – review &
editing, Writing – original draft, Validation, Formal analysis, Conceptu-
alization, Visualization; Liangliang Chang: Writing – review & editing,
Writing – original draft, Validation, Formal analysis, Conceptualization,
Visualization; Chaitali Chakrabarti: Writing – review & editing, Writ-
ing – original draft, Visualization, Formal analysis, Conceptualization;
Tsung-Wei Huang: Writing – review & editing, Writing – original draft,
Visualization, Formal analysis, Conceptualization; Umit Ogras: Writing
– review & editing, Writing – original draft, Visualization, Formal analy-
sis, Conceptualization; Ali Akoglu: Writing – review & editing, Writing
– original draft, Visualization, Supervision, Resources, Project adminis-
tration, Methodology, Funding acquisition, Formal analysis, Conceptu-
alization.

Data availability

Data will be made available on request.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This material is based on research sponsored by Air Force Research
Laboratory (AFRL) and Defense Advanced Research Projects Agency
(DARPA) under agreement number FA8650-18-2-7860. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official poli-
cies or endorsements, either expressed or implied, of AFRL and DARPA
or the U.S. Government.

We appreciate the continuous and generous support from the AMD
University Program, including the donation of FPGA prototyping board
used in this work.

Dr. Akoglu and Dr. Ogras have disclosed an outside interest in DASH
Tech IC to the University of Arizona and University of Wisconsin, re-
spectively. Conflicts of interest resulting from this interest are being
managed by the respective universities in accordance with their poli-
cies.

References

[1] J. Kim, S. Lee, B. Johnston, J.S. Vetter, IRIS: a performance-portable framework for
cross-platform heterogeneous computing, IEEE Trans. Parallel Distrib. Syst. 35 (10)
(2024) 1796–1809. https://doi.org/10.1109/TPDS.2024.3429010

[2] R. Nozal, J.L. Bosque, R. Beivide, EngineCL: usability and performance in het-
erogeneous computing, Future Gener. Comput. Syst. 107 (2020) 522–537. https:
//doi.org/10.1016/j.future.2020.02.016

[3] J. Mack, S. Gener, S. Hassan, H.U. Suluhan, A. Akoglu, CEDR-API: productive, per-
formant programming of domain-specific embedded systems, in: 2023 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2023,
pp. 16–25. https://doi.org/10.1109/IPDPSW59300.2023.00016

[4] J. Mack, S. Hassan, N. Kumbhare, M. Castro Gonzalez, A. Akoglu, CEDR: a compiler-
integrated, extensible DSSoC runtime, ACM Trans. Embed. Comput. Syst. 22 (2)
(2023). https://doi.org/10.1145/3529257

[5] T.-W. Huang, D.-L. Lin, C.-X. Lin, Y. Lin, Taskflow: a lightweight parallel and het-
erogeneous task graph computing system, IEEE Trans. Parallel Distrib. Syst. 33 (6)
(2022) 1303–1320. https://doi.org/10.1109/TPDS.2021.3104255

[6] S. Gener, S. Hassan, L. Chang, C. Chakrabarti, T.-W. Huang, U. Ogras, A. Akoglu,
A unified portable and programmable framework for task-based execution and
dynamic resource management on heterogeneous systems, in: Proceedings of the
2025 4th International Workshop on Extreme Heterogeneity Solutions, ExHET ’25,
Association for Computing Machinery, New York, NY, USA, 2025, p. 1-9. https:
//doi.org/10.1145/3720555.3721988

[7] J. Auerbach, D.F. Bacon, I. Burcea, P. Cheng, S.J. Fink, R. Rabbah, S. Shukla, A
compiler and runtime for heterogeneous computing, in: DAC Design Automation
Conference 2012, 2012, pp. 271–276. https://doi.org/10.1145/2228360.2228411

[8] C. Bolchini, S. Cherubin, G.C. Durelli, S. Libutti, A. Miele, M.D. Santambrogio, A
runtime controller for openCL applications on heterogeneous system architectures,
SIGBED Rev. 15 (1) (2018) 29-35. https://doi.org/10.1145/3199610.3199614

[9] K. Moazzemi, B. Maity, S. Yi, A.M. Rahmani, N. Dutt, HESSLE-FREE: heterogeneous
systems leveraging fuzzy control for runtime resource management, ACM Trans.
Embed. Comput. Syst. 18 (5s) (2019). https://doi.org/10.1145/3358203

[10] X. Tan, J. Bosch, C. Álvarez, D. Jiménez-González, E. Ayguadé, M. Valero, A hard-
ware runtime for task-based programming models, IEEE Trans. Parallel Distrib. Syst.
30 (9) (2019) 1932–1946. https://doi.org/10.1109/TPDS.2019.2907493

[11] J. Boutellier, J. Wu, H. Huttunen, S.S. Bhattacharyya, PRUNE: dynamic and
decidable dataflow for signal processing on heterogeneous platforms, IEEE
Trans. Signal Process. 66 (3) (2018) 654–665. https://doi.org/10.1109/TSP.2017.
2773424

[12] G. Christodoulis, F. Broquedis, O. Muller, M. Selva, F. Desprez, An FPGA target for
the StarPU heterogeneous runtime system, in: 2018 13th International Symposium
on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), 2018, pp.
1–8. https://doi.org/10.1109/ReCoSoC.2018.8449373

[13] C. Hsieh, A.A. Sani, N. Dutt, SURF: self-aware unified runtime framework for parallel
programs on heterogeneous mobile architectures, in: 2019 IFIP/IEEE 27th Interna-
tional Conference on Very Large Scale Integration (VLSI-SoC), 2019, pp. 136–141.
https://doi.org/10.1109/VLSI-SoC.2019.8920374

[14] Intel oneTBB, 2021. Accessed: June 23, 2025, https://github.com/oneapi-src/
oneTBB.

[15] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Torquati, Fastflow: high-level and ef-
ficient streaming on multicore, Programming multi-core and many-core computing
systems (2017) 261–280. https://doi.org/10.1002/9781119332015.ch13

[16] H. Carter Edwards, C.R. Trott, D. Sunderland, Kokkos: enabling manycore perfor-
mance portability through polymorphic memory access patterns, J. Parallel Distrib.
Comput. 74 (12) (2014) 3202–3216. https://doi.org/10.1016/j.jpdc.2014.07.003

[17] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, D. Fey, HPX: a task based pro-
gramming model in a global address space, in: Proceedings of the 8th Interna-
tional Conference on Partitioned Global Address Space Programming Models, PGAS
’14, Association for Computing Machinery, New York, NY, USA, 2014, pp. 1–11.
https://doi.org/10.1145/2676870.2676883

[18] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, J.J. Dongarra, PaRSEC:
exploiting heterogeneity to enhance scalability, Comput. Sci. Eng. 15 (6) (2013)
36–45. https://doi.org/10.1109/MCSE.2013.98

[19] M. Bauer, S. Treichler, E. Slaughter, A. Aiken, Legion: expressing locality and inde-
pendence with logical regions, in: SC ’12: Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage and Analysis, 2012, pp.
1–11. https://doi.org/10.1109/SC.2012.71

[20] J. Mack, S. Gener, A. Akoglu, J. Holtom, A. Chiriyath, C. Chakrabarti, D. Bliss, A.
Krishnakumar, A. Goksoy, U. Ogras, GNU Radio and CEDR: runtime scheduling to
heterogeneous accelerators, in: Proceedings of the GNU Radio Conference, 7, 2022,
pp. 1–12.

[21] H.U. Suluhan, S. Gener, A. Fusco, H.F. Ugurdag, A. Akoglu, PyTorch and CEDR:
enabling deployment of machine learning models on heterogeneous computing
systems, in: 2023 20th ACS/IEEE International Conference on Computer Systems
and Applications (AICCSA), 2023, pp. 1–8. https://doi.org/10.1109/AICCSA59173.
2023.10479315

[22] H.U. Suluhan, S. Gener, A. Fusco, J. Mack, I. Dagli, M. Belviranli, C. Edemen, A.
Akoglu, A runtime manager integrated emulation environment for heterogeneous
SoC design with RISC-V cores, in: 2024 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2024, pp. 23–30. https://doi.org/10.
1109/IPDPSW63119.2024.00013

[23] J. Mack, N. Kumbhare, A. NK, U.Y. Ogras, A. Akoglu, User-space emulation frame-
work for domain-specific SoC design, in: 2020 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2020, pp. 44–53. https:
//doi.org/10.1109/IPDPSW50202.2020.00016

[24] L. Dagum, R. Menon, OpenMP: an industry standard API for shared-memory pro-
gramming, J. Comput. Sci. Eng. 5 (1) (1998) 46–55. https://doi.org/10.1109/99.
660313

[25] D.W. Walker, J.J. Dongarra, MPI: a standard message passing interface, Supercom-
puter 12 (1996) 56–68.

Future Generation Computer Systems 176 (2026) 108184

13

https://doi.org/10.13039/100000185
https://doi.org/10.13039/100000185
https://doi.org/10.1109/TPDS.2024.3429010
https://doi.org/10.1109/TPDS.2024.3429010
https://doi.org/10.1016/j.future.2020.02.016
https://doi.org/10.1016/j.future.2020.02.016
https://doi.org/10.1016/j.future.2020.02.016
https://doi.org/10.1016/j.future.2020.02.016
https://doi.org/10.1109/IPDPSW59300.2023.00016
https://doi.org/10.1109/IPDPSW59300.2023.00016
https://doi.org/10.1145/3529257
https://doi.org/10.1145/3529257
https://doi.org/10.1109/TPDS.2021.3104255
https://doi.org/10.1109/TPDS.2021.3104255
https://doi.org/10.1145/3720555.3721988
https://doi.org/10.1145/3720555.3721988
https://doi.org/10.1145/3720555.3721988
https://doi.org/10.1145/3720555.3721988
https://doi.org/10.1145/2228360.2228411
https://doi.org/10.1145/2228360.2228411
https://doi.org/10.1145/3199610.3199614
https://doi.org/10.1145/3199610.3199614
https://doi.org/10.1145/3358203
https://doi.org/10.1145/3358203
https://doi.org/10.1109/TPDS.2019.2907493
https://doi.org/10.1109/TPDS.2019.2907493
https://doi.org/10.1109/TSP.2017.2773424
https://doi.org/10.1109/TSP.2017.2773424
https://doi.org/10.1109/TSP.2017.2773424
https://doi.org/10.1109/TSP.2017.2773424
https://doi.org/10.1109/ReCoSoC.2018.8449373
https://doi.org/10.1109/ReCoSoC.2018.8449373
https://doi.org/10.1109/VLSI-SoC.2019.8920374
https://doi.org/10.1109/VLSI-SoC.2019.8920374
https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB
https://doi.org/10.1002/9781119332015.ch13
https://doi.org/10.1002/9781119332015.ch13
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1109/SC.2012.71
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0018
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0018
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0018
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0018
https://doi.org/10.1109/AICCSA59173.2023.10479315
https://doi.org/10.1109/AICCSA59173.2023.10479315
https://doi.org/10.1109/AICCSA59173.2023.10479315
https://doi.org/10.1109/AICCSA59173.2023.10479315
https://doi.org/10.1109/IPDPSW63119.2024.00013
https://doi.org/10.1109/IPDPSW63119.2024.00013
https://doi.org/10.1109/IPDPSW63119.2024.00013
https://doi.org/10.1109/IPDPSW63119.2024.00013
https://doi.org/10.1109/IPDPSW50202.2020.00016
https://doi.org/10.1109/IPDPSW50202.2020.00016
https://doi.org/10.1109/IPDPSW50202.2020.00016
https://doi.org/10.1109/IPDPSW50202.2020.00016
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0023
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0023

S. Gener et al.

[26] B. Schäling, The Boost C++ Libraries, Boris Schäling, 2011.
[27] Xilinx ZCU102 evaluation board. Accessed: June 23, 2025, https://docs.amd.com/

v/u/en-US/ug1182-zcu102-eval-bd.
[28] NVIDIA jetson AGX Xavier evaluation board. Accessed: June 23, 2025,

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
jetson-xavier-series/.

[29] Intel Core i9-12900 processor 30M cache, up to 5.10 GHz, . Accessed: June
23, 2025, https://www.intel.com/content/www/us/en/products/sku/134597/
intel-core-i912900-processor-30m-cache-up-to-5-10-ghz/specifications.html.

[30] Intel Core i7-5820K processor 15M cache, up to 3.60 GHz, . Accessed:
June 23, 2025, https://www.intel.com/content/www/us/en/products/sku/82932/
intel-core-i75820k-processor-15m-cache-up-to-3-60-ghz/specifications.html.

[31] NVIDIA Tesla K40 specification, . Accessed: June 23, 2025, https://www.nvidia.
com/content/PDF/kepler/nvidia-tesla-k40.pdf.

[32] AMD Alveo U280 data center accelerator card, . Accessed: June 23, 2025, https:
//docs.amd.com/r/en-US/ds963-u280.

[33] M. Copik, H. Kaiser, Using SYCL as an implementation framework for HPX.com-
pute, in: Proceedings of the 5th International Workshop on OpenCL, IWOCL ’17,
Association for Computing Machinery, New York, NY, USA, 2017, pp. 1–7. https:
//doi.org/10.1145/3078155.3078187

[34] G. Daiß, P. Diehl, H. Kaiser, D. Pflüger, Stellar mergers with HPX-Kokkos and
SYCL: methods of using an asynchronous many-task runtime system with SYCL,
in: Proceedings of the 2023 International Workshop on OpenCL, IWOCL ’23, As-
sociation for Computing Machinery, New York, NY, USA, 2023, pp. 1–12. https:
//doi.org/10.1145/3585341.3585354

[35] O. Korakitis, S.G. De Gonzalo, N. Guidotti, J.a.P. Barreto, J.C. Monteiro, A.J. Peña,
Towards OmpSs-2 and openACC interoperation, in: Proceedings of the 27th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
’22, Association for Computing Machinery, New York, NY, USA, 2022, p. 433-434.
https://doi.org/10.1145/3503221.3508401

[36] T. Heller, H. Kaiser, P. Diehl, D. Fey, M.A. Schweitzer, Closing the performance
gap with modern C++, in: High Performance Computing: ISC High Performance
2016 International Workshops, ExaComm, E-MuCoCoS, HPC-IODC, IXPUG, IWOPH,
P 3MA, VHPC, WOPSSS, Frankfurt, Germany, June 19–23, 2016, Revised Selected
Papers 31, Springer, 2016, pp. 18–31.

[37] The Khronos SYCL Working Group, SYCL 2020 Specification (Revision 10), Techni-
cal report, Khronos Group, 2021. Accessed: June 23, 2025, https://registry.khronos.
org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf.

[38] H. Kaiser, P. Diehl, A.S. Lemoine, B.A. Lelbach, P. Amini, A. Berge, J. Biddiscombe,
S.R. Brandt, N. Gupta, T. Heller, et al., HPX-the C++ standard library for paral-
lelism and concurrency, J. Open Source Softw. 5 (53) (2020) 2352.

[39] C.R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Ellingwood, R. Gay-
atri, E. Harvey, D.S. Hollman, D. Ibanez, et al., Kokkos 3: programming model ex-
tensions for the exascale era, IEEE Trans. Parallel Distrib. Syst. 33 (4) (2021) 805–
817.

[40] D.C. Marcello, S. Shiber, O. De Marco, J. Frank, G.C. Clayton, P.M. Motl, P. Diehl,
H. Kaiser, Octo-Tiger: a new, 3D hydrodynamic code for stellar mergers that uses
HPX parallelization, Mon. Not. R. Astron. Soc. 504 (4) (2021) 5345–5382.

[41] Barcelona supercomputing center, OmpSs-2 specification, . Accessed: June 23, 2025,
https://pm.bsc.es/ftp/ompss-2/doc/spec/Accessed: 2021-03-30.

[42] S. Wienke, P. Springer, C. Terboven, D. an Mey, OpenACC-first experiences with
real-world applications, in: Euro-Par 2012 Parallel Processing: 18th International
Conference, Euro-Par 2012, Rhodes Island, Greece, August 27-31, 2012. Proceedings
18, Springer, 2012, pp. 859–870.

Serhan Gener is a PhD candidate in the Electrical and Com-
puter Engineering department at the University of Arizona.
He received his BS and MS degrees in Computer Engineer-
ing from Yeditepe University, Istanbul, Turkey, in 2015 and
2017, respectively. His research interests include hetero-
geneous computing, resource management, reconfigurable
computing, embedded systems, image processing, and soft-
ware security.

Sahil Hassan is a Postdoctoral Research Associate in the De-
partment of Electrical and Computer Engineering at Univer-
sity of Arizona. He received his PhD in 2024 from the same
institution. His research focuses on heterogeneous and brain-
inspired computing systems.

H. Umut Suluhan is a PhD student in the Department of
Electrical and Computer Engineering at The University of
Arizona. He received his BS degree in Computer Science
from Ozyegin University in 2023. His research interests are
broadly in high-performance computing and reconfigurable
architectures with a focus on runtime software design and
resource management algorithm development for heteroge-
neous computing systems.

LiangLiang Chang received his BS degree from Jilin Univer-
sity, Changchun, China, and his MS degree from Tsinghua
University, Beijing, China. He is currently pursuing a PhD
degree at Arizona State University, Tempe, AZ, USA. His
research interests include profile-guided compiler optimiza-
tions and code generation for heterogeneous architectures.

Chaitali Chakrabarti is a Professor with the School of Elec-
trical Computer and Energy Engineering, Arizona State Uni-
versity (ASU), Tempe, and a Fellow of the IEEE. Her research
interests are in the areas of low power embedded systems
design, distributed machine learning and VLSI architectures
and algorithms for signal processing and communications.

Tsung-Wei Huang is an Assistant Professor in the ECE
Department at the University of Wisconsin at Madison.
He earned his PhD in ECE from University of Illinois at
Urbana-Champaign (2017) and BS/MS in CS from Taiwan’s
NCKU (2011). His research focuses on software systems
for performance-critical applications, including CAD, ma-
chine learning, and quantum computing. Dr. Huang has re-
ceived several awards, including the ACM SIGDA Outstand-
ing PhD Dissertation Award, NSF CAREER Award, Humboldt
Research Fellowship, ACM SIGDA Outstanding New Faculty
Award, the ICCAD 10-Year Most Influential Paper Award, and
DAC Under 40 Innovator Award.

Future Generation Computer Systems 176 (2026) 108184

14

http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0024
https://docs.amd.com/v/u/en-US/ug1182-zcu102-eval-bd
https://docs.amd.com/v/u/en-US/ug1182-zcu102-eval-bd
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.intel.com/content/www/us/en/products/sku/134597/intel-core-i912900-processor-30m-cache-up-to-5-10-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/134597/intel-core-i912900-processor-30m-cache-up-to-5-10-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/82932/intel-core-i75820k-processor-15m-cache-up-to-3-60-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/82932/intel-core-i75820k-processor-15m-cache-up-to-3-60-ghz/specifications.html
https://www.nvidia.com/content/PDF/kepler/nvidia-tesla-k40.pdf
https://www.nvidia.com/content/PDF/kepler/nvidia-tesla-k40.pdf
https://docs.amd.com/r/en-US/ds963-u280
https://docs.amd.com/r/en-US/ds963-u280
https://doi.org/10.1145/3078155.3078187
https://doi.org/10.1145/3078155.3078187
https://doi.org/10.1145/3078155.3078187
https://doi.org/10.1145/3078155.3078187
https://doi.org/10.1145/3585341.3585354
https://doi.org/10.1145/3585341.3585354
https://doi.org/10.1145/3585341.3585354
https://doi.org/10.1145/3585341.3585354
https://doi.org/10.1145/3503221.3508401
https://doi.org/10.1145/3503221.3508401
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0028
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0028
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0028
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0028
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0028
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0029
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0029
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0029
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0030
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0030
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0030
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0031
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0031
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0031
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0031
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0032
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0032
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0032
https://pm.bsc.es/ftp/ompss-2/doc/spec/
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0033
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0033
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0033
http://refhub.elsevier.com/S0167-739X(25)00478-9/sbref0033

S. Gener et al.

Umit Ogras is the Gene Amdahl Professor in the Dept. of
Electrical and Computer Engineering at the University of
Wisconsin-Madison. He worked at the Arizona State Univer-
sity as a faculty member between 2013-2020 and at Intel
as a research scientist between 2008-2013 before receiving
his PhD degree in Computer Engineering from Carnegie Mel-
lon University in 2007. His research interests include chiplet-
based platforms, edge AI, domain-specific systems, and low-
power VLSI.

Ali Akoglu Ali Akoglu received his PhD in Computer Science
from Arizona State University in 2005. He is a Professor in
the Department of Electrical and Computer Engineering and
a member of the BIO5 Institute at the University of Arizona.
His research focuses on domain-specific computing systems,
with emphasis on resource management for heterogeneous
platforms and the design of reconfigurable and neuromorphic
architectures. Dr. Akoglu serves as the site director of the NSF
IUCRC on Cloud and Autonomic Computing.

Future Generation Computer Systems 176 (2026) 108184

15

	A portable framework with generalized runtime features for task graph execution and concurrent multi-application deployment on heterogeneous systems
	1 Introduction
	2 Background
	3 CEDR-taskflow integration
	3.1 Application preparation
	3.2 CEDR and taskflow communication
	3.3 Broader applicability

	4 Experimental setup
	5 Experimental evaluations
	5.1 Performance analysis
	5.2 Portability
	5.3 Features enabled by CEDR-taskflow integration
	5.3.1 Streaming input processing
	5.3.2 Cached scheduling

	5.4 Multi-application execution experiments
	5.5 HPC scale experiments
	5.6 Application domain extension
	5.7 Case study

	6 Related work
	7 Conclusion

