
A Unified Portable and Programmable Framework for Task-Based
Execution and Dynamic Resource Management on

Heterogeneous Systems
Serhan Gener1, Sahil Hassan1, Liangliang Chang2,

Chaitali Chakrabarti2, Tsung-Wei Huang3, Umit Ogras3, Ali Akoglu1
1University of Arizona, Tucson, AZ, USA

2Arizona State University, Phoenix, AZ, USA
3University of Wisconsin at Madison, Madison, WI, USA

{gener,sahilhassan,akoglu}@arizona.edu, {tsung-wei.huang,uogras}@wisc.edu, {lchang21,chaitali}@asu.edu

ABSTRACT
Heterogeneous computing systems are essential for addressing
the diverse computational needs of modern applications. However,
they present a fundamental trade-off between easy programmability
and performance. This paper addresses this trade-off by enabling
performance and energy efficiency optimization while facilitat-
ing easy programming without delving into hardware details. It
introduces CEDR-Taskflow, a comprehensive framework that auto-
matically parallelizes user applications and dynamically schedules
its tasks to heterogeneous platforms, enabling efficient resource
utilization and ease of programming. Emulation-based studies on
the Xilinx ZCU102 and NVIDIA Jetson AGX Xavier SoC platforms
demonstrate that this integrated framework improves application
execution time by up to 1.47x compared to state-of-the-art, while
maintaining hardware-agnostic application development. Further-
more, this integration approach enables features such as streaming-
enabled execution and schedule caching that reduce the time spent
on task scheduling by up to 29.6x and results in up to 6.1x lower
execution time.

CCS CONCEPTS
• Computing methodologies → Parallel programming lan-
guages; • Computer systems organization→ Heterogeneous
(hybrid) systems.

KEYWORDS
Auto parallelization, dynamic scheduling, heterogeneous runtime

ACM Reference Format:
Serhan Gener, Sahil Hassan, Liangliang Chang, Chaitali Chakrabarti, Tsung-
Wei Huang, Umit Ogras, and Ali Akoglu. 2025. A Unified Portable and
Programmable Framework for Task-Based Execution and Dynamic Resource
Management on Heterogeneous Systems. In The 4th International Workshop
on Extreme Heterogenei (ExHET ’25), March 1–5, 2025, Las Vegas, NV, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3720555.3721988

This work is licensed under a Creative Commons Attribution 4.0 International License.
ExHET ’25, March 1–5, 2025, Las Vegas, NV, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1536-5/2025/03.
https://doi.org/10.1145/3720555.3721988

1 INTRODUCTION
Heterogeneous systems are becoming increasingly widespread
and used across multiple scales, from High-Performance Com-
puting (HPC) environments to System-on-Chip (SoC) architec-
tures. Heterogeneity enables matching the computing needs of
emerging and growing application domains with a rich set of ac-
celerators based on architectures such as Graphical Processing
Unit (GPU), Data Processing Unit (DPU), Tensor Processing Unit
(TPU), and Field-Programmable Gate Array (FPGA). As hetero-
geneity increases, system designers face ongoing challenges in
optimizing performance while ensuring programming productivity,
which has motivated the development of several runtime frame-
works [5, 9, 17, 20, 21, 23, 24, 28].

A prominent state-of-the-art system belonging to this class is
the Compiler-integrated Extensible DSSoC Runtime [20] (CEDR),
which supports productive application development with a hard-
ware-agnostic, API-based programming model. CEDR optimizes
application execution on heterogeneous platforms by parallelizing
and dynamically scheduling API calls across heterogeneous pro-
cessors. Although this approach maintains high programmability
with API optimization, it overlooks parallelization opportunities
for non-API application segments. This limitation is illustrated in
Fig. 1 (top box), where a sample application modeled as Directed
Acyclic Graph (DAG) with parallel Fast Fourier Transform (FFT)
task nodes followed by parallel vector Multiplication (MULT) task
nodes. In the programming model, the user invokes the FFT task
with an API call given that the system has an FFT accelerator, and
the FFT API can be deployed at runtime on either the accelerator
or the CPU, depending on the availability of the resources. On the
other hand, the MULT task has no accelerator support. Therefore,
it belongs to the non-API region of the user code and can only be
deployed on the CPU.

While CEDR parallelizes and schedules API-based FFT tasks
across CPUs and accelerators, it serially executes the non-APIMULT
tasks on the CPU, leaving significant performance gains untapped.
Addressing this bottleneck requires a programming model that
provides the runtime with a comprehensive application view with-
out overburdening programmers. Task Graph Computing System
(TGCS) [1, 2, 14, 15] aims to address this issue by decomposing
the applications into parallel tasks and structuring them as a task-
dependency graph, that can be scaled across many processors.

https://doi.org/10.1145/3720555.3721988
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3720555.3721988

ExHET ’25, March 1–5, 2025, Las Vegas, NV, USA Gener, et al.

Among various TGCSs, Taskflow [15] is a task-parallel program-
ming model that allows users to define task dependencies and par-
allelize applications while enabling high programming productivity.
Adopted by several academic and industrial entities [10–12, 18],
Taskflow improves performance through static compile-time task
parallelization. As illustrated in Fig. 1 (middle box), while Taskflow
parallelizes both the API (FFT) and non-API (MULT) regions of
the application, it requires users to bind each task to a specific
processing element in the system at design time. However, com-
puting systems in real-world scenarios receive evolving workloads
from multiple users sharing the resources. In such cases, with the
presence of other applications on the system, the static scheduling
is prone to causing resource oversubscription or contention by con-
fining parallel tasks to specific resource types, thereby leading to
suboptimal execution.

Application development on heterogeneous platforms often faces
a fundamental trade-off between programmability and performance,
as illustrated in Fig. 1. Dynamic runtime systems like CEDR en-
hance programmability and runtime performance at the expense
of missing out on fine-grained parallelization opportunities due to
simpler programming models. On the other hand, task-based frame-
works, such as Taskflow, provide a comprehensive programming
model to fully expose parallelization opportunities in the applica-
tion, while lacking dynamic resource management under varying
workload scenarios. An ideal end-to-end system should combine
the complementary advantages of these two types of framework to
fully leverage the performance potential of applications through
holistic application representation, task-level parallelization, and
dynamic resource management for heterogeneous systems at run-
time, all while maintaining ease of programming. However, this
is a challenging task, as it requires a deep understanding of both
CEDR and Taskflow frameworks, followed by a careful redesign of
the programming model. Specifically, this effort requires system
modification to implement communication protocols that ensure
alignment of Taskflow’s task-dependency graph with CEDR’s dy-
namic execution model to enable seamless co-existence between
the two frameworks without adding excessive processing overhead.

To address this challenge, in this work, we present our design
approach on integrating Taskflow’s holistic application view with
CEDR’s dynamic scheduling capabilities. Figure 1 (bottom box)
illustrates this synergy, where Taskflow identifies parallelization
opportunities for FFT and MULT tasks and provides this infor-
mation to CEDR. Subsequently, CEDR dynamically schedules FFT
tasks across CPUs and accelerators, in addition to now executing
MULT tasks on CPUs in parallel. By combining the programmabil-
ity and dynamic scheduling capability of API-based CEDR with the
comprehensive task-based execution flow approach of Taskflow,
the proposed framework results in more effective system resource
utilization and, in turn, improves the execution time of a given appli-
cation when deployed on a heterogeneous SoC without sacrificing
from hardware-agnostic application development and deployment.
In particular, through our integration approach, Taskflow, which
has been widely adopted by the community, now gains the ability
to perform dynamic scheduling on heterogeneous systems through
CEDR. Additionally, this integration enables stream-based execu-
tion for applications with streaming data processing, as well as
cached scheduling decisions that reduce overhead when scheduling

Init FFT Mult End

for for

CPU CPU

Init

FFT

Mult End

for
CPU

CPU

Accel

FFT

CPUAccel

Init

FFT

Mult

End

CPU

Accel

FFT

Accel

Mult
CPU

Init

FFT

Mult

End

CPU

FFT

Mult
CPUCPUAccel

CPUAccel

...
... ...

... ...
CEDR C/C++ Application

Taskflow C++ Application

CEDR+Taskflow C++ Application

Parallel APIs
Serial non-APIs
Dynamic Scheduling

Parallel APIs
Parallel non-APIs
Static Scheduling

Parallel APIs
Parallel non-APIs
Dynamic Scheduling

Base C/C++ Application

Figure 1: CEDR and Taskflow integration flow for a base
C/C++ application.

tasks for repetitive application instances. Our approach enables
finer control over data dependencies for streaming-based execution,
and it is portable across platforms, as we demonstrate with experi-
ments carried out over both FPGA and GPU-based SoC platforms.
The contributions of this work are as follows:

• A generalizable methodology for building communication
protocols that is applicable for integrating runtime systems
and task-based programming frameworks.

• A runtime integrated task-level programming framework
that is portable on any given commercial off-the-shelf SoC
platform with a heterogeneous set of compute resources.

• A robust framework that allows hardware-agnostic appli-
cation development and deployment with parallelism from

A Unified Portable and Programmable Framework for Task-Based Execution and Dynamic Resource Management ExHET ’25, March 1–5, 2025, Las Vegas, NV, USA

task-to-application levels on heterogeneous systems, while
balancing ease of programmability, dynamic resource man-
agement, and performance.

• Demonstrate ability to resolve limitations of task-level pro-
gramming framework by replacing static scheduling and
single application at a time-based execution with dynamic
resource management across multiple application instances
executing on heterogeneous systems.

2 BACKGROUND
A runtime systemwith an integrated scheduler is needed to manage
the task-to-processing element (PE) mapping decisions at runtime
for dynamically arriving workload scenarios across a diverse set of
PEs. Several runtime systems have been proposed [3, 5, 7, 9, 13, 17,
20, 21, 23, 24, 28] for dynamic resource management to maximize
performance while exploiting the heterogeneity at PE-level based
on the state of the system resources and continuously changing
workload scenarios. The features and ease of usability of runtime
systems play a crucial role in their broader adoption. Programming
models used by runtime systems can be broadly classified into two
categories. The first is an application programming interface (API)
based approach [17, 20], which focuses on ease of programmability,
where developers call predefined functions to execute tasks. This
method simplifies the application development but often limits
control over task dependencies and execution order. The second
category involves decomposing an application into independent
tasks represented as DAGs [9, 21] and allows exposing full trans-
parency into the task dependencies and the dataflow. While this
programming model provides the runtime system with a global
view of the entire application and enables greater flexibility and
optimization potential, it requires developers to define task depen-
dencies and manage execution flows manually. This explicit control
flow management places a significant burden on the programmer
and limits the system’s ability to execute applications with dynamic
control-flow.

Taskflow [15] is an open-source parallel programmingmodel that
addresses these issues by automatically constructing a task depen-
dency graph and expressing task-based parallelism within the ap-
plication. Unlike traditional task-based approaches [1, 2, 4, 6, 8, 16],
the lightweight runtime of the Taskflow enables execution of these
tasks on the designated resources by scaling parallel execution
across numerous processors. While Taskflow enables exploiting
parallelism in the application, the runtime relies on static task-to-
PE mapping decisions made by the application developer. The lack
of dynamic runtime scheduling and resource management limits
its ability to optimize performance under varying workload condi-
tions on heterogeneous platforms. This is a potential performance
concern in scenarios where a common tasks across multiple user
applications is mapped onto one type of PE, which inevitably re-
sults with oversubscription of that resource type while others may
be available to execute the same task. In this study, we integrate
Taskflow with a runtime system such that, tasks that are suitable
for execution on multiple PE types (e.g., accelerator and CPU types)
are scheduled dynamically.

While there are multiple approaches that utilize API-based and
DAG-based programming models for runtime systems, in this work,
we integrate Taskflow with the open-source Compiler-integrated,

Table 1: Overview of key components and APIs

Position Name Type Description

Application

CEDR_∗ API CEDR APIs for
task execution

for_each_index API Taskflow API
for parallel loop

emplace API Taskflow API for
standalone single tasks

Taskflow
tf::Taskflow Class Taskflow semantic

for DAG

tf::Executor Class Taskflow semantic for
executing the DAG

CEDR

CEDR_DAG_EXTRACT
New CEDR API for extracting
API the DAG from tf::Taskflow

CEDR_RUN_DAG
New CEDR API for executing
API the DAG from tf::Taskflow

cedr_task_config
struct

Optional CEDR variable

Variable storing configuration
information for CEDR APIs

Extensible, DSSoC Runtime (CEDR) [20, 21]. CEDR is one of the
unique runtime systems originally introduced with DAG-based [21]
and later API-based [20] programmingmodel for the users. Through
its hardware-agnostic API-based programming model, CEDR al-
lows users to seamlessly develop, compile, and deploy applications
on off-the-shelf heterogeneous computing platforms. Importantly,
this framework is portable across a wide range of Linux-based sys-
tems, ensuring that effort to migrate across systems is minimal.
Additionally, CEDR has extended support and compatibility across
programming models (GNURadio [19], PyTorch [27]) and archi-
tectures (RISC-V [26], FPGA, GPU, and ARM-based SoCs [21, 22]),
making it a highly versatile runtime for heterogeneous computing.
In the following section, we present our integration approach.

3 CEDR-TASKFLOW INTEGRATION
Since both CEDR and Taskflow rely on header-based includes for an
application to access their API calls, integration of the two, from an
application’s perspective, starts with the inclusion of both headers
to the application file. However, since the integration approach
does not end with just using the existing APIs, additional steps
are required to enable CEDR and Taskflow to communicate with
each other, such as transferring the Taskflow-generated DAG to
the CEDR for runtime processing. Table 1 provides an overview
of relevant components and APIs from CEDR and Taskflow that
are leveraged or newly introduced during the integration of these
frameworks. Utilizing these components, Fig. 1 illustrates the inte-
gration flow of CEDR and Taskflow into a base C/C++ application,
highlighting the main benefits of the integration approach and the
combination of both frameworks into a single application. Applica-
tions integrated with CEDR and Taskflow are available online.

3.1 Application Preparation
Starting with a base application that does not utilize either CEDR
or Taskflow, Listing 1 illustrates a simple C/C++ program executing
512 128-point FFTs, referred to as FFT for loop or API region, fol-
lowed by 512 128-pt vector multiplications, calledMultiplication for

ExHET ’25, March 1–5, 2025, Las Vegas, NV, USA Gener, et al.

1

2

3 ...
4 int start=0,end=512, size =128;
5 bool forward=true;
6 complex input=allocate (512);
7 complex output=allocate (512);
8 // FFT for loop
9

10

11

12 for (int i=start; i<end; i++){
13 FFT(input[i],
14 output[i],
15 size ,
16 forward);
17 }
18 // Multiplication for loop
19

20

21

22 for (int i=start; i<end; i++){
23 for (int j=0; j<size; j++){
24 output[i][j] =

output[i][j] * 2;
25 }
26 }
27 ...
28 deallocate(input);
29 deallocate(output);

Listing 1: Base C/C++ Code

#include <libcedr.h>

...
int start=0,end=512, size =128;
bool forward=true;
complex input=allocate (512);
complex output=allocate (512);
// FFT for loop

for (int i=start; i<end; i++){
CEDR_FFT(input[i],

output[i],
size ,
forward);

}
// Multiplication for loop

for (int i=start; i<end; i++){
for (int j=0; j<size; j++){

output[i][j] =
output[i][j] * 2;

}
}
...
deallocate(input);
deallocate(output);

Listing 2: C/C++ Code Using CEDR

#include <libcedr.h>
#include <taskflow.hpp >
...
int start=0,end=512, size =128;
bool forward=true;
complex input=allocate (512);
complex output=allocate (512);
// FFT for loop
task0=taskflow.for_each_index(

ref(start), ref(end), 1,
[input , &output ,
size , forward])(int i){
CEDR_FFT(input[i],

output[i],
size ,
forward);

}
// Multiplication for loop
task1=taskflow.for_each_index(

ref(start), ref(end), 1,
[&output ,
size])(int i){
for (int j=0; j<size; j++){

output[i][j] =
output[i][j] * 2;

}
}
...
deallocate(input);
deallocate(output);

Listing 3: C++ Code Using Taskflow

loop or non-API region. To integrate CEDR, as shown in Listing 2,
the libcedr.h header is added on line 1 of the base application,
followed by a modification on line 13 where the FFT function is
replaced with CEDR’s hardware-agnostic wrapper function for FFT,
CEDR_FFT, API call in the C/C++ source code. The next step in-
volves combining Taskflow, demonstrated in Listing 3. Here, the
taskflow.hpp C++ header is included on line 2, and the for loop is
replaced by Taskflow’s for_each_index construct, which parallelizes
the inner loop based on the start, end, and increment count (set to
1 in this case) on line 10. This modification uses i as the loop index,
defined on line 12. Furthermore, a lambda function captures the
necessary variables, along with those requiring modification (e.g.,
output) captured by reference, as shown in lines 11 and 12. The
FFT for loop section of the code (lines 8 to 17) is modified using both
CEDR and Taskflow APIs. In contrast, the Multiplication for loop, a
non-API section (lines 22-26 in Listing 1), is modified only when
Taskflow is added to parallelize this part of the application. The
modification applied to the loop on line 12 is similarly applied to the
loop on line 22, enabling Taskflow to parallelize the non-API region.
In addition to the above-mentioned scenario, any standalone task
that is not a for loop-based parallelization candidate can be created
using the emplace construct instead of for_each_index. Along with

the creation of tasks, Taskflow requires an initialization of a class
tf::Executor, which manages the execution of the generated task
flow graph (presented by class tf::Taskflow). A task flow graph is
constructed by combining tasks, such as task0 and task1 on lines
9 and 19 of Listing 3, based on their successor and predecessor
relationships. Once the graph is ready, it is passed to the tf::Executor
that executes it starting from the head node. While the Taskflow
library offers many additional features and APIs, the ones described
here represent the core functionality utilized in this work.

In this setup, since the CEDR’s APIs are wrapped within Task-
flow APIs when the tf::Executor starts the execution of the flow
graph, if a task node using a CEDR API is executed, the API call is
sent to CEDR for scheduling and execution on the appropriate PE
based on the scheduling results. This dynamic runtime approach
eliminates the need for users to assign tasks statically to specific PEs
during graph creation. With this integration, applications continue
to leverage the benefits of CEDR, effectively utilizing the resources
of a heterogeneous system. During the execution of the task flow
graph, Taskflow’s tf::Executor manages the assignment of threads
to physical CPU cores, while CEDR handles workload management
across PEs, including CPUs, FPGA-based accelerators, and GPUs,
for tasks involving CEDR API calls.

A Unified Portable and Programmable Framework for Task-Based Execution and Dynamic Resource Management ExHET ’25, March 1–5, 2025, Las Vegas, NV, USA

3.2 CEDR and Taskflow Communication
Now that we have an approach for integrating both CEDR and
Taskflow APIs into an application, the next step is enabling CEDR
to utilize the DAG created by Taskflow. To implement this process,
we introduce CEDR_DAG_EXTRACT API call in CEDR that allows
Taskflow to communicate the generated DAG to CEDR. This API
accepts two input arguments: (1) the Taskflow generated graph
(tf::Taskflow), and (2) a map containing configuration information
on the graph tasks. This optional configuration (cedr_task_config)
allows users to incorporate any pre-scheduling decision for an API
if desired. CEDR can use this information to execute task nodes
containing CEDRAPI calls. Being called, the CEDR_DAG_EXTRACT
API converts the task flow into a DAG representation native to DAG-
based CEDR [21], and performs initial scheduling for CEDR API
tasks in the DAG. If a single application runs on the system, users
can directly utilize this scheduling by passing the cedr_task_config
argument to the CEDR APIs. Otherwise, scheduling will proceed
as it usually does within the system; each CEDR API is scheduled
when the running application thread invokes the API call.

Once the DAG is extracted using CEDR_DAG_EXTRACT, it can
be executed with tf::Executor as typically done with Taskflow from
the application side. However, in scenarios withmultiple concurrent
applications running on the system, each application will create
its own tf::Executor instance that will have a local view of CPU
threads present on the system belonging to its parent application,
assuming it is the exclusive manager in the system. As independent
executors lack a global view of CPU workloads on the system, this
can reduce the execution efficiency of the overall system. Therefore,
despite multiple executors being functionally supported, using a
single centralized executor with a global view of the system is more
effective in managing CPU workloads. To address this, we intro-
duced a new API, CEDR_RUN_DAG, which accepts the task flow
graph (tf::Taskflow) and a repetition count indicating the number of
times the graph should be executed. This API allows CEDR to take
control of multiple concurrent task flow graphs and execute them
using a single tf::Executor instance managed centrally within the
runtime system rather than requiring each application to maintain
its own executor. Additionally, the use of repetition count enables
the graph to be executed continuously in a streaming manner with-
out repeating the redundant and expensive graph initialization
process. By centralizing the tf::Executor, it can make more informed
CPU workload distribution, improving efficiency across multiple
applications and workloads.

3.3 Broader Applicability
While integrating CEDR and Taskflow demonstrates a specific im-
plementation, the methodology outlined in this work has broader
implications for designing and utilizing runtime systems in hetero-
geneous computing environments. This integration’s principles are
not inherently limited to CEDR or Taskflow; they can be generalized
and adapted to other runtime systems and task-based programming
frameworks, provided the developer has sufficient understanding
of their integration requirements and underlying architectures. For
instance, the communication mechanism for transferring task flow
graphs or DAGs between frameworks could be adapted for other
runtime systems. Similarly, an API-focused runtime like IRIS [17]

could integrate with a DAG-oriented library to provide greater
flexibility and optimization opportunities for complex applications.
While this work focuses on CEDR and Taskflow, the principles
and mechanisms presented here lay a foundation for enhancing
resource management and interoperability across various runtime
systems.

4 EXPERIMENTAL SETUP
In this work, we utilize the Xilinx Zynq Ultrascale+ development
board (ZCU102) [29] to emulate heterogeneous architectures. The
ZCU102 hosts four ARM-based hard CPU cores. We implemented
five HW accelerators using its programmable logic fabric: (1) two
Fast Fourier Transform (FFT) accelerators, supporting up to 2048-
point FFTs, (2) two general matrix multiplication (GEMM) accelera-
tors, and (3) one point-wise vector operation (ZIP) accelerator. The
FFT accelerator is generated using the Xilinx FFT IP, while GEMM
and ZIP accelerators are implemented using High-Level Synthesis
(HLS). The CPUs operate at 1.2 GHz, while all accelerators run
at 300 MHz. To demonstrate the portability of our approach, we
also performed experiments on the NVIDIA Jetson Xavier AGX
platform (Jetson) [25]. This platform consists of a 512-core Volta
GPU running at 1.3 GHz and is capable of accelerating FFT, GEMM,
and ZIP functions, in addition to having an eight-core ARM-based
CPU running at 2.3 GHz.

We generate workloads based on benchmark applications from
the signal processing domain that include Radar Correlator (RC),
Temporal Mitigation (TM), WiFi-TX, Pulse Doppler (PD), and Syn-
thetic Aperture Radar (SAR). These applications provide diverse
workloads for evaluating CEDR and Taskflow integration. RC pro-
cesses radar pulses to measure distances using three 256-point FFTs
at a rate of 1,000 samples per second. In RC, the main execution path
of the control flow graph consists of two FFTs, followed by spectral
correlation, which is then fed into an inverse FFT (IFFT). TM focuses
on successive interference cancellation of low-energy radar signals
mixed with high-energy communication data through GEMM and
ZIP-based operations. WiFi-TX implements a WiFi transmission
chain that involves a 128-point IFFT per packet for 10 packets. PD
consists of three phases of 256, 128, and 128 parallel 128-point FFTs,
used to estimate the distance and velocity of objects by analyzing
frequency shifts in radar pulses. SAR is centered on 3D landscape
reconstruction, employing 1,537 FFTs and 768 ZIP operations, with
substantial parallelism across two primary processing stages.

5 EXPERIMENTAL EVALUATIONS
5.1 Performance Analysis
Figure 2 shows the makespan for a single instance of the PD over a
system composed of 3 CPU cores and 2 FFT accelerators emulated
on the ZCU102 based on the compilation and deployment using
only Taskflow (a), only CEDR (b) and finally CEDR and Taskflow
integrated setup (c). The makespan of the Gantt charts represents
the time from the start of the first API call to the end of the last
API call, excluding any memory initialization, cleanup, allocation,
or deallocation phases of the application. Taskflow parallelizes
all FFT APIs across the FFT accelerators and all non-API regions
in the application across the CPU cores, as shown in Fig. 2 (a).
However, even though CPU cores are available to support FFT

ExHET ’25, March 1–5, 2025, Las Vegas, NV, USA Gener, et al.

0 1 2 3 4
Time (ms)

cpu1
cpu2
cpu3
 fft_0
 fft_1

Pr
oc

es
si

ng
 E

le
m

en
t

 4.39
 ms

Phase 1 Phase 2 Phase 3 non-API

(a) Taskflow application

0 1 2 3 4
Time (ms)

cpu1
cpu2
cpu3
 fft_0
 fft_1

Pr
oc

es
si

ng
 E

le
m

en
t

 3.30
 ms

Phase 1 Phase 2 Phase 3 non-API

(b) CEDR application

0 1 2 3 4
Time (ms)

cpu1
cpu2
cpu3
 fft_0
 fft_1

Pr
oc

es
si

ng
 E

le
m

en
t

 3.15
 ms

Phase 1 Phase 2 Phase 3 non-API

(c) CEDR-Taskflow application

Figure 2: Single instance of PD running on ZCU102 with (a)
CEDR-only implementation, (b) Taskflow-only implementa-
tion, and (c) both CEDR and Taskflow-based implementation.

0.0 0.2 0.4 0.6 0.8 1.0
Time (ms)

cpu1
cpu2
cpu3
cpu4
cpu5
cpu6
cpu7

 gpu_0

Pr
oc

es
si

ng
 E

le
m

en
t 1.04

 ms
Phase 1 Phase 2 Phase 3 non-API

Figure 3: Single instance of PD running on Jetson with both
CEDR and Taskflow-based implementation.

execution, they remain idle since APIs are statically assigned to
the FFT accelerator. The contention on the FFT accelerators due to
the FFT-intensive PD application combined with under-utilization
of the CPU cores results in performance loss. Figure 2 (b) shows
API to PE assignments with CEDR alone. While CEDR dynamically
schedules tasks across all available resources, the non-API regions

Table 2: Execution time comparison when applications are
deployed as a single instance through CEDR only, Taskflow
only, and CEDR-Taskflow Integrated setup on ZCU102.

App Name Taskflow only CEDR only CEDR and
(ns) (ns) Taskflow (ns)

RC 120,972 120,612 120,162
TM 2,597,770 2,575,658 1,762,166

WiFi-TX 714,621 712,721 651,685
PD 5,144,564 3,868,427 3,790,988
SAR 37,351,722 38,111,968 28,980,316

are serialized onto a single CPU core. While CEDR does not support
parallelization of the non-API regions, with its dynamic scheduling
ability, FFT tasks are distributed across the accelerators and CPU
cores and, in turn, reduces the makespan from 4.39 ms to 3.30 ms.
Finally, Fig. 2 (c) demonstrates the benefit of integrating Taskflow
with CEDR, where CEDR dynamically schedules APIs across PEs,
and Taskflow parallelizes non-API regions. Overall, the makespan
of the PD reduces from 4.39 ms to 3.15 ms.

Table 2 shows the execution time for a single instance of each
benchmark application when deployed on the ZCU102 platform
based on Taskflow only, CEDR only, CEDR-Taskflow integrated
implementations, using Earliest Finish Time (EFT) as CEDR’s sched-
uler. These results include full application execution, from start
to finish, including memory allocation, initialization, and deallo-
cation. The combined implementation demonstrates performance
improvements for all applications. For instance, the TM application
shows a notable speedup of 1.47x compared to Taskflow-only and
1.46x compared to CEDR-only. In contrast, the RC application, with
limited parallelization opportunities on API and non-API regions,
shows only a minimal improvement, indicating that the benefit
of the combined approach is negligible for such tasks. The PD
application, heavy in the API region, benefits from a 1.36x improve-
ment over Taskflow-only and a 1.02x improvement over CEDR-only.
The WiFi-TX application achieves a 1.09x speedup with the com-
bined approach compared to both Taskflow-only and CEDR-only
versions. The SAR application, which features a mix of long API
and non-API regions, benefits from the combination of CEDR and
Taskflow with improvements of 1.28x compared to Taskflow-only
and 1.31x compared to CEDR-only. These results highlight that
the effectiveness of combining CEDR and Taskflow depends on
the application characteristics, particularly the balance between
API and non-API regions. Overall, the combined implementation
consistently outperforms the standalone versions, with a speedup
of up to 1.47x.

5.2 Portability
The CEDR-Taskflow integration is portable across SoC platforms.
Figure 3 shows the execution of the PD application on the Jetson
platform without any modifications to the application code that was
used in the generation of the Gantt chart shown in Fig. 2 (c). This
seamless portability is enabled by Taskflow’s adaptive parallelism,
which automatically leverages the available CPUs on the Jetson
platform. At the same time, CEDR continues to manage dynamic

A Unified Portable and Programmable Framework for Task-Based Execution and Dynamic Resource Management ExHET ’25, March 1–5, 2025, Las Vegas, NV, USA

0 500 1000 1500 2000
Time (ms)

cpu1
cpu2
cpu3
 fft_0
 fft_1

 zip_0

Pr
oc

es
si

ng
 E

le
m

en
t Inst_0x Inst_1x Inst_2x Inst_3x Inst_4x

(a) SAR processing 10 inputs as application instances

0 50 100 150 200 250 300 350 400
Time (ms)

cpu1
cpu2
cpu3
 fft_0
 fft_1

 zip_0

Pr
oc

es
si

ng
 E

le
m

en
t Inst_0x Inst_1x Inst_2x Inst_3x Inst_4x

(b) SAR processing 10 inputs in a streaming manner

Figure 4: Ten SAR instances running back to back by (a) direct
injections from CEDR, (b) repeating the task flow graph.
Labels Nx show instances N and N+5.

resource management for APIs, demonstrating its robustness across
different hardware configurations. Since the Jetson platform has
more cores than ZCU102, the non-API regions of the PD scale
automatically to utilize all the CPU cores. Furthermore, whenever
a CPU core is available, the FFT tasks are distributed across the
CPU cores. As a result, the execution time on the Jetson platform
reduces to 1.04ms compared to the 3.15ms observed on the ZCU 102
platform. This result underscores the flexibility of our integration
approach, enabling efficient task scheduling and resource utilization
across heterogeneous platforms without additional developer effort.

5.3 Features Enabled by CEDR-Taskflow
Integration

5.3.1 Streaming Input Processing. Figure 4 (a) shows the execution
of 10 SAR instances by repeatedly running SAR one after another
using the CEDR-Taskflow integrated setup. Each color coded region
corresponds to a single instance of the SAR when executed on a
system with 3 CPU cores, 2 FFT accelerators, and 1 ZIP accelerator
emulated on the ZCU 102 board. The white space between each
SAR instance corresponds to the time spent on repeated allocation,
deallocation, and initialization activities. By leveraging the repeat
functionality of the Taskflow integrated CEDR, we observe that the
gap between each SAR instance closes significantly because the
application can process different inputs without spending time on
setting up the context, as shown in Fig. 4 (b). This, in turn, reduces
the makespan of the workload from 2,334.54 ms to 383.42 ms.

5.3.2 Cached Scheduling. The streaming-enabled execution paves
the way for reusing the scheduling decisions made for one instance
of the user application for the subsequent instances by simply

Table 3: Time spent on scheduling for each application when
repeated 1,000 times on the ZCU102 platform

App Name API Count Stream (𝜇s) Cached (𝜇s) Improvement

RC 3 2,376 283 8.37x
TM 5 3,759 643 5.84x

WiFi-TX 10 7,662 723 10.59x
PD 512 291,790 10,769 27.09x
SAR 2,305 1,405,034 47,475 29.60x

caching the task-to-PE mapping decisions. We examine the time
spent on scheduling decisions throughout the execution of each
benchmark application based on streaming-based execution with-
out and with schedule caching mechanism. In this experiment, each
application is repeated 1,000 times using the EFT scheduler, and the
results are summarized in Table 3. The API Count column indicates
the number of APIs in each application, the Stream column presents
the total scheduling time in the 𝜇s scale, and the Cached column
shows the total time in 𝜇s scale for extracting the DAG and sched-
uling the APIs. With cached scheduling, we observe significantly
reduced scheduling overhead across all applications. As shown in
Table 3, API intensive applications benefit more from this approach,
indicating that using cached decisions for applications with a high
API count and leveraging a streaming approach for multiple inputs
provides better performance improvements.

6 CONCLUSION
The integration of CEDR and Taskflow presents a portable frame-
work for addressing the dual challenges of performance optimiza-
tion and ease of programmability in heterogeneous systems. The
proposed system enables hardware-agnostic application develop-
ment and achieves higher resource utilization by leveraging Task-
flow’s ability to define task dependencies and CEDR’s dynamic
scheduling capabilities. Hence, it consistently decreases the execu-
tion time without additional complexity for application developers.
Experimental evaluations highlight its applicability across diverse
platforms and workloads, showcasing efficient resource manage-
ment and reduced execution latency. Future work will explore
automated DAG generation to ease further development efforts
and automatic pipelined execution for applications, merging DAGs
of multiple running applications to gather a holistic view of all
the DAGs running on the system. This study sets a foundational
approach for advancing runtime frameworks in heterogeneous
computing environments.

ACKNOWLEDGMENTS
This material is based on research sponsored by Air Force Re-
search Laboratory (AFRL) and Defense Advanced Research Projects
Agency (DARPA) under agreement number FA8650-18-2-7860. The
U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright nota-
tion thereon. The views and conclusions contained herein are those

ExHET ’25, March 1–5, 2025, Las Vegas, NV, USA Gener, et al.

of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or
implied, of AFRL and DARPA or the U.S. Government.

We appreciate the continuous and generous support from the
AMD University Program, including the donation of FPGA proto-
typing board used in this work.

Dr. Akoglu and Dr. Ogras have disclosed an outside interest in
DASH Tech IC to the University of Arizona and University of Wis-
consin, respectively. Conflicts of interest resulting from this interest
are beingmanaged by the respective universities in accordance with
their policies.

REFERENCES
[1] 2021. Intel oneTBB. https://github.com/oneapi-src/oneTBB. [Online; accessed

November 18, 2024].
[2] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Massimo Torquati. 2017.

Fastflow: High-Level and Efficient Streaming on Multicore. Programming multi-
core and many-core computing systems (2017), 261–280. https://doi.org/10.1002/
9781119332015.ch13

[3] Joshua Auerbach, David F. Bacon, Ioana Burcea, Perry Cheng, Stephen J. Fink,
Rodric Rabbah, and Sunil Shukla. 2012. A compiler and runtime for heterogeneous
computing. In DAC Design Automation Conference 2012. 271–276. https://doi.
org/10.1145/2228360.2228411

[4] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion:
Expressing locality and independence with logical regions. In SC ’12: Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis. 1–11. https://doi.org/10.1109/SC.2012.71

[5] Cristiana Bolchini, Stefano Cherubin, Gianluca C. Durelli, Simone Libutti, Anto-
nio Miele, and Marco D. Santambrogio. 2018. A runtime controller for openCL
applications on heterogeneous system architectures. SIGBED Rev. 15, 1 (mar
2018), 29–35. https://doi.org/10.1145/3199610.3199614

[6] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas
Herault, and Jack J. Dongarra. 2013. PaRSEC: Exploiting Heterogeneity to
Enhance Scalability. Computing in Science & Engineering 15, 6 (2013), 36–45.
https://doi.org/10.1109/MCSE.2013.98

[7] Jani Boutellier, Jiahao Wu, Heikki Huttunen, and Shuvra S. Bhattacharyya. 2018.
PRUNE: Dynamic and Decidable Dataflow for Signal Processing on Heteroge-
neous Platforms. IEEE Transactions on Signal Processing 66, 3 (2018), 654–665.
https://doi.org/10.1109/TSP.2017.2773424

[8] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos:
Enablingmanycore performance portability through polymorphicmemory access
patterns. J. Parallel and Distrib. Comput. 74, 12 (2014), 3202–3216. https://
doi.org/10.1016/j.jpdc.2014.07.003 Domain-Specific Languages and High-Level
Frameworks for High-Performance Computing.

[9] Georgios Christodoulis, François Broquedis, Olivier Muller, Manuel Selva, and
Frédéric Desprez. 2018. An FPGA target for the StarPU heterogeneous runtime
system. In 2018 13th International Symposium on Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC). 1–8. https://doi.org/10.1109/ReCoSoC.2018.
8449373

[10] Guannan Guo, Tsung-Wei Huang, Chun-Xun Lin, andMartinWong. 2020. An Effi-
cient Critical Path Generation Algorithm Considering Extensive Path Constraints.
In ACM/IEEE Design Automation Conference (DAC).

[11] Guannan Guo, Tsung-Wei Huang, Yibo Lin, and Martin Wong. 2021. GPU-
accelerated Path-based Timing Analysis. In IEEE/ACM Design Automation Con-
ference (DAC).

[12] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2020. GPU-accelerated static
timing analysis. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). Article 147, 9 pages.

[13] Chenying Hsieh, Ardalan Amiri Sani, and Nikil Dutt. 2019. SURF: Self-aware
Unified Runtime Framework for Parallel Programs on Heterogeneous Mobile
Architectures. In 2019 IFIP/IEEE 27th International Conference on Very Large Scale
Integration (VLSI-SoC). 136–141. https://doi.org/10.1109/VLSI-SoC.2019.8920374

[14] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin Wong. 2019. Cpp-
Taskflow: Fast Task-based Parallel Programming using Modern C++. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS).

[15] Tsung-Wei Huang, Dian-Lun Lin, Chun-Xun Lin, and Yibo Lin. 2022. Taskflow:
A Lightweight Parallel and Heterogeneous Task Graph Computing System. IEEE
Transactions on Parallel and Distributed Systems 33, 6 (2022), 1303–1320. https:
//doi.org/10.1109/TPDS.2021.3104255

[16] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and
Dietmar Fey. 2014. HPX: A Task Based Programming Model in a Global Address
Space. In Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models (Eugene, OR, USA) (PGAS ’14). Association

for Computing Machinery, New York, NY, USA, Article 6, 11 pages. https:
//doi.org/10.1145/2676870.2676883

[17] Jungwon Kim, Seyong Lee, Beau Johnston, and Jeffrey S. Vetter. 2024. IRIS: A
Performance-Portable Framework for Cross-Platform Heterogeneous Computing.
IEEE Transactions on Parallel and Distributed Systems 35, 10 (2024), 1796–1809.
https://doi.org/10.1109/TPDS.2024.3429010

[18] Wan Luan Lee, Dian-Lun Lin, Tsung-Wei Huang, Shui Jiang, Tsung-Yi Ho, Yibo
Lin, and Bei Yu. 2024. G-kway: Multilevel GPU-Accelerated k-way Graph Parti-
tioner. In ACM/IEEE Design Automation Conference (DAC).

[19] Joshua Mack, Serhan Gener, Ali Akoglu, Jacob Holtom, Alex Chiriyath, Chaitali
Chakrabarti, Daniel Bliss, Anish Krishnakumar, Alper Goksoy, and Umit Ogras.
2022. GNU Radio and CEDR: Runtime Scheduling to Heterogeneous Accelerators.
In Proceedings of the GNU Radio Conference, Vol. 7.

[20] JoshuaMack, Serhan Gener, Sahil Hassan, H. Umut Suluhan, and Ali Akoglu. 2023.
CEDR-API: Productive, Performant Programming of Domain-Specific Embedded
Systems. In 2023 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). 16–25. https://doi.org/10.1109/IPDPSW59300.2023.00016

[21] Joshua Mack, Sahil Hassan, Nirmal Kumbhare, Miguel Castro Gonzalez, and
Ali Akoglu. 2023. CEDR: A Compiler-integrated, Extensible DSSoC Runtime.
ACM Trans. Embed. Comput. Syst. 22, 2, Article 36 (jan 2023), 34 pages. https:
//doi.org/10.1145/3529257

[22] Joshua Mack, Nirmal Kumbhare, Anish NK, Umit Y. Ogras, and Ali Akoglu. 2020.
User-Space Emulation Framework for Domain-Specific SoC Design. In 2020 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
44–53. https://doi.org/10.1109/IPDPSW50202.2020.00016

[23] Kasra Moazzemi, Biswadip Maity, Saehanseul Yi, Amir M. Rahmani, and Nikil
Dutt. 2019. HESSLE-FREE: Heterogeneous Systems Leveraging Fuzzy Control
for Runtime Resource Management. ACM Trans. Embed. Comput. Syst. 18, 5s,
Article 74 (oct 2019), 19 pages. https://doi.org/10.1145/3358203

[24] Raúl Nozal, Jose Luis Bosque, and Ramon Beivide. 2020. EngineCL: Usability and
Performance in Heterogeneous Computing. Future Generation Computer Systems
107 (2020), 522–537. https://doi.org/10.1016/j.future.2020.02.016

[25] Nvidia AGX [n. d.]. Jetson AGX Xavier Evaluation Board. Retrieved September
06, 2024 from https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-agx-xavier/

[26] H. Umut Suluhan, Serhan Gener, Alexander Fusco, Joshua Mack, Ismet Dagli,
Mehmet Belviranli, Cagatay Edemen, and Ali Akoglu. 2024. A Runtime Manager
Integrated Emulation Environment for Heterogeneous SoC Design with RISC-V
Cores. In 2024 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). 23–30. https://doi.org/10.1109/IPDPSW63119.2024.00013

[27] H. Umut Suluhan, Serhan Gener, Alexander Fusco, H. Fatih Ugurdag, and Ali
Akoglu. 2023. PyTorch and CEDR: Enabling Deployment of Machine Learn-
ing Models on Heterogeneous Computing Systems. In 2023 20th ACS/IEEE In-
ternational Conference on Computer Systems and Applications (AICCSA). 1–8.
https://doi.org/10.1109/AICCSA59173.2023.10479315

[28] Xubin Tan, Jaume Bosch, Carlos Álvarez, Daniel Jiménez-González, Eduard
Ayguadé, and Mateo Valero. 2019. A Hardware Runtime for Task-Based Program-
ming Models. IEEE Transactions on Parallel and Distributed Systems 30, 9 (2019),
1932–1946. https://doi.org/10.1109/TPDS.2019.2907493

[29] Xilinx ZCU102 [n. d.]. ZCU102 Evaluation Board. Retrieved September 06, 2024
from https://docs.amd.com/v/u/en-US/ug1182-zcu102-eval-bd

https://github.com/oneapi-src/oneTBB
https://doi.org/10.1002/9781119332015.ch13
https://doi.org/10.1002/9781119332015.ch13
https://doi.org/10.1145/2228360.2228411
https://doi.org/10.1145/2228360.2228411
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1145/3199610.3199614
https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1109/TSP.2017.2773424
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1109/ReCoSoC.2018.8449373
https://doi.org/10.1109/ReCoSoC.2018.8449373
https://doi.org/10.1109/VLSI-SoC.2019.8920374
https://doi.org/10.1109/TPDS.2021.3104255
https://doi.org/10.1109/TPDS.2021.3104255
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1109/TPDS.2024.3429010
https://doi.org/10.1109/IPDPSW59300.2023.00016
https://doi.org/10.1145/3529257
https://doi.org/10.1145/3529257
https://doi.org/10.1109/IPDPSW50202.2020.00016
https://doi.org/10.1145/3358203
https://doi.org/10.1016/j.future.2020.02.016
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-xavier/
https://doi.org/10.1109/IPDPSW63119.2024.00013
https://doi.org/10.1109/AICCSA59173.2023.10479315
https://doi.org/10.1109/TPDS.2019.2907493
https://docs.amd.com/v/u/en-US/ug1182-zcu102-eval-bd

	Abstract
	1 Introduction
	2 Background
	3 CEDR-Taskflow Integration
	3.1 Application Preparation
	3.2 CEDR and Taskflow Communication
	3.3 Broader Applicability

	4 Experimental Setup
	5 Experimental Evaluations
	5.1 Performance Analysis
	5.2 Portability
	5.3 Features Enabled by CEDR-Taskflow Integration

	6 Conclusion
	Acknowledgments
	References

