
An Efficient Implementation of Parallel Breadth-first
Search

Pao-I Chen
University of Wisconsin at Madison

Madison, Wisconsin, USA

Tsung-Wei Huang
University of Wisconsin at Madison

Madison, Wisconsin, USA

Abstract
Breadth-first search (BFS) is a fundamental building block
of many graph algorithms, such as shortest path finding,
network flow analysis, and connected component detec-
tion. As the graph size continues to increase, efficient imple-
mentations of parallel BFS across multiple cores are critical
to the design of scalable graph algorithms. In this paper,
we introduce an efficient implementation of the popular
bi-directional BFS (BD-BFS) algorithm. Evaluating on the
Speedcode platform [3], we can achieve 38.07% throughput
performance improvement (3.01B/s vs 2.18B/s) over the con-
ventional BD-BFS implementation.

1 Parallel Breadth-first Search
Breadth-first search (BFS) is a fundamental graph traversal
algorithm widely used in diverse applications such as social
network analysis, shortest path computation, and web crawl-
ing [20]. BFS starts at a given node, often called the root in
the tree, and explores all its neighboring nodes at the present
depth level before moving on to nodes at the next depth level,
and so on. The search process continues until all nodes have
been explored or the desired target is found. As a result, BFS
ensures that nodes are explored level by level, making it ideal
for finding the shortest path in an unweighted graph. The
time complexity of BFS is 𝑂 (𝑉 + 𝐸), where 𝑉 is the number
of vertices and 𝐸 is the number of edges [19].
State-of-the-art parallel BFS algorithms [5, 7–18, 21–52,

56, 60–83, 85, 86, 88–92] are typically implemented via a
frontier-based framework, as outlined in Algorithm 1. The
algorithmmaintains two separate queues to track the current
and the next frontiers during the search process. Starting
from a source 𝑠 in the current frontier queue𝑄 , the algorithm
visits all 1-hop neighbors of 𝑠 and stores visited neighbors in
the next frontier queue 𝑄𝑛𝑒𝑥𝑡 . In the subsequent rounds, the
algorithm iterates between 𝑄 and 𝑄𝑛𝑒𝑥𝑡 , visit all vertices in
𝑄 , and generate 𝑄𝑛𝑒𝑥𝑡 by identifying all unvisited neighbors

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
FCPC ’25, Las Vegas, NV, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1446-7/2025/03
https://doi.org/10.1145/3711708.3723443

reachable within one hop from the current frontiers. Neigh-
bor searches are parallelized across multiple threads, with
concurrent access to 𝑄𝑛𝑒𝑥𝑡 safeguarded by atomic compare-
and-swap (CAS) operations.

Algorithm 1: Parallel Breadth-First Search (BFS)
Input :Graph 𝐺 = (𝑉 , 𝐸), source vertex 𝑠
Output :Distance array 𝑑𝑖𝑠𝑡 [|𝑉 |], initialized to∞

1 𝑑𝑖𝑠𝑡 [𝑠] ← 0;
2 𝑄 ← {𝑠};
3 while 𝑄 ≠ ∅ do
4 𝑄next ← ∅;
5 foreach 𝑢 ∈ 𝑄 in parallel do
6 foreach 𝑣 ∈ Neighbors(𝑢) do
7 if AtomicCAS(𝑑𝑖𝑠𝑡 [𝑣],∞, 𝑑𝑖𝑠𝑡 [𝑢] + 1) then
8 Add 𝑣 to 𝑄next;
9 end

10 end
11 end
12 𝑄 ← 𝑄next;
13 end

Among various parallel BFS algorithms, bi-directional BFS
(BD-BFS) [6] has demonstrated superior performance over
existing methods. When the frontier size is large, instead of
generating the next frontier from the current frontier in a top-
down manner, BD-BFS processes all vertices in parallel and
determine for each unexplored vertex if one of its neighbors
is in the current frontier queue. If so, the vertex is added to
the next frontiers, and all the rest of the neighbor exploration
can be skipped. This idea is referred to as bottom-up search
as it let unexplored vertices identify their parent frontiers
in a decentralized fashion. On dense graphs such as social
networks, existing results show that BD-BFS is very effective
in improving performance by saving work [6].
As shown in Algorithm 2, when the frontier size is large,

BD-BFS switches from a top-down step, where the next fron-
tier is generated from the current one, to this bottom-up step,
where unexplored vertices identify their parents from the
current frontiers. The bottom-up step process all vertices
in parallel and let each unexplored vertex check whether
any of its neighbors belong to the current frontier queue.
If such a neighbor is found, the vertex is added to the next
frontier, skipping further neighbor exploration (line 7). This

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3711708.3723443

FCPC ’25, March 1–5, 2025, Las Vegas, NV, USA Pao-I Chen and Tsung-Wei Huang

Algorithm 2: Bottom-up Step
Input :Current frontier queue 𝑄
Output :Next frontier queue 𝑄𝑛𝑒𝑥𝑡

1 𝑄next ← ∅;
2 foreach 𝑢 ∈ 𝑉 in parallel do
3 foreach 𝑣 ∈ Neighbors(𝑢) do
4 if 𝑣 ∈ 𝑄 then
5 𝑑𝑖𝑠𝑡 [𝑢] ← 𝑑𝑖𝑠𝑡 [𝑣] + 1;
6 Add 𝑢 to 𝑄next;
7 break;
8 end
9 end

10 end

bottom-up search allows unexplored vertices to identify their
parent frontiers in a decentralized manner, which is particu-
larly suitable for parallelization. More importantly, once the
parent is identified, no more search is needed, saving a lot
of redundant work.

2 Problems of Bi-directional BFS
While BD-BFS offers a great speed-up over conventional BFS,
it relies on carefully tuned parameters to balance top-down
and bottom-up steps. As shown in Figure 1, this tuning pro-
cess involves five parameters, (1)𝑛𝑓 (the number of frontiers),
(2)𝑚𝑓 (the number of edges to check from frontiers), (3)𝑚𝑢

(the number of edges to check from unexplored vertices), and
(4) two user-defined thresholds,𝐶𝑇𝐵 and𝐶𝐵𝑇 , to decide when
to switch from top-down to bottom-up steps and vice versa.
Depending on the progress, computing𝑚𝑓 and𝑚𝑢 may be
expensive as it requires a parallel reduction to sum up the
total number of edges from frontiers. Moreover, implement-
ing the control algorithm correctly is challenging, especially
when combined with library-level parameter tuning, such
as chunk size adjustments in OpenMP [84].

Figure 1: BD-BFS relies on carefully tuned parameters
to achieve optimal performance by balancing top-down
and bottom-up steps [6].

3 The Proposed Implementation
Instead of maintaining five different parameters (𝑛𝑓 ,𝑚𝑓 ,𝑚𝑢 ,
𝐶𝑇𝐵 , 𝐶𝐵𝑇) to decide when to perform bottom-up and top-
down steps, we keep track of unexplored vertices that allows
us to more precisely decide the workload of the bottom-
up step and avoid redundant traversal on explored vertices.
Specifically, wemaintain a remainder queue,𝑅, of unexplored
vertices and only update 𝑅 during the bottom-up step, as we
found in experiments only a few bottom-up steps are needed.
With 𝑅, we can roughly estimate the number of unexplored
edges as 𝑅 × 𝛼 , where 𝛼 is the average number of edges per
vertex (|𝐸 |/|𝑉 |). Figure 2 illustrates our idea.

0

0

1

1

1

2

2

2

3
3

3

3

Top down: ⍺|Q| < |R|

4

4

4

4

Bottom up: ⍺|Q| ≥ |R|

Figure 2: Our algorithm follows a straightforward con-
trol flow by directly estimating the workload of the
top-down and bottom-up steps. This is done by com-
paring the number of frontier scans (𝛼 × |𝑄 |) with the
number of remainder scans (𝑅).

Algorithm 3 presents our implementation. As long as the
frontier queue 𝑄 and the remainder queue 𝑅 are not empty,
we iteratively identify the next frontiers using either bottom-
up step (lines 9:19) or top-down step (lines 22:28). With the
information of 𝑄 , our control algorithm is a simple compar-
ison between “|𝑅 |” and “|𝑄 | × 𝛼” (line 8). Furthermore, 𝑄
provides a very optimistic upper-bound on the number of
vertices to traverse in the bottom-up step, to which a parallel
traversal can be applied. Note that this design is different
from the bitmap data structure in [6], which requires thread
safety and still stores/visits all vertices in a bit vector.

3.1 Optimization Details
To further optimize performance, we have incorporated sev-
eral strategies, summarized below:
• We only perform parallel traversal (line 9 and line 22)
when the queue size is greater than 32. This allows us to
avoid unnecessary threading overhead when the vertex
parallelism is limited.

An Efficient Implementation of Parallel Breadth-first Search FCPC ’25, March 1–5, 2025, Las Vegas, NV, USA

Algorithm 3: Proposed Algorithm
Input :Graph 𝐺 = (𝑉 , 𝐸), source vertex 𝑠 , current frontier

queue 𝑄 , current remainder queue 𝑅, next frontier
queue 𝑄𝑛𝑒𝑥𝑡 , next remainder queue 𝑅𝑛𝑒𝑥𝑡

Output :Distance array 𝑑𝑖𝑠𝑡 [|𝑉 |], initialized to∞
1 𝑅 ← 𝑉 − {𝑠};
2 𝑄 ← {𝑠};
3 𝑑𝑖𝑠𝑡 [𝑠] ← 0;
4 𝛼 ← |𝐸 |/|𝑉 |;
5 while |𝑄 | and |𝑅 | do
6 𝑄next ← ∅;
7 𝑅next ← ∅;
8 if |𝑅 | < |𝑄 | × 𝛼 then
9 foreach 𝑢 ∈ 𝑅 in parallel do
10 if 𝑑𝑖𝑠𝑡 [𝑢] ≠ ∞ then
11 bottom_step(𝑢);
12 if 𝑑𝑖𝑠𝑡 [𝑢] = ∞ then
13 Add 𝑢 to 𝑅𝑛𝑒𝑥𝑡 ;
14 end
15 else
16 Add 𝑢 to 𝑄𝑛𝑒𝑥𝑡 ;
17 end
18 end
19 end
20 end
21 else
22 foreach 𝑢 ∈ 𝑄 in parallel do
23 foreach 𝑣 ∈ Neighbors(𝑢) do
24 if AtomicCAS(𝑑𝑖𝑠𝑡 [𝑣],∞, 𝑑𝑖𝑠𝑡 [𝑢] + 1)

then
25 Add 𝑣 to 𝑄next;
26 end
27 end
28 end
29 end
30 𝑄 ← 𝑄𝑛𝑒𝑥𝑡 ;
31 𝑅 ← 𝑅𝑛𝑒𝑥𝑡 ;
32 end

• We only initialize 𝑅 at the first bottom-up step when it
is needed. This laziness allows us to avoid unnecessary
initialization when bottom-up step never participates in
the search.
• We parallelize the bottom-up step using the dynamic loop
scheduling algorithm and top-down step using the static
loop scheduling algorithm. This is because bottom-up step
has an early break (line 7 in Algorithm 2), which can cause
workload imbalanced.
• We keep per-thread storage for 𝑄 , 𝑄𝑛𝑒𝑥𝑡 , 𝑅, and 𝑅𝑛𝑒𝑥𝑡 to
minimize the contention when multiple threads try to add

vertices to the same queue. Per-worker queues are merged
only at the end of the parallel-for execution.
We also experimentedwith different chunk sizes for parallel-

for algorithms. For the dynamic loop scheduling algorithm,
we use a chunk size of 32, while for the static loop scheduling
algorithm, we use a chunk size of 4.

4 Experimental Results
We implemented our algorithm using OpenMP [84], Task-
flow [45, 50], and C++ Thread [1] to evaluate our perfor-
mance under different libraries. We use OpenMP to imple-
ment BD-BFS as our baseline, following the original reference
code by the author in [2].
Table 1 compares the performance of runtime (ms) and

throughput (edges/s) between our algorithm and BD-BFS
across eight large graphs on the Speedcode platform [3].
For this particular contest, “Ours (OpenMP)” is the submis-
sion version, which achieved the best overall performance in
both runtime (48.31 ms) and throughput (3.01B edges/s), as
measured by geometric mean 1. The Taskflow-powered im-
plementation achieved comparable performance to OpenMP,
with a runtime score of 53.02 ms and a throughput score of
2.75B edges/s. We attribute the performance difference to the
library overhead, including the dynamic work-stealing [73]
and task execution costs. That being said, both outperform
the baseline BD-BFS, justifying the effectiveness of our al-
gorithm and the efficiency of our implementations. Unfor-
tunately, the “hard-coded” solution using C++ Thread un-
derperforms library-based implementation. We attribute this
to the lack of more adaptive scheduling strategies, such as
guided scheduling in OpenMP and work-stealing scheduling
in Taskflow.

5 Conclusion
In this paper, we introduced a simple yet efficient imple-
mentation to parallelize the bi-directional BFS algorithm.
Evaluating on the Speedcode platform [3], we can achieve
38.07% throughput performance improvement (3.01B/s vs
2.18B/s) over the conventional BD-BFS implementation. In-
spired by our success of GPU-accelerated graph applica-
tions [53–55, 57–59, 87], we plan to extend our BD-BFS algo-
rithm to GPU. The source of our implementation is available
on the benchmark folder under the Taskflow repository [4].

Acknowledgments
This project is supported by NSF grants 2235276, 2349144,
2349143, 2349582, and 2349141. We also appreciate reviewers’
comments on improving this manuscript.

1While our solution placed second in the final evaluation, the first-place
solution prioritized speed at the cost of thread safety, leading to data race.

FCPC ’25, March 1–5, 2025, Las Vegas, NV, USA Pao-I Chen and Tsung-Wei Huang

Table 1: Overall performance comparison between our algorithm (implemented in three parallel programming
libraries, C++ thread [1], Taskflow [50], and OpenMP [84]) and the baseline BD-BFS [6]. Time is measured in
milliseconds. All results are collected from the Speedcode platform [3]. “Ours (OpenMP)” is the submission version
for FCPC’25 Contest.

Reference BD-BFS
(OpenMP)

Ours
(C++ Thread)

Ours
(Taskflow)

Ours
(OpenMP)

|V| |E| Time Time edges/s Time edges/s Time edges/s Time edges/s
Collaboration Network 1 1.1M 113M 470 5.21 21.20B 4.28 25.82B 4.07 27.09B 3.90 28.31B

Road Network 1 22.1M 30M 3310 210 283.03M 640 90.74M 160 355.93M 160 356.41M
Road Network 2 87M 112.9M 14670 720 199.15M 760 285.76M 560 387.62M 530 407.30M
Social Network 4.9M 85.8M 1060 20.04 4.19B 13.30 6.31B 17.59 4.77B 13.57 6.19B
Synthetic Dense 10M 1B 11870 43.45 22.61B 40.17 24.40B 41.80 23.44B 40.51 24.19B
Synthetic Sparse 10M 40M 1620 130 293.54M 450 86.44M 90.08 435.21M 85.40 459.06M

Web Graph 6.6M 300M 2860 24.92 11.81B 16.44 17.90B 19.90 14.79B 17.38 16.94B
kNN Graph 24.9M 158M 2100 180 876.23M 320 476.68M 130 1.22B 110 1.42B

Score (Geomean) 2042.57 66.87 2.18B 84.64 1.72B 53.02 2.75B 48.31 3.01B

References
[1] 2025. C++ Thread. https://en.cppreference.com/w/cpp/thread/thread
[2] 2025. GAP Benchmark Suite. https://github.com/sbeamer/gapbs
[3] 2025. Speedcode BFS Benchmark. https://speedcode.org/ide/contest.

html?ppopp_test_bfs_v1
[4] 2025. Taskflow Github. https://taskflow.github.io/
[5] Anshul Agarwal and David A Bader. 2010. A scalable hybrid paral-

lel breadth-first search algorithm on multicore CPU and GPU archi-
tectures. High Performance Computing and Simulation (HPCS), 2010
International Conference on (2010), 1–7.

[6] Scott Beamer, Krste Asanović, and David Patterson. 2012. Direction-
optimizing breadth-first search. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis (Salt Lake City, Utah). Article 12, 10 pages.

[7] Aydin Buluc and Kamesh Madduri. 2011. Parallel breadth-first search
on distributed memory systems. SC’11: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis (2011), 1–12.

[8] Che Chang, Cheng-Hsiang Chiu, Boyang Zhang, and Tsung-Wei
Huang. 2024. Incremental Critical Path Generation for Dynamic
Graphs. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI).

[9] Che Chang, Tsung-Wei Huang, Dian-Lun Lin, Guannan Guo, and Shiju
Lin. 2024. Ink: Efficient Incremental 𝑘-Critical Path Generation. In
ACM/IEEE DAC.

[10] Che Chang, Boyang Zhang, Cheng-Hsiang Chiu, Dian-Lun Lin, Yi-
Hua Chung, Wan-Luan Lee, Zizheng Guo, Yibo Lin, and Tsung-Wei
Huang. 2025. PathGen: An Efficient Parallel Critical Path Generation
Algorithm. In IEEE/ACM Asia and South Pacific Design Automation
Conference (ASP-DAC).

[11] Chih-Chun Chang and Tsung-Wei Huang. 2023. uSAP: An Ultra-Fast
Stochastic Graph Partitioner. In IEEE High-performance and Extreme
Computing Conference (HPEC).

[12] Chih-Chun Chang, Boyang Zhang, and Tsung-Wei Huang. 2024.
GSAP: A GPU-Accelerated Stochastic Graph Partitioner. In ACM ICPP.
565–575.

[13] Cheng-Hsiang Chiu and Tsung-Wei Huang. 2022. Composing Pipeline
Parallelism using Control Taskflow Graph. In ACM International
Symposium on High-Performance Parallel and Distributed Computing
(HPDC).

[14] Cheng-Hsiang Chiu and Tsung-Wei Huang. 2022. Efficient Timing
Propagation with Simultaneous Structural and Pipeline Parallelisms.
In ACM/IEEE Design Automation Conference (DAC).

[15] Cheng-Hsiang Chiu and Tsung-Wei Huang. 2024. An Experimental
Study of Dynamic Task Graph Parallelism for Large-Scale Circuit
Analysis Workloads. In IEEE Computer Society Annual Symposium on
VLSI (ISVLSI).

[16] Cheng-Hsiang Chiu, Dian-Lun Lin, and Tsung-Wei Huang. 2021. An
Experimental Study of SYCL Task Graph Parallelism for Large-Scale
Machine Learning Workloads. In International Workshop of Asynchro-
nous Many-Task systems for Exascale (AMTE).

[17] Cheng-Hsiang Chiu, Dian-Lun Lin, and Tsung-Wei Huang. 2023. Pro-
gramming Dynamic Task Parallelism for Heterogeneous EDA Algo-
rithms. In IEEE/ACM International Conference on Computer-aided De-
sign (ICCAD).

[18] Cheng-Hsiang Chiu, Chedi Morchdi, Yi Zhou, Boyang Zhang, Che
Chang, and Tsung-Wei Huang. 2024. Reinforcement Learning-
generated Topological Order for Dynamic Task Graph Scheduling.
In IEEE High-performance and Extreme Computing Conference (HPEC).

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Intro-
duction to Algorithms (3rd ed.). MIT Press.

[20] E. W. Dijkstra. 1959. A note on two problems in connexion with graphs.
Numer. Math. 1 (1959), 269–271.

[21] Elmir Dzaka, Dian-Lun Lin, and Tsung-Wei Huang. 2023. Parallel And-
Inverter Graph Simulation Using a Task-graph Computing System.
In IEEE International Parallel and Distributed Processing Symposium
Workshop (IPDPSw).

[22] Serhan Gener, Sahil Hassan, Liangliang Chang, Chaitali Chakrabarti,
Tsung-Wei Huang, Umit Ograss, , and Ali Akoglu. 2025. A Unified
Portable and Programmable Framework for Task-Based Execution and
Dynamic Resource Management on Heterogeneous Systems. In ACM
International Workshop on Extreme Heterogeneity Solutions (ExHET).

[23] Guannan Guo, Tsung-Wei Huang, Chun-Xun Lin, and Martin Wong.
2020. An Efficient Critical Path Generation Algorithm Considering Ex-
tensive Path Constraints. In ACM/IEEE Design Automation Conference
(DAC).

[24] Guannan Guo, Tsung-Wei Huang, Y. Lin, Z. Guo, S. Yellapragada,
and Martin Wong. 2023. A GPU-Accelerated Framework for Path-
Based Timing Analysis. IEEE Transactions on Computer-aided Design
of Integrated Circuits and Systems (TCAD) (2023).

https://en.cppreference.com/w/cpp/thread/thread
https://github.com/sbeamer/gapbs
https://speedcode.org/ide/contest.html?ppopp_test_bfs_v1
https://speedcode.org/ide/contest.html?ppopp_test_bfs_v1
https://taskflow.github.io/

An Efficient Implementation of Parallel Breadth-first Search FCPC ’25, March 1–5, 2025, Las Vegas, NV, USA

[25] Guannan Guo, Tsung-Wei Huang, Yibo Lin, and Martin Wong. 2021.
GPU-accelerated Critical Path Generation with Path Constraints. In
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD).

[26] Guannan Guo, Tsung-Wei Huang, Yibo Lin, and Martin Wong. 2021.
GPU-accelerated Path-based Timing Analysis. In IEEE/ACM Design
Automation Conference (DAC).

[27] Guannan Guo, Tsung-Wei Huang, and Martin D. F. Wong. 2023. Fast
STA Graph Partitioning Framework for Multi-GPU Acceleration. In
IEEE/ACM Design, Automation and Test in Europe Conference (DATE).

[28] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2020. A Provably
Good and Practically Efficient Algorithm for Common Path Pessimism
Removal in Large Designs. In IEEE/ACM International Conference on
Computer-aided Design (ICCAD).

[29] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2020. GPU-accelerated
Static Timing Analysis. In IEEE/ACM International Conference on
Computer-Aided Design (ICCAD).

[30] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2021. A Provably
Good and Practically Efficient Algorithm for Common Path Pessimism
Removal in Large Designs. In IEEE/ACM Design Automation Conference
(DAC).

[31] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2021. HeteroCPPR: Ac-
celerating Common Path Pessimism Removal with Heterogeneous
CPU-GPU Parallelism. In IEEE/ACM International Conference on
Computer-Aided Design (ICCAD).

[32] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2023. Accelerating
Static Timing Analysis using CPU-GPU Heterogeneous Parallelism.
IEEE Transactions on Computer-aided Design of Integrated Circuits and
Systems (TCAD) (2023).

[33] Zizheng Guo, Tsung-Wei Huang, Jin Zhou, Cheng Zhuo, Yibo Lin,
Runsheng Wang, and Ru Huang. 2024. Heterogeneous Static Tim-
ing Analysis with Advanced Delay Calculator. In IEEE/ACM Design,
Automation and Test in Europe Conference (DATE).

[34] Zizheng Guo, Zuodong Zhang, Wuxi Li, Tsung-Wei Huang, Xizhe
Shi, Yufan Du, Yibo Lin, Runsheng Wang, and Ru Huang. 2024. Het-
eroExcept: Heterogeneous Engine for General Timing Path Exception
Analysis. In IEEE/ACM International Conference on Computer-aided
Design (ICCAD).

[35] Pawan Harish and P J Narayanan. 2007. Accelerating large graph
algorithms on the GPU using CUDA. International Conference on High
Performance Computing (2007), 197–208.

[36] Sungpack Hong, Teddy Oguntebi, and Kunle Olukotun. 2011. An effi-
cient parallel graph coloring algorithm for multi-core architectures.
Parallel Architectures and Compilation Techniques (PACT), 2011 Inter-
national Conference on (2011), 320–330.

[37] Tsung-Wei Huang. 2020. A General-purpose Parallel and Heteroge-
neous Task Programming System for VLSI CAD. In IEEE/ACM Inter-
national Conference on Computer-aided Design (ICCAD).

[38] Tsung-Wei Huang. 2021. TFProf: Profiling Large Taskflow Programs
with Modern D3 and C++. In IEEE International Workshop on Program-
ming and Performance Visualization Tools (ProTools).

[39] Tsung-Wei Huang. 2022. Enhancing the Performance Portability of
Heterogeneous Circuit Analysis Programs. In IEEE High-Performance
Extreme Computing Conference (HPEC).

[40] Tsung-Wei Huang. 2023. qTask: Task-parallel Quantum Circuit Simula-
tion with Incrementality. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS).

[41] Tsung-Wei Huang, Guannan Guo, Chun-Xun Lin, and Martin D. F.
Wong. 2021. OpenTimer v2: A New Parallel Incremental Timing Anal-
ysis Engine. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD) (2021).

[42] Tsung-Wei Huang and Leslie Hwang. 2022. Task-parallel Program-
ming with Constrained Parallelism. In IEEE High-Performance Extreme
Computing Conference (HPEC).

[43] Tsung-Wei Huang, Chun-Xun Lin, , and Martin Wong. 2019. Dis-
tributed Timing Analysis at Scale. In ACM/IEEE Design Automation
Conference (DAC).

[44] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin Wong.
2018. A General-purpose Distributed Programming System using
Data-parallel Streams. In ACM Multimedia Conference (MM).

[45] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin Wong.
2019. Cpp-Taskflow: Fast Task-based Parallel Programming using
Modern C++. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS).

[46] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin Wong.
2019. Essential Building Blocks for Creating an Open-source EDA
Project. In ACM/IEEE Design Automation Conference (DAC).

[47] Tsung-Wei Huang, Chun-Xun Lin, and Martin Wong. 2017. DtCraft:
A Distributed Execution Engine for Compute-intensive Applications.
In IEEE/ACM International Conference on Computer-aided Design (IC-
CAD).

[48] Tsung-Wei Huang, Chun-Xun Lin, and Martin Wong. 2019. DtCraft: A
High-performance Distributed Execution Engine at Scale. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD) (2019).

[49] Tsung-Wei Huang, Chun-Xun Lin, andMartinWong. 2021. OpenTimer
v2: A Parallel Incremental Timing Analysis Engine. IEEE Design and
Test (DAT) (2021).

[50] Tsung-Wei Huang, Dian-Lun Lin, Chun-Xun Lin, and Yibo Lin. 2022.
Taskflow: A Lightweight Parallel and Heterogeneous Task Graph Com-
puting System. IEEE Transactions on Parallel and Distributed Systems
(TPDS) (2022).

[51] Tsung-Wei Huang, Dian-Lun Lin, Yibo Lin, and Chun-Xun Lin. 2022.
Taskflow: A General-purpose Parallel and Heterogeneous Task Pro-
gramming System. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD) (2022).

[52] Tsung-Wei Huang and Yibo Lin. 2022. Concurrent CPU-GPU Task
Programming using Modern C++. In IEEE International Workshop on
High-level Parallel Programming Models and Supportive Environments
(HIPS).

[53] Tsung-Wei Huang, Hong-Yan Su, and Tsung-Yi Ho. 2011. Progres-
sive network-flow based power-aware broadcast addressing for pin-
constrained digital microfluidic biochips. In ACM/IEEE Design Automa-
tion Conference (DAC). 741–746.

[54] Tsung-Wei Huang and Martin Wong. 2015. OpenTimer: A High-
Performance Timing Analysis Tool. In IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD).

[55] Tsung-Wei Huang and Martin Wong. 2016. UI-Timer 1.0: An Ultra-Fast
Path-Based Timing Analysis Algorithm for CPPR. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD)
(2016).

[56] Tsung-Wei Huang, Martin Wong, D. Sinha, K. Kalafala, and N.
Venkateswaran. 2016. A Distributed Timing Analysis Framework
for Large Designs. In IEEE/ACM Design Automation Conference (DAC).

[57] Tsung-Wei Huang, P.-C. Wu, and Martin Wong. 2014. Fast Path-Based
Timing Analysis for CPPR. In IEEE/ACM ICCAD.

[58] Tsung-Wei Huang, Pei-Ci Wu, and Martin D. F. Wong. 2014. UI-Route:
An Ultra-Fast Incremental Maze Routing Algorithm. In ACM System
Level Interconnect Prediction Workshop (SLIP). 1–8.

[59] Tsung-Wei Huang, Pei-Ci Wu, and Martin D. F. Wong. 2014. UI-
Timer: An ultra-fast clock network pessimism removal algorithm. In
IEEE/ACM ICCAD.

FCPC ’25, March 1–5, 2025, Las Vegas, NV, USA Pao-I Chen and Tsung-Wei Huang

[60] Tsung-Wei Huang, Boyang Zhang, Dian-Lun Lin, and Cheng-Hsiang
Chiu. 2024. Parallel and Heterogeneous Timing Analysis: Partition,
Algorithm, and System. In ACM International Symposium on Physical
Design (ISPD).

[61] Shui Jiang, Yi-Hua Chung, Chih-Chun Chang, Tsung-Yi Ho, and Tsung-
Wei Huang. 2025. BQSim: GPU-accelerated Batch Quantum Circuit
Simulation using Decision Diagram. In ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS).

[62] Shiu Jiang, Tsung-Wei Huang, and Tsung-Yi Ho. 2023. GLARE: Accel-
erating Sparse DNN Inference Kernels with Global Memory Access
Reduction. In IEEE High-performance and Extreme Computing Confer-
ence (HPEC).

[63] Shiu Jiang, Tsung-Wei Huang, and Tsung-Yi Ho. 2023. SNICIT: Accel-
erating Sparse Neural Network Inference via Compression at Inference
Time on GPU. In ACM International Conference on Parallel Processing
(ICPP).

[64] Jiang, Shui and Fu, Rongliang and Burgholzer, Lukas and Wille, Robert
and Ho, Tsung-Yi and Huang, Tsung-Wei. 2024. FlatDD: A High-
Performance Quantum Circuit Simulator using Decision Diagram and
Flat Array. In ACM ICPP. 388–399.

[65] Kuan-Ming Lai, Tsung-Wei Huang, and Tsung-Yi Ho. 2019. A General
Cache Framework for Efficient Generation of Timing Critical Paths.
In ACM/IEEE Design Automation Conference (DAC).

[66] Kuan-Ming Lai, Tsung-Wei Huang, Pei-Yu Lee, and Tsung-Yi Ho. 2021.
ATM: A High Accuracy Extracted Timing Model for Hierarchical Tim-
ing Analysis. In IEEE/ACM Asia and South Pacific Design Automation
Conference (ASP-DAC).

[67] T.-Y. Lai, Tsung-Wei Huang, , and Martin Wong. 2017. Libabs: An Effec-
tive and Accurate Macro-modeling Algorithm for Large Hierarchical
Designs. In IEEE/ACM International Conference on Computer-aided
Design (ICCAD).

[68] Wan-Luan Lee, Shui Jiang, Dian-Lun Lin, Che Chang, Boyang Zhang,
Yi-Hua Chung, Ulf Schlichtmann, Tsung-Yi Ho, , and Tsung-Wei Huang.
2025. iG-kway: Incremental k-way Graph Partitioning on GPU. In
ACM/IEEE Design Automation Conference (DAC).

[69] Wan-Luan Lee, Dian-Lun Lin, Cheng-Hsiang Chiu, Ulf Schlichtmann,
and Tsung-Wei Huang. 2025. HyperG: Multilevel GPU-Accelerated
k-way Hypergraph Partitioner. In IEEE/ACM Asia and South Pacific
Design Automation Conference (ASP-DAC).

[70] Wan Luan Lee, Dian-Lun Lin, Tsung-Wei Huang, Shui Jiang, Tsung-Yi
Ho, Yibo Lin, and Bei Yu. 2024. G-kway: Multilevel GPU-Accelerated
k-way Graph Partitioner. In ACM/IEEE Design Automation Conference
(DAC).

[71] Chun-Xun Lin, Tsung-Wei Huang, Guannan Guo, and Martin Wong.
2019. A Modern C++ Parallel Task Programming Library. In ACM
Multimedia Conference (MM).

[72] Chun-Xun Lin, Tsung-Wei Huang, Guannan Guo, and Martin Wong.
2019. An Efficient and Composable Parallel Task Programming Library.
In IEEE High-performance and Extreme Computing Conference (HPEC).

[73] Chun-Xun Lin, Tsung-Wei Huang, and Martin Wong. 2020. An Effi-
cient Work-Stealing Scheduler for Task Dependency Graph. In IEEE
International Conference on Parallel and Distributed Systems (ICPADS).

[74] Chun-Xun Lin, Tsung-Wei Huang, Ting Yu, and Martin Wong. 2018. A
Distributed Power Grid Analysis Framework from Sequential Stream
Graph. In ACM Great Lakes Symposium on VLSI (GLSVLSI).

[75] Dian-Lun Lin and Tsung-Wei Huang. 2020. A Novel Inference Algo-
rithm for Large Sparse Neural Network using Task Graph Parallelism.
In IEEE High-performance and Extreme Computing Conference (HPEC).

[76] Dian-Lun Lin and Tsung-Wei Huang. 2021. Efficient GPU Computation
using Task Graph Parallelism. In European Conference on Parallel and
Distributed Computing (Euro-Par).

[77] Dian-Lun Lin and Tsung-Wei Huang. 2022. Accelerating Large Sparse
Neural Network Inference using GPU Task Graph Parallelism. IEEE
Transactions on Parallel and Distributed Systems (TPDS) (2022).

[78] Dian-Lun Lin, Tsung-Wei Huang, Joshua San Miguel, and Umit Ogras.
2024. TaroRTL: Accelerating RTL Simulation using Coroutine-based
Heterogeneous Task Graph Scheduling. In International European Con-
ference on Parallel and Distributed Computing (Euro-Par).

[79] Dian-Lun Lin, Haoxing Ren, Yanqing Zhang, Brucek Khailany, and
Tsung-Wei Huang. 2022. From RTL to CUDA: A GPU Acceleration
Flow for RTL Simulation with Batch Stimulus. In ACM International
Conference on Parallel Processing (ICPP).

[80] Dian-Lun Lin, Yanqing Zhang, Haoxing Ren, Shih-Hsin Wang, Brucek
Khailany, and Tsung-Wei Huang. 2023. GenFuzz: GPU-accelerated
Hardware Fuzzing using Genetic Algorithm with Multiple Inputs. In
ACM/IEEE Design Automation Conference (DAC).

[81] Shiju Lin, Guannan Guo, Tsung-Wei Huang, Weihua Sheng, Evan-
geline Young, and Martin Wong. 2024. G-PASTA: GPU Accelerated
Partitioning Algorithm for Static Timing Analysis. In ACM/IEEE DAC.

[82] Chedi Morchdi, Cheng-Hsiang Chiu, Yi Zhou, and Tsung-Wei Huang.
2024. A Resource-efficient Task Scheduling System using Reinforce-
ment Learning. In IEEE/ACM Asia and South Pacific Design Automation
Conference (ASP-DAC).

[83] McKay Mower, Luke Majors, and Tsung-Wei Huang. 2021. Taskflow-
San: Sanitizing Erroneous Control Flow in Taskflow Programs. In
IEEE Workshop on Extreme Scale Programming Models and Middleware
(ESPM2).

[84] OpenMP Architecture Review Board. 2021. OpenMP Application
Programming Interface Version 5.2. https://www.openmp.org/
specifications/ Accessed: January 27, 2025.

[85] R Pearce, M Gokhale, and N Amato. 2010. Multithreaded graph tra-
versal, partitioning, and layout. Proceedings of the 9th International
Symposium on Experimental Algorithms (SEA) (2010), 103–114.

[86] Jie Tong, Liangliang Chang, Umit Yusuf Ogras, and Tsung-Wei Huang.
2024. BatchSim: Parallel RTL Simulation using Inter-cycle Batching and
Task Graph Parallelism. In IEEE Computer Society Annual Symposium
on VLSI (ISVLSI).

[87] Sheng-Han Yeh, Jia-Wen Chang, Tsung-Wei Huang, Shang-Tsung
Yu, and Tsung-Yi Ho. 2014. Voltage-Aware Chip-Level Design for
Reliability-Driven Pin-Constrained EWOD Chips. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD)
33, 9 (2014), 1302–1315.

[88] Andy Yoo, Edmond Chow, Keith Henderson, Mahidhar T Rajan, and
William CMcLendon. 2005. A scalable distributed parallel breadth-first
search algorithm on BlueGene/L. Proceedings of the ACM/IEEE SC 2005
Conference (SC’05) (2005), 25.

[89] Yasin Zamani and Tsung-Wei Huang. 2021. A High-Performance
Heterogeneous Critical Path Analysis Framework. In IEEE High-
Performance Extreme Computing Conference (HPEC).

[90] Boyang Zhang, Che Chang, Cheng-Hsiang Chiu, Dian-Lun Lin, Yang
Sui, Chih-Chun Chang, Yi-Hua Chung, Wan-Luan Lee, Zizheng
Guo, Yibo Lin, and Tsung-Wei Huang. 2025. iTAP: An Incremen-
tal Task Graph Partitioner for Task-parallel Static Timing Analysis.
In IEEE/ACM Asia and South Pacific Design Automation Conference
(ASP-DAC).

[91] Boyang Zhang, Dian-Lun Lin, Che Chang, Cheng-Hsiang Chiu, Bojue
Wang, Wan Luan Lee, Chih-Chun Chang, Donghao Fang, and Tsung-
Wei Huang. 2024. G-PASTA: GPU Accelerated Partitioning Algorithm
for Static Timing Analysis. In ACM/IEEE DAC.

[92] Kexing Zhou, Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2022.
Efficient Critical Paths Search Algorithm using Mergeable Heap. In
IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-
DAC).

https://www.openmp.org/specifications/
https://www.openmp.org/specifications/

	Abstract
	1 Parallel Breadth-first Search
	2 Problems of Bi-directional BFS
	3 The Proposed Implementation
	3.1 Optimization Details

	4 Experimental Results
	5 Conclusion
	Acknowledgments
	References

