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Abstract. Replication-aided partitioning (RAP) has recently been in-
troduced to facilitate the design of parallel logic simulation algorithms.
By replicating overlapped work, RAP can significantly reduce the cost
of inter-thread synchronization. However, the state-of-the-art RAP algo-
rithm, RepCut, relies on time-consuming hypergraph construction and
partitioning, where minimizing cut size corresponds to reducing replica-
tion. To overcome this runtime challenge, we introduce SimPart, a sim-
ple yet highly effective and efficient GPU-parallel replication-aided parti-
tioner. SimPart tackles the partitioning problem directly without solving
another proxy problem and proposes a hybrid strategy that can maxi-
mally utilize GPU threads for simulation atop our partitions. Compared
to RepCut, SimPart achieves an average speedup of 23× in partition-
ing and 1.58× in GPU-parallel simulation, while increasing the original
graph size by only 0.3%.
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1 Introduction

Graph partitioning is an integral component in the design of parallel logic simu-
lation algorithms [1, 9, 13, 18]. Traditional partitioning algorithms focus on par-
titioning a circuit graph into a top-down task dependency graph (TDG) where
each task represents a disjoint partition of work and each edge represents a de-
pendency between two tasks. For instance, in Figure 1(a), the input graph is
partitioned to a TDG of three tasks and two dependencies, where each task
encapsulates a disjoint set of work from the original graph (e.g., nodes 1, 2,
and 4 in task 1). By delegating TDG scheduling to a task graph runtime, such
as [6], we can efficiently parallelize logic simulation algorithms without the need
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to manage complex scheduling details. As a result, this type of disjoint set-based
partitioning (DSP) has been widely used in existing logic simulators, such as
Verilator [13], RTLFlow [9], TaroRTL [11], and ESSENT [1].

Although DSP can offer promising speedup through TDG parallelism, it
incurs non-negligible scheduling overhead related to task synchronization and
load balancing [6]. This overhead is further exacerbated when leveraging GPUs
to accelerate logic simulation [18]. Specifically, excessive task dependencies can
significantly impact both device-level and streaming multiprocessor (SM)-level
scheduling performance, primarily due to load balancing and inter-block syn-
chronization [12]. To address this issue, replication-aided partitioning (RAP) has
been recently introduced to eliminate task dependencies via replicating overlaps.
Take Figure 1(b) for example, instead of partitioning the circuit graph to three
non-overlapped tasks, RAP divides the circuit into two totally independent tasks
with node 5 replicated in both task 1 and task 2. While replication introduces
additional work per task, modern GPUs offer thousands of threads that applica-
tions can leverage to exchange replication for performance gains. For instance,
by adding one more thread to run node 5, we can replace expensive inter-block
synchronization (microseconds) with more efficient intra-block synchronization
(tens to hundreds of cycles [9, 17]).
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Fig. 1: Two partitioning approaches in parallel logic simulation: (a) disjoint set-
based partitioning (b) replication-aided partitioning.

While there is an increasing adoption of RAP by modern logic simulators [2,
14, 16, 18], the process of RAP is time-consuming. As originally introduced in
RepCut [15], this process involves first constructing a proxy hypergraph from the
original graph and then applying a hypergraph partitioner to solve this proxy
problem, where minimum cut translates to minimum replication under a bal-
ance constraint. However, constructing the proxy hypergraph is not cheap since
it requires traversing the graph multiple times to identify overlapped cones for
hyperedges. For large hypergraphs, even state-of-the-art parallel hypergraph par-
titioners [4, 7] can take several minutes to converge to a reasonable cut size. As
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a result, this runtime cost makes RepCut challenging to use in a dynamic en-
vironment, such as simulation code optimization [9] and hardware fuzzing [10],
where the partitioner is iteratively applied to a simulation graph that changes
dynamically.

To tackle this problem, we introduce SimPart, a GPU-parallel replication-
aided partitioner to facilitate the design of parallel logic simulation algorithms.
Unlike RepCut, which was originally designed for CPU-parallel logic simulation
algorithms, SimPart is specifically designed for GPU-parallel simulation. We
summarize our technical contributions below:

– We introduce a simple yet highly effective and efficient algorithm that directly
tackles the partitioning problem without solving another time-consuming proxy
problem.

– We leverage the property of circuit graphs to propose a DSP-RAP hybrid
strategy that effectively constrains the replication region while balancing the
parallel efficiency between DSP and RAP.

– We leverage conditional CUDA Graph to design a GPU-parallel simulation
framework atop our partition, which can reduce kernel call and control-flow
overheads.

We evaluate the performance of SimPart on a set of RTL simulation graphs
generated by RTLFlow [9], an open-source RTL simulator we developed with
Nvidia Research. Compared to RepCut, SimPart achieves an average of 23×
speedup in partitioning and 1.58× speedup in GPU-parallel simulation, while
increasing the original graph size by only 0.3%.

2 Background

Logic simulation is essential for verifying design functionality. A circuit is mod-
eled as a directed graph, where nodes represent logic elements (e.g., RTL in-
structions, gates) and edges capture data dependencies. Simulation evaluates
this graph by propagating inputs through logic elements to produce outputs,
often iterated over multiple testbenches and configurations for coverage. Large
designs can yield graphs with millions of nodes and edges, leading to long sim-
ulation times [18].

To mitigate this runtime challenge, existing simulators have introduced var-
ious partitioning algorithms to distribute work across CPU or GPU threads. As
shown in Table 1, existing partitioning algorithms can be categorized to DSP
and RAP, where the former disallows overlapping nodes among tasks while the
latter allows them. For instance, Verilator [13] uses a DSP algorithm that it-
eratively clusters adjacent nodes into macro tasks and formulates dependent
macro tasks into a TDG. Parallel execution of a TDG is achieved with a sched-
uler that manages inter-task dependencies and load balancing across threads.
Most DSP-based simulators follow this paradigm but adopt different clustering
heuristics [1, 9, 11,19].
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Table 1: Comparison between SimPart and existing parallel logic simulators.
Verilator

[13]
RTLFlow

[9]
RepCut

[15]
GL0AM

[18]
SimPart
(Ours)

Partitioning
algorithm DSP DSP RAP RAP DSP+RAP

Simulation
platform CPU GPU CPU GPU GPU

On the other hand, RAP focuses on replicating a small portion of the graph to
break task dependencies for reduced inter-thread synchronization. Although ini-
tially introduced by RepCut [15] for implementing a CPU-parallel RTL simula-
tor, RAP has proven especially useful for designing GPU-parallel simulators [18].
Specifically, by assigning a few additional GPU threads to run replicated logic
elements, we can eliminate expensive inter-block synchronization and enable un-
interrupted thread execution. Despite these advantages, RepCut requires solving
a proxy hypergraph partitioning problem, where a hyperedge cut implies its cor-
responding nodes need to be replicated across different partitions. Unfortunately,
hypergraph partitioning is NP-hard. Even with state-of-the-art parallel hyper-
graph partitioners [4,7], finding a partition with a decent cut size can still take a
long time to converge, especially for large graphs (e.g., 3–5 minutes for a graph
of 23M nodes [4]).

3 SimPart

Figure 2 gives an overview of SimPart, which consists of three stages, majority-
based grouping, DSP-RAP hybrid partitioning, and GPU-parallel simulation.
First, SimPart introduces a majority-based grouping algorithm that assigns
group IDs to nodes based on their major connectivity, which is efficiently imple-
mented through a one-pass BFS traversal on the GPU. Second, SimPart employs
a DSP-RAP hybrid partitioning strategy with multiple backward traversals to
identify partitions that balance synchronization cost and GPU thread utilization.
Finally, we present the GPU-parallel simulation framework atop our partition.

3.1 Majority-Based Grouping

Instead of solving another time-consuming proxy hypergraph partitioning prob-
lem like RepCut [15], we propose a simple yet effective algorithm called majority-
based grouping. The goal of majority-based grouping is to determine a partition
group for every primary output (PO) that will minimize the number of repli-
cations. Specifically, we assign each node in the circuit graph to a group based
on a majority count that reflects its predecessors’ connectivity. This grouping
method can achieve a similar effect to the hypergraph formulation in RepCut
but with significantly reduced computation time. Our majority-based grouping
algorithm consists of two main steps, initial grouping and group propagation.
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Fig. 2: Overview of SimPart under two partitions (k = 2 and γ = 3). In majority-
based grouping, we leverage GPU to quickly assign a partition group to each
node through a level-by-level parallel traversal. In DSP-RAP hybrid partitioning,
we perform a backward traversal from the POs to the threshold replication
level, where parallel cones are identified by replicating their overlaps (node 8
in both cones). Nodes before the replication level are partitioned into disjoint,
non-overlapping groups level by level ({0, 1, 2} and {3, 4, 5, 6}).

The goal of initial grouping is to assign each primary input (PI) an initial
group ID for later propagation. In this step, each PI is assigned a group ID
based on the majority count of its successors, with the count calculated under
modulo k for k partitions. The intuition is to assign group IDs based on primary
node connections and encourage the later propagation to place connected nodes
in the same group. For example, node 1 in Figure 2 is assigned a group ID of
0, since the modulo outputs of its three successors are 0, 1, and 0 for nodes 4,
5, and 6 under k = 2. After assigning group IDs to the PIs, the goal of group
propagation is to propagate these IDs from PIs to POs, keeping connected nodes
in the same group as much as possible. To this end, we perform a BFS to traverse
the circuit graph level by level. When a node is traversed (once its predecessors’
dependencies are resolved), we will assign it a group ID based on the majority
count of its predecessors’ group IDs. For example, node 5 in Figure 2 is assigned
a group ID of 1, since the group IDs of its three predecessors are 1, 0, and 1 for
nodes 0, 1, and 2, respectively.

A key advantage of our majority-based grouping algorithm is its high data
parallelism during group propagation, as nodes at the same level can operate
independently of each other. To maximally leverage this parallelism, we introduce
a GPU-parallel majority-based grouping algorithm. We present a GPU-parallel
majority-base grouping algorithm, as shown in Algorithm 1. Algorithm 1 consists
of two steps, initial grouping (lines 1–13) and group propagation (lines 14–30).
We use the compressed sparse row (CSR) data structure to store the input graph,
as commonly done in many GPU-accelerated graph algorithms [8, 9].

In step one (lines 1–13), we assign one GPU thread to process each PI. Each
thread determines the group ID for its assigned PI (indexed by PIIdx ) based
on the majority count of its successors, stored in the PI’s outputs array (line
3). For each successor, the thread calculates the modulo of its index under k
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Algorithm 1 Majority-based grouping
1: parallel for each thread { /* Step 1: Initial grouping */
2: /* Assign group ID to PIs */
3: for each outNodeIdx ∈ outputs of PIIdx
4: mod = outNodeIdx % k; accum[mod ]++
5: /* Assign a group ID based on the majority count */
6: Group[PIIdx ] = argmax(accum)
7: /* Initial BFS queue Q */
8: for each outNodeIdx ∈ outputs of PIIdx
9: atomicSub(in_degree[outNodeIdx ], 1)

10: /* Enqueue nodes whose parent dependencies are resolved */
11: if in_degree[outNodeIdx ] == 0 then {enqueue outNodeIdx in Q}
12: level [PIIdx ] = 0 ; totalLevels = 0 ; accum.clear()
13: }
14: Grp_propagation_kernel { /* Step 2: Group propagation */
15: parallel for each thread {
16: nodeIdx = dequeue Q ; level [nodeIdx ] = totalLevels
17: /* Assign group IDs based on majority count */
18: for each inputIdx ∈ inputs of nodeIdx
19: groupIdOfInput = Group[inputIdx ]; accum[groupIdOfInput ]++
20: /* Maintain BFS queue Q */
21: for each outNodeIdx ∈ outputs of nodeIdx
22: atomicSub(in_degree[outNodeIdx ], 1)
23: if in_degree[outNodeIdx ] == 0 then {enqueue outNodeIdx in Q_tmp}
24: }
25: }
26: while Q is not empty do {
27: Q_tmp ← empty queue
28: call Grp_propagation_kernel #blocks =⌈Q.size()/1024⌉, #threads =1024
29: Q ← Q_tmp; totalLevels++; accum.clear()
30: }

and increments the corresponding count in an accumulation array, accum (lines
3–4). This array stores the counts of modulo results for each group, allowing the
thread to assign the PI to the group with the highest count. Each PI’s assigned
group ID is stored in the Group array (line 6). After this, each thread initializes
the queue Q for group propagation (lines 8–11) by inserting resolved successors
(via updating their in_degree count with atomicSub). Finally, each thread sets
its PI node level to 0 and initializes totalLevels to track circuit levels (line 12).

In step two, the function runs a while loop until all nodes receive a group ID
(lines 14–30). In each iteration, it launches Grp_propagation_kernel to process
all nodes in Q using ⌈Q.size()/1024⌉ blocks each of 1024 threads (the thread
count can be configured by applications). Each thread dequeues a node, assigns
it a level index in totalLevels (line 16), and a group ID based on its predecessors’
group majority. It then updates the BFS queue by decrementing each output
node’s in_degree using atomicSub and enqueues nodes with zero in_degree (lines
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21–23). After processing, the main loop updates Q with Q_tmp, increments
totalLevels, and repeats until all nodes are grouped (lines 26–30).

3.2 DSP-RAP Hybrid Partitioning

The goal of RAP is to perform multiple backward traversals to construct a fanin
cone for each group ID starting from the POs, while replicating nodes with dif-
ferent group IDs. However, as this traversal goes deeper towards level 0, the
risk of over-replication significantly increases. For example, applying RAP to
the middle graph in Figure 2 will yield two partitions with many replications,
as shown in Figure 3, where all nodes in level 0 are replicated. While RAP can
create two fully independent partitions that can be processed by two separate
GPU blocks in parallel, over-replicated nodes may oversubscribe threads during
simulation. Additionally, circuit graphs typically exhibit a long-tailed distribu-
tion after levelization, with more parallel nodes at earlier levels than the later
levels, as shown in Figure 4.
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Fig. 3: Unconstrained RAP can result
in over-replication (marked in black),
which oversubscribes GPU threads dur-
ing simulation.

To understand the impact of this
property, we assume that pure DSP
yields a level-by-level GPU-parallel
simulation and pure RAP yields k in-
dependent instances of level-by-level
GPU-parallel simulation (see Fig-
ure 1(b)). If we roughly characterize
the parallel efficiency to the ratio of
GPU thread utilization to synchro-
nization overhead, then pure RAP
yields low parallel efficiency at earlier
levels due to fixed thread count pro-
cessing potentially many replicated
nodes with frequent intra-block synchronizations. As we progress with fewer
nodes, the number of intra-block synchronizations decreases, thus increasing its
parallel efficiency. On the other hand, pure DSP can yield high parallel efficiency
at earlier levels due to unrestricted thread counts and less frequent intra-block
synchronization. However, as we progress, the cost of inter-block synchronization
dominates the performance and reduces its parallel efficiency.

To balance parallel efficiency between synchronization cost and GPU thread
utilization, we propose a DSP-RAP hybrid strategy that constrains the repli-
cation region to a threshold level during the backward traversal. We define
γ as the upper bound on the number of nodes at the level where backward
traversal stops. We refer to this level as replication level. For example, in Fig-
ure 2, with γ = 3, the replication level is level 1, as it is the first backward
level with more than three parallel nodes. A larger γ favors RAP-based simu-
lation with more intra-block synchronizations, which reduces parallel efficiency
and increases simulation time. Conversely, a smaller γ leans towards DSP-based
simulation, resulting in more costly inter-block synchronization (microseconds).
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circuit edit_dist [9], and parallel efficiency for
two partitioning strategies.

By default, SimPart sets
γ to the GPU block size
since it guarantees each repli-
cated partition to be pro-
cessed within a thread block
with minimal synchronization
overhead.

Algorithm 2 presents our
DSP-RAP hybrid partition-
ing strategy. First, we deter-
mine the replication level lγ as
the first backward level con-
taining more than γ nodes (line 1). Next, we form RAP partitions by construct-
ing a fanin cone for each group ID starting from POs until lγ (lines 3–4) and
replicating nodes with different group IDs from that of POs (lines 5–6). Finally,
we assign each of the remaining levels to a DSP partition (lines 7–12).

Algorithm 2 DSP-RAP hybrid partitioning
1: lγ = argmaxl{numNodes[l] > γ}
2: for each v ∈ {v | level [v] == totalLevels−1} { /* RAP */
3: rap_part [Group[v]] = {x | x ∈ fanin_cone(v) and level [x] > lγ}
4: for each y ∈ rap_part [Group[v]]
5: if Group[y] ̸= Group[v] then {replicate y}
6: }
7: for each l ∈ {lγ , · · · , 1, 0} { /* DSP */
8: new_part = {}
9: for each v ∈ {v | level [v] == l}

10: new_part.insert(node)
11: dsp_part = dsp_part ∪ new_part
12: }

3.3 Conditional CUDA Graph-Based Simulation Framework

A key advantage of SimPart is its simple linear structure for kernel schedul-
ing, starting with DSP-based simulation followed by RAP-based simulation.
However, iterative kernel launches can incur non-negligible CPU overhead, es-
pecially for large graphs with many levels. Additionally, logic simulators often
iterate through multiple inputs, resulting in frequent CPU-GPU interactions
for control-flow decisions. Figure 5(a) illustrates these two challenges. To over-
come these challenges, we leverage the latest conditional CUDA Graph [3] to
design a simulation framework that encapsulates both simulation kernels and
dynamic control flow within a single GPU-resident graph entity. As shown in
Figure 5(b), we create a conditional CUDA Graph node to represent the while-
loop condition, which iteratively invokes our simulation kernels until no more
inputs remain. This strategy not only reduces iterative kernel call overhead but
also decreases CPU involvement in decision-making.
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Fig. 5: GPU-parallel simulation framework atop our partition using (a) stream-
based and (b) conditional CUDA Graph-based executions.

The idea of our GPU-parallel simulation kernels is level-by-level parallel
propagation, where multiple GPU threads process parallel nodes within each
level simultaneously. While this idea is common in GPU-accelerated CAD al-
gorithms [5, 18], we outline our kernels in Algorithm 3 and Algorithm 4 for
completeness.

Algorithm 3 DSP-based simulation
1: DSP_sim_kernel {
2: parallel for each thread tid
3: res[tid ] = run_logic_operation_of(nodes[tid ])
4: }
5: DSP_based_sim {
6: for each l ∈ {0, 1, ..., totalLevels-1}
7: call DSP_sim_kernel #blocks = ⌈#nodesAtLvl_l/1024⌉; #threads = 1024
8: sync_kernel /* inter-block sync */
9: }

The key difference between Algorithm 3 and Algorithm 4 lies in the scope
of level-by-level propagation: DSP operates across partitions with inter-block
synchronization, while RAP processes individual partitions within a single kernel
launch. Specifically, in RAP-based simulation (Algorithm 4), we assign a GPU
block to simulate each partition using just one kernel launch (line 13). Within
each block, additional passes are required if the number of parallel nodes at a
level exceeds the block size (lines 5–9). Threads are synchronized at the end of
each iteration (i.e., intra-block synchronization).

4 Experimental Results

We implemented SimPart in CUDA/C++ and compiled it with nvcc v12.3 using
-O3 and -std=c++20. Experiments were conducted on a 64-bit Linux machine
with 32 Intel Core i5-13500 cores (4.8 GHz) and an Nvidia RTX A4000 GPU.
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Algorithm 4 RAP-based simulation
1: RAP_sim_kernel {
2: parallel for each block {
3: for each l ∈ {0, 1, ...,totalLevels-1}
4: passes = ⌈#nodesAtLevel_l_in_Partition/1024⌉
5: for each pass ∈ {0, 1, ..., passes-1}
6: parallel for each thread tid
7: res[tid ] = run_logic_operation_of(nodes[tid ]); tid += 1024
8: sync_threads /* intra-block sync */
9: sync_threads /* intra-block sync */

10: }
11: }
12: RAP_based_sim {
13: call RAP_sim_kernel #blocks = k, #threads = 1024
14: }

We evaluated SimPart on logic graphs generated by the RTLFlow simulator [9];
graph statistics are shown in Table 2, with the “_eval” suffix indicating larger
variants with added logic elements. Without loss of generality, we simulate a
batch of 12 simulation inputs. Since the inputs are independent, increasing the
number of inputs does not affect the results but further amplifies the performance
gap between SimPart and the baseline.

We consider the state-of-the-art RepCut [15] as our baseline. We use CPU to
construct the proxy hypergraph and use Mt-KaHyPar [4] with 16 threads to de-
rive k partitions, as it delivers the best runtime performance on our machine. For
comparison, we simulate on both CPU and GPU using OpenMP and our RAP-
based kernel, respectively. On CPU, one OpenMP thread runs one partition,
following RepCut’s original setting. By default, we set the number of partitions
(k) to 16, yielding good performance for both RepCut and SimPart. For Sim-
Part, γ is set to 1024 to match the GPU kernel block size, balancing DSP and
RAP performance on our machine. Both k and γ are tunable for platform-specific
optimization. All results are averaged over 10 runs.

4.1 Overall Performance Comparison

Table 2 compares the overall performance between RepCut and SimPart. We
can observe that RepCut spends a large amount of time on solving the proxy
hypergraph problem, including building the hypergraph and partitioning the
hypergraph. While Mt-KaHyPar reduces partitioning time by 1.9–3.6× by using
16 threads, it still has an average 23× gap compared to SimPart due to our GPU-
powered partitioning algorithm. In terms of partition sizes, SimPart outperforms
RepCut in nearly all graphs except matrix_mult, where hypergraph partitioning
achieves a near-optimal solution. On average, SimPart reduces replication by
40% compared to RepCut (0.3% vs. 0.5%). This improvement is due to SimPart’s
replication constraint, which reduces the risk of over-replication in most cases.
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Further, the NP-hard nature of hypergraph partitioning makes it challenging for
Mt-KaHyPar to find the optimal cut size that minimizes replication for RepCut.

Table 2: Overall performance comparison between RepCut [15] and SimPart with
k = 16. Partition quality is evaluated based on the resulting simulation time on
CPU (RepCut only) and GPU. The average ratios of replication, partitioning
time, and simulation time are measured relative to the original graph size (|V |
and |E|), TPart in SimPart, and TG

Sim in SimPart.

Benchmark

RepCut [15] SimPart

|V | |E| TC1
Build TC1

Part TC16
Part TC1

Sim TC16
Sim TG

Sim R|V | R|E| TPart TG
Sim R|V | R|E|

edit_dist 164K 164K 590.3 1492 438.6 439.5 281.8 5.1 1.01765 1.01765 72.3 3.2 1.00528 1.00528

matrix_mult 176K 174K 737.4 1024 384.6 895.6 450.2 6.2 1.00235 1.00235 86.6 3.4 1.03148 1.03148

b19 255K 255K 2058 4377 1203 169.1 40.3 7.5 1.00911 1.00911 77.3 4.0 1.00210 1.00210

leon2 1.6M 1.6M 10054 12478 5501 6846 900.2 35.5 1.00166 1.00166 213.3 21.2 1.00000 1.00000

leon3mp 1.2M 1.2M 6893 12542 4513 4648 528.5 27.3 1.00487 1.00487 146.1 16.1 1.00000 1.00000

netcard 1.5M 1.5M 9120 24578 7209 7589 1184 30.7 1.02060 1.02060 155.9 18.4 1.00000 1.00000

edit_dist_eval 1.3M 1.3M 5193 7432 3148 54791 10555 25.6 1.00209 1.00209 160.5 18.1 1.00000 1.00000

matrix_mult_eval 1.4M 1.4M 6531 5545 2886 76191 13465 29.0 1.00004 1.00004 779.2 17.3 1.00002 1.00002

b19_eval 2.0M 2.0M 15976 37299 10872 4157 811.6 39.4 1.00147 1.00147 925.2 24.3 1.00000 1.00000

leon2_eval 12.9M 12.9M 91500 64697 44711 165011 29598 235.5 1.00021 1.00021 2483 169.5 1.00000 1.00000

leon3_eval 20.0M 20.0M 106012 128188 57139 219415 38024 327.5 1.00004 1.00004 2971 259.0 1.00000 1.00000

netcard_eval 24.0M 24.0M 143731 766218 218582 1530950 283890 371.8 1.00000 1.00000 2866 292.4 1.00000 1.00000

Avg. ratio 1.000 1.000 - 68.45 23.13 1344.76 255.04 1.58 1.005 1.005 1.000 1.000 1.003 1.003

|V |: Number of nodes TBuild: Hypergraph construction time

TCn
Sim: Simulation time on CPU, with n threads TPart: Partitioning time

|E|: Number of edges TCn
Part: Partitioning time on CPU, with n threads

TG
Sim: Simulation time on GPU R|V |, R|E|: Ratio of replicated nodes and edges

Next, we evaluate the quality of partitions based on the resulting simulation
time. Compared to CPU-based simulation on RepCut’s partitions, our GPU-
based simulation can achieve an average speedup of 1344× over 1 CPU thread
(column of TC1

Sim) and 255× over 16 CPU threads (column of TC16
Sim). When

using our GPU simulation kernel to RepCut’s partitions, we can still achieve an
average speedup of 1.58× (columns of TG

Sim). Again, we attribute this speedup
to our DSP-RAP hybrid partitioning strategy, which strikes a balanced trade-off
between synchronization costs and GPU thread parallelism.

4.2 Performance under Different Numbers of Partitions

Figure 6 compares the performance between RepCut and SimPart for different
partition counts (k), which directly impact the parallelism available for simula-
tion. We can observe that as k increases, RepCut’s runtime to solve the proxy
hypergraph problem also increases. Take leon2 for example, when k increases
from 16 to 128, RepCut’s runtime increases from 14.3 to 20.2 seconds. This
runtime cost makes RepCut challenging to use in a dynamic environment, such
as simulation-driven hardware fuzzing [10], where the partitioner is iteratively
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Fig. 6: Comparisons of partitioning time (left), partition quality (middle), and
partitioned graph size (right) between RepCut and SimPart at different k.

applied to a simulation graph that changes dynamically. On the other hand, Sim-
Part has very low partitioning times regardless of k (all ≤ 230 ms). We attribute
this efficiency to our GPU-powered partitioning algorithm.

In terms of the partition quality, measured at the resulting simulation time
on GPU, SimPart is always faster than RepCut (middle plot). As k increases,
RepCut generates more parallel partitions to accelerate the simulation, yet even-
tually reaching a saturation point at 16 partitions.
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Fig. 7: Partition quality vs. γ.

Beyond 16 partitions, we begin to see
diminishing performance returns in Rep-
Cut, primarily due to over-replication,
which can be revealed in the bottom plot.
On the contrary, the simulation time on
our partitions consistently outperforms
RepCut across all values of k. We at-
tribute this speedup to SimPart’s DSP-
RAP hybrid partitioning strategy, which
avoids over-replication while maximizing
the parallel efficiency across all levels of
the circuit graph.

4.3 Analysis of Replication Threshold

We study the impact of the replication threshold, γ, on the partition quality. As
shown in Figure 7, the curve forms a U-shape as γ increases. As discussed in
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Section 3.2, a larger γ favors RAP-based simulation with more intra-block syn-
chronization, which reduces parallel efficiency and thus increases simulation time.
Conversely, a smaller γ leans towards DSP-based simulation, resulting in more
costly inter-block synchronizations. At the two extremes of γ = 0 and γ = ∞, the
simulation reduces to pure level-by-level DSP and pure RAP, neither of which
achieves optimal performance. With γ = 1024, SimPart can balance the parallel
efficiency between DSP and RSP to achieve optimal simulation performance.

4.4 Ablation Analysis of Conditional CUDA Graph

To highlight the advantage of our conditional CUDA Graph-based simulation
framework, we analyze the simulation time with and without conditional CUDA
Graph. As shown in Figure 8, SimPart with conditional CUDA Graph outper-
forms RepCut across all circuits. Without CUDA Graph, SimPart still achieves
better performance than RepCut in all but two small circuits (edit_dist and
b19), which highlights the effectiveness of our partitioning algorithm. For Sim-
Part itself, conditional CUDA Graph achieves an average speedup of 27%, with
the highest speedup of 2.23× observed in b19. We attribute this improvement
to the integration of simulation kernels and control-flow decisions into a sin-
gle GPU-resident graph, which reduces kernel call overhead and decreases CPU
involvement in decision-making.
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Fig. 8: Simulation time of RepCut vs. SimPart with and without conditional
CUDA Graph.

5 Conclusion

In this paper, we have introduced SimPart, a simple yet highly effective and ef-
ficient GPU-parallel replication-aided partitioner to facilitate the design of par-
allel RTL simulation algorithms. SimPart addresses the partitioning problem
directly, without relying on a proxy problem, and proposes a hybrid strategy
that makes the most of GPU parallelism when simulating the circuit on our
partition. Compared to RepCut, SimPart achieves an average of 23× speedup
in partitioning and 1.58× speedup in GPU-parallel simulation, while increasing
the original graph size by only 0.3%.
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