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Abstract
Breadth-first search (BFS) is a fundamental building block
of many graph algorithms, such as shortest path finding,
network flow analysis, and connected component detec-
tion. As the graph size continues to increase, efficient imple-
mentations of parallel BFS across multiple cores are critical
to the design of scalable graph algorithms. In this paper,
we introduce an efficient implementation of the popular
bi-directional BFS (BD-BFS) algorithm. Evaluating on the
Speedcode platform [3], we can achieve 38.07% throughput
performance improvement (3.01B/s vs 2.18B/s) over the con-
ventional BD-BFS implementation.

1 Parallel Breadth-first Search
Breadth-first search (BFS) is a fundamental graph traversal
algorithm widely used in diverse applications such as social
network analysis, shortest path computation, and web crawl-
ing [20]. BFS starts at a given node, often called the root in
the tree, and explores all its neighboring nodes at the present
depth level before moving on to nodes at the next depth level,
and so on. The search process continues until all nodes have
been explored or the desired target is found. As a result, BFS
ensures that nodes are explored level by level, making it ideal
for finding the shortest path in an unweighted graph. The
time complexity of BFS is 𝑂 (𝑉 + 𝐸), where 𝑉 is the number
of vertices and 𝐸 is the number of edges [19].
State-of-the-art parallel BFS algorithms [5, 7–18, 21–52,

56, 60–83, 85, 86, 88–92] are typically implemented via a
frontier-based framework, as outlined in Algorithm 1. The
algorithmmaintains two separate queues to track the current
and the next frontiers during the search process. Starting
from a source 𝑠 in the current frontier queue𝑄 , the algorithm
visits all 1-hop neighbors of 𝑠 and stores visited neighbors in
the next frontier queue 𝑄𝑛𝑒𝑥𝑡 . In the subsequent rounds, the
algorithm iterates between 𝑄 and 𝑄𝑛𝑒𝑥𝑡 , visit all vertices in
𝑄 , and generate 𝑄𝑛𝑒𝑥𝑡 by identifying all unvisited neighbors
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reachable within one hop from the current frontiers. Neigh-
bor searches are parallelized across multiple threads, with
concurrent access to 𝑄𝑛𝑒𝑥𝑡 safeguarded by atomic compare-
and-swap (CAS) operations.

Algorithm 1: Parallel Breadth-First Search (BFS)
Input :Graph 𝐺 = (𝑉 , 𝐸), source vertex 𝑠
Output :Distance array 𝑑𝑖𝑠𝑡 [|𝑉 |], initialized to∞

1 𝑑𝑖𝑠𝑡 [𝑠] ← 0;
2 𝑄 ← {𝑠};
3 while 𝑄 ≠ ∅ do
4 𝑄next ← ∅;
5 foreach 𝑢 ∈ 𝑄 in parallel do
6 foreach 𝑣 ∈ Neighbors(𝑢) do
7 if AtomicCAS(𝑑𝑖𝑠𝑡 [𝑣],∞, 𝑑𝑖𝑠𝑡 [𝑢] + 1) then
8 Add 𝑣 to 𝑄next;
9 end

10 end
11 end
12 𝑄 ← 𝑄next;
13 end

Among various parallel BFS algorithms, bi-directional BFS
(BD-BFS) [6] has demonstrated superior performance over
existing methods. When the frontier size is large, instead of
generating the next frontier from the current frontier in a top-
down manner, BD-BFS processes all vertices in parallel and
determine for each unexplored vertex if one of its neighbors
is in the current frontier queue. If so, the vertex is added to
the next frontiers, and all the rest of the neighbor exploration
can be skipped. This idea is referred to as bottom-up search
as it let unexplored vertices identify their parent frontiers
in a decentralized fashion. On dense graphs such as social
networks, existing results show that BD-BFS is very effective
in improving performance by saving work [6].
As shown in Algorithm 2, when the frontier size is large,

BD-BFS switches from a top-down step, where the next fron-
tier is generated from the current one, to this bottom-up step,
where unexplored vertices identify their parents from the
current frontiers. The bottom-up step process all vertices
in parallel and let each unexplored vertex check whether
any of its neighbors belong to the current frontier queue.
If such a neighbor is found, the vertex is added to the next
frontier, skipping further neighbor exploration (line 7). This
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Algorithm 2: Bottom-up Step
Input :Current frontier queue 𝑄
Output :Next frontier queue 𝑄𝑛𝑒𝑥𝑡

1 𝑄next ← ∅;
2 foreach 𝑢 ∈ 𝑉 in parallel do
3 foreach 𝑣 ∈ Neighbors(𝑢) do
4 if 𝑣 ∈ 𝑄 then
5 𝑑𝑖𝑠𝑡 [𝑢] ← 𝑑𝑖𝑠𝑡 [𝑣] + 1;
6 Add 𝑢 to 𝑄next;
7 break;
8 end
9 end

10 end

bottom-up search allows unexplored vertices to identify their
parent frontiers in a decentralized manner, which is particu-
larly suitable for parallelization. More importantly, once the
parent is identified, no more search is needed, saving a lot
of redundant work.

2 Problems of Bi-directional BFS
While BD-BFS offers a great speed-up over conventional BFS,
it relies on carefully tuned parameters to balance top-down
and bottom-up steps. As shown in Figure 1, this tuning pro-
cess involves five parameters, (1)𝑛𝑓 (the number of frontiers),
(2)𝑚𝑓 (the number of edges to check from frontiers), (3)𝑚𝑢

(the number of edges to check from unexplored vertices), and
(4) two user-defined thresholds,𝐶𝑇𝐵 and𝐶𝐵𝑇 , to decide when
to switch from top-down to bottom-up steps and vice versa.
Depending on the progress, computing𝑚𝑓 and𝑚𝑢 may be
expensive as it requires a parallel reduction to sum up the
total number of edges from frontiers. Moreover, implement-
ing the control algorithm correctly is challenging, especially
when combined with library-level parameter tuning, such
as chunk size adjustments in OpenMP [84].

Figure 1: BD-BFS relies on carefully tuned parameters
to achieve optimal performance by balancing top-down
and bottom-up steps [6].

3 The Proposed Implementation
Instead of maintaining five different parameters (𝑛𝑓 ,𝑚𝑓 ,𝑚𝑢 ,
𝐶𝑇𝐵 , 𝐶𝐵𝑇 ) to decide when to perform bottom-up and top-
down steps, we keep track of unexplored vertices that allows
us to more precisely decide the workload of the bottom-
up step and avoid redundant traversal on explored vertices.
Specifically, wemaintain a remainder queue,𝑅, of unexplored
vertices and only update 𝑅 during the bottom-up step, as we
found in experiments only a few bottom-up steps are needed.
With 𝑅, we can roughly estimate the number of unexplored
edges as 𝑅 × 𝛼 , where 𝛼 is the average number of edges per
vertex (|𝐸 |/|𝑉 |). Figure 2 illustrates our idea.
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Figure 2: Our algorithm follows a straightforward con-
trol flow by directly estimating the workload of the
top-down and bottom-up steps. This is done by com-
paring the number of frontier scans (𝛼 × |𝑄 |) with the
number of remainder scans (𝑅).

Algorithm 3 presents our implementation. As long as the
frontier queue 𝑄 and the remainder queue 𝑅 are not empty,
we iteratively identify the next frontiers using either bottom-
up step (lines 9:19) or top-down step (lines 22:28). With the
information of 𝑄 , our control algorithm is a simple compar-
ison between “|𝑅 |” and “|𝑄 | × 𝛼” (line 8). Furthermore, 𝑄
provides a very optimistic upper-bound on the number of
vertices to traverse in the bottom-up step, to which a parallel
traversal can be applied. Note that this design is different
from the bitmap data structure in [6], which requires thread
safety and still stores/visits all vertices in a bit vector.

3.1 Optimization Details
To further optimize performance, we have incorporated sev-
eral strategies, summarized below:
• We only perform parallel traversal (line 9 and line 22)
when the queue size is greater than 32. This allows us to
avoid unnecessary threading overhead when the vertex
parallelism is limited.
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Algorithm 3: Proposed Algorithm
Input :Graph 𝐺 = (𝑉 , 𝐸), source vertex 𝑠 , current frontier

queue 𝑄 , current remainder queue 𝑅, next frontier
queue 𝑄𝑛𝑒𝑥𝑡 , next remainder queue 𝑅𝑛𝑒𝑥𝑡

Output :Distance array 𝑑𝑖𝑠𝑡 [|𝑉 |], initialized to∞
1 𝑅 ← 𝑉 − {𝑠};
2 𝑄 ← {𝑠};
3 𝑑𝑖𝑠𝑡 [𝑠] ← 0;
4 𝛼 ← |𝐸 |/|𝑉 |;
5 while |𝑄 | and |𝑅 | do
6 𝑄next ← ∅;
7 𝑅next ← ∅;
8 if |𝑅 | < |𝑄 | × 𝛼 then
9 foreach 𝑢 ∈ 𝑅 in parallel do
10 if 𝑑𝑖𝑠𝑡 [𝑢] ≠ ∞ then
11 bottom_step(𝑢);
12 if 𝑑𝑖𝑠𝑡 [𝑢] = ∞ then
13 Add 𝑢 to 𝑅𝑛𝑒𝑥𝑡 ;
14 end
15 else
16 Add 𝑢 to 𝑄𝑛𝑒𝑥𝑡 ;
17 end
18 end
19 end
20 end
21 else
22 foreach 𝑢 ∈ 𝑄 in parallel do
23 foreach 𝑣 ∈ Neighbors(𝑢) do
24 if AtomicCAS(𝑑𝑖𝑠𝑡 [𝑣],∞, 𝑑𝑖𝑠𝑡 [𝑢] + 1)

then
25 Add 𝑣 to 𝑄next;
26 end
27 end
28 end
29 end
30 𝑄 ← 𝑄𝑛𝑒𝑥𝑡 ;
31 𝑅 ← 𝑅𝑛𝑒𝑥𝑡 ;
32 end

• We only initialize 𝑅 at the first bottom-up step when it
is needed. This laziness allows us to avoid unnecessary
initialization when bottom-up step never participates in
the search.
• We parallelize the bottom-up step using the dynamic loop
scheduling algorithm and top-down step using the static
loop scheduling algorithm. This is because bottom-up step
has an early break (line 7 in Algorithm 2), which can cause
workload imbalanced.
• We keep per-thread storage for 𝑄 , 𝑄𝑛𝑒𝑥𝑡 , 𝑅, and 𝑅𝑛𝑒𝑥𝑡 to
minimize the contention when multiple threads try to add

vertices to the same queue. Per-worker queues are merged
only at the end of the parallel-for execution.
We also experimentedwith different chunk sizes for parallel-

for algorithms. For the dynamic loop scheduling algorithm,
we use a chunk size of 32, while for the static loop scheduling
algorithm, we use a chunk size of 4.

4 Experimental Results
We implemented our algorithm using OpenMP [84], Task-
flow [45, 50], and C++ Thread [1] to evaluate our perfor-
mance under different libraries. We use OpenMP to imple-
ment BD-BFS as our baseline, following the original reference
code by the author in [2].
Table 1 compares the performance of runtime (ms) and

throughput (edges/s) between our algorithm and BD-BFS
across eight large graphs on the Speedcode platform [3].
For this particular contest, “Ours (OpenMP)” is the submis-
sion version, which achieved the best overall performance in
both runtime (48.31 ms) and throughput (3.01B edges/s), as
measured by geometric mean 1. The Taskflow-powered im-
plementation achieved comparable performance to OpenMP,
with a runtime score of 53.02 ms and a throughput score of
2.75B edges/s. We attribute the performance difference to the
library overhead, including the dynamic work-stealing [73]
and task execution costs. That being said, both outperform
the baseline BD-BFS, justifying the effectiveness of our al-
gorithm and the efficiency of our implementations. Unfor-
tunately, the “hard-coded” solution using C++ Thread un-
derperforms library-based implementation. We attribute this
to the lack of more adaptive scheduling strategies, such as
guided scheduling in OpenMP and work-stealing scheduling
in Taskflow.

5 Conclusion
In this paper, we introduced a simple yet efficient imple-
mentation to parallelize the bi-directional BFS algorithm.
Evaluating on the Speedcode platform [3], we can achieve
38.07% throughput performance improvement (3.01B/s vs
2.18B/s) over the conventional BD-BFS implementation. In-
spired by our success of GPU-accelerated graph applica-
tions [53–55, 57–59, 87], we plan to extend our BD-BFS algo-
rithm to GPU. The source of our implementation is available
on the benchmark folder under the Taskflow repository [4].

Acknowledgments
This project is supported by NSF grants 2235276, 2349144,
2349143, 2349582, and 2349141. We also appreciate reviewers’
comments on improving this manuscript.

1While our solution placed second in the final evaluation, the first-place
solution prioritized speed at the cost of thread safety, leading to data race.



FCPC ’25, March 1–5, 2025, Las Vegas, NV, USA Pao-I Chen and Tsung-Wei Huang

Table 1: Overall performance comparison between our algorithm (implemented in three parallel programming
libraries, C++ thread [1], Taskflow [50], and OpenMP [84]) and the baseline BD-BFS [6]. Time is measured in
milliseconds. All results are collected from the Speedcode platform [3]. “Ours (OpenMP)” is the submission version
for FCPC’25 Contest.

Reference BD-BFS
(OpenMP)

Ours
(C++ Thread)

Ours
(Taskflow)

Ours
(OpenMP)

|V| |E| Time Time edges/s Time edges/s Time edges/s Time edges/s
Collaboration Network 1 1.1M 113M 470 5.21 21.20B 4.28 25.82B 4.07 27.09B 3.90 28.31B

Road Network 1 22.1M 30M 3310 210 283.03M 640 90.74M 160 355.93M 160 356.41M
Road Network 2 87M 112.9M 14670 720 199.15M 760 285.76M 560 387.62M 530 407.30M
Social Network 4.9M 85.8M 1060 20.04 4.19B 13.30 6.31B 17.59 4.77B 13.57 6.19B
Synthetic Dense 10M 1B 11870 43.45 22.61B 40.17 24.40B 41.80 23.44B 40.51 24.19B
Synthetic Sparse 10M 40M 1620 130 293.54M 450 86.44M 90.08 435.21M 85.40 459.06M

Web Graph 6.6M 300M 2860 24.92 11.81B 16.44 17.90B 19.90 14.79B 17.38 16.94B
kNN Graph 24.9M 158M 2100 180 876.23M 320 476.68M 130 1.22B 110 1.42B

Score (Geomean) 2042.57 66.87 2.18B 84.64 1.72B 53.02 2.75B 48.31 3.01B
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