
Scalable Code Generation for RTL Simulation of
Deep Learning Accelerators with MLIR

Jie Tong, Wan-Luan Lee, Umit Yusuf Ogras, and Tsung-Wei Huang�

University of Wisconsin–Madison, Madison, WI, USA
{jtong36,wanluan.lee,uogras,tsung-wei.huang}@wisc.edu

Abstract. As deep learning accelerators scale in complexity, efficient
Register Transfer Level (RTL) simulation becomes crucial for reducing
the long runtime of hardware design and verification. However, exist-
ing RTL simulators struggle with high compilation overhead and slow
simulation performance, particularly for large deep learning accelerator
designs, where components are heavily reused and hierarchically struc-
tured. This inefficiency arises because existing simulators repeatedly re-
generate and recompile redundant code, failing to leverage the structural
parallelism inherent in deep learning accelerators. To address this chal-
lenge, we propose ScaleRTL, a scalable and unified code generation flow
that automatically produces optimized parallel RTL simulation code for
deep learning accelerators. Built on the MLIR infrastructure, ScaleRTL
identifies repetitive design patterns, reduces code size and compilation
time, and generates efficient simulation executables that exploit both
CPU and GPU parallelism. Compared to state-of-the-art RTL simula-
tors, ScaleRTL achieves a compilation speedup of three to five orders of
magnitude and up to 15× and 300× simulation speedup on CPU and
GPU, respectively.

Keywords: RTL simulation · MLIR · GPU code generation

1 Introduction

ASIC accelerators play a critical role in boosting the performance of deep learn-
ing backbone applications, such as GEMM, DNNs, and transformers in the mod-
ern AI industry [2]. To validate the functionality of a hardware design before
physical implementation, Register Transfer Level (RTL) simulation plays a key
role in regression testing, debugging, and design space exploration. However,
with the rapidly increasing size and complexity of deep learning accelerators,
RTL simulation has become significantly more time-consuming. For instance,
recent research has reported that RTL simulation can take several hours to days
to achieve coverage closure for validating a deep learning accelerator [10]. Thus,
accelerating RTL simulation is critical for managing increasing design complexity
and meeting short time-to-market demands in the accelerator market.

To mitigate the runtime challenge of RTL simulation, researchers have pro-
posed various parallel RTL simulation algorithms. For example, Verilator [12], a



widely used open-source RTL simulator, transpiles Hardware Description Lan-
guage (HDL) into C++ based on RTL abstract syntax trees (ASTs) and uses
disjoint-set-based partitioning to enable multithreading. RepCut [15] converts
RTL source code to FIRRTL [5] and introduces a replication-aided partitioning
algorithm to reduce synchronization overhead in parallel simulation. Khronos [17]
and BatchSim [13] parse RTL designs using MLIR and generate evaluation func-
tions through LLVM IR. RTLflow [10], built atop Verilator, transpiles RTL code
into CUDA for GPU execution but requires thousands of input stimuli to out-
perform CPU-based simulation. Despite improved performance, innovations of
parallel RTL simulators have evolved largely in isolation, and many shareable
components have been largely ignored. Consequently, designing new RTL simu-
lation algorithms is extremely time-consuming and error-prone due to numerous
software fragmentations, duplicated engineering efforts, and re-innovations of
code optimizations.

On the other hand, prior research on parallel RTL simulation has primarily
focused on generic RTL designs, such as digital circuits written in SystemVer-
ilog or High-Level-Synthesis (HLS) languages. For a given RTL source, existing
simulators flatten the entire design into an RTL graph [12], where nodes rep-
resent logic elements containing a set of instructions, and edges represent data
dependency between nodes. Then, these simulators partition the RTL graph
into dependent subgraphs for parallelism and generate evaluation functions. An
evaluation function simulates the graph for a cycle by consuming inputs and
propagating them through the graph. However, these approaches do not exploit
structural information. Even when partitions consist of homogeneous logic el-
ements, they still regenerate the same evaluation code for those elements. As
shown in Figure 1(a) and (b), when a systolic array contains explicitly dupli-
cated processing elements (PEs), existing RTL simulators continue to regenerate
evaluation functions for structurally identical partitions. This results in ineffi-
ciencies, as these simulators repeatedly generate and recompile redundant code
instead of leveraging the structural parallelism inherent in deep learning acceler-
ators. Prior works such as Verilator [12] and Dedup [16] offer limited support for
deduplication in RTL simulation code generation. Verilator [12] focuses on small
SystemVerilog statements and does not handle full structural components, while
Dedup [16] targets multi-core SoC-style designs that emphasize heterogeneity
and connectivity, rather than scalability of deep learning accelerators.

To tackle these challenges, we introduce ScaleRTL, a scalable code gener-
ation flow that automatically generates optimized parallel RTL simulators for
deep learning accelerators. Figure 1(c) illustrates the ScaleRTL flow. Unlike prior
works, ScaleRTL introduces a structural-parallelism-aware partitioning method
that identifies structurally parallel components in a deep learning accelerator
design and generates evaluation functions for these components. As a result, the
generated and compiled evaluation functions can be reused during simulation,
avoiding redundant code generation that traditional compilers and simulators
fail to eliminate. To unify the code generation flow for both CPU- and GPU-
parallel simulation, ScaleRTL builds atop the multi-level intermediate represen-



PE PE PE

PE PE PE

PE PE PE

… … …

…

…

… Structural Parallelism

Aware Partitioning

 

Conventional

Partitioning

 

Evaluation functions

for partitions

Evaluation function

for PE 

CPU-parallel

Simulation

CPU- or GPU-parallel

Simulation

CPU-parallel Library

CUDA Driver

CPU-parallel Library

(b) Existing RTL simulators regenerate evaluation functions 

even when partitions are structurally identical, causing 

significant code redundancy.

(c) ScaleRTL identifies structurally parallel components, 

reduces code size, and enhances parallelism exploration.

(a) A systolic array in a DL 

accelerator, composed of 

multiple identical PEs.

Fig. 1: Comparison of existing RTL simulation approaches and ScaleRTL.

tation (MLIR) project [7], which supports versatile and customizable dialects
and IR transformations. For CPU-parallel simulation, ScaleRTL emits evalua-
tion functions in LLVM IR, compiles them into object files, and links them with
a simulation wrapper containing the CPU-parallel library. For GPU-parallel sim-
ulation, ScaleRTL emits evaluation functions in PTX format, loads the kernel
using the CUDA driver, and executes it using CUDA Graph to reduce repetitive
launch overhead. We summarize our technical contributions as follows:

– We introduce a scalable code generation flow that exploits structurally par-
allel components and eliminates redundant code in deep learning accelerator
RTL simulation.

– We develop a unified code generation flow that automatically generates CPU-
and GPU-parallel RTL simulators using MLIR, which enables simulation
across different architectures.

– We integrate CUDA Graph to reduce kernel launch overhead, further accel-
erating GPU-parallel RTL simulation.

We evaluate ScaleRTL on a set of deep learning accelerator RTL designs.
Compared to state-of-the-art RTL simulators, ScaleRTL achieves a compilation
speedup of three to five orders of magnitude and up to 15× and 300× simulation
speedup on CPU and GPU, respectively. To the best of our knowledge, ScaleRTL
is one of the earliest research efforts to explore the application of MLIR and
GPUs in deep learning accelerator RTL simulation. We open-sourced 1 ScaleRTL
to support hardware design and EDA-inspired compiler research.

1 https://github.com/TongJieGitHub/ScaleRTL



2 Background and Motivation

2.1 RTL Simulation and Development Challenge

RTL design source code is typically written in hardware description languages
(HDLs) like SystemVerilog or Chisel. To enable simulation, these designs are
translated into C++ or LLVM IR, wrapped in a simulation framework, and com-
piled into an executable. Full-cycle simulators, such as Verilator [12], Khronos [17],
and BatchSim [13], are widely used to capture cycle-accurate outputs and exploit
parallelism. In these simulators, the RTL design is transformed into a directed
graph, known as the RTL graph, where nodes represent logic elements and edges
denote data dependencies. Simulating each cycle corresponds to evaluating this
graph, where input values propagate through logic elements to produce outputs.
This evaluation process is repeated thousands to millions of times to validate
the design’s functionality [10].

The typical approach to building an RTL simulator involves representing the
RTL graph in an intermediate representation, applying optimizations, and gen-
erating efficient simulation code. For example, RTLflow [10] leverages an AST-
based IR to capture high-level RTL information, partitions the IR into macro
tasks, and schedules them across threads for parallel execution. Similar strategies
have been adopted by existing simulators [12, 15, 17, 9, 13, 4, 3]. However, innova-
tions in simulation IRs and parallel algorithms have evolved in isolation, leading
to software fragmentation, duplicated engineering efforts, and redundant code
optimization. This lack of modularity makes developing new RTL simulation
algorithms highly time-consuming and error-prone.

2.2 MLIR

MLIR [7] is a novel infrastructure designed to simplify the building of new com-
piler components atop the LLVM project. Specifically, MLIR provides a rich set
of composable abstractions, including operations, types, attributes, and regions,
that empower developers to represent programs at multiple levels of abstrac-
tion. Developers can also define custom dialects and transformation methods to
achieve unified code optimizations across diverse sources. To preserve designers’
intent and capture high-level information, we build ScaleRTL on top of the pop-
ular FIRRTL [5] and CIRCT IRs, which directly models the RTL source. The
primary benefit of using MLIR is its capability to offer deeper insights at the IR
level compared to the source code, allowing for greater opportunities to exploit
data parallelism.

3 ScaleRTL

Figure 2 illustrates the proposed ScaleRTL framework. At a high level, ScaleRTL
compiles RTL source code (FIRRTL) into RTL simulation executables for both
CPU and GPU targets. It is built atop MLIR [7] and CIRCT IR, which provide



off-the-shelf dialects and compilation passes for general-purpose compilation and
hardware modeling. ScaleRTL consists of three main components: Structural
parallelism analysis and partitioning, CPU-parallel code generation, and GPU-
parallel code generation. Additionally, we integrate CUDA Graph [8] to further
enhance the performance of GPU-based simulation.

FIRRTL

Comb SeqHW

LLVM

CPU-parallel RTL Simulation

Existing Dialect

ScaleRTL Pass

Input & Output

External Tool

CPU-parallel Code Generation

CIRCT Dialects

Structural Parallelism

Analysis and Partitioning

Global-to-Struct

Parallel libraryLLVM IR

LLVM/NVVM

GPU-parallel Code Generation

NVGPU-Global-to-Struct

CUDA DriverPTX/Fatbin

GPU-parallel RTL Simulation

CUDA Graph

Fig. 2: Overview of ScaleRTL.

3.1 Structural Parallelism Analysis and Partitioning

The first step in RTL simulation code generation is to use CIRCT tools to convert
the FIRRTL source design into CIRCT dialects, such as Comb, Seq, and HW.
Listing 1 provides an example of a GEMM design written in the HW dialect.

1 module {
2 hw.module @GEMM(%arg0: i32 , %arg1: i32 , ...) -> i32 {
3 ...
4 %PE.io_data_2_out_bits , ... = hw.instance "PE" @PE(clock:

%clock: i1, reset: %reset: i1, ...) -> (
io_data_2_out_bits: i16 , ...)

5 %PE_1.io_data_2_out_bits , ... = hw.instance "PE_1" @PE(
clock: %clock: i1, reset: %reset: i1 , ...) -> (
io_data_2_out_bits: i16 , ...)

6 ...
7 }
8 }

Listing 1: Example RTL Design in HW Dialect.

Unlike generic RTL designs, GEMM exhibits a highly homogeneous layout,
where most components, such as PEs and interconnects, are repetitively instan-
tiated. Additionally, from a hardware perspective, these subsequent lines of code



are semantically parallel. Thus, we can leverage structural parallelism in deep
learning accelerator designs to construct a highly parallel simulator. A key step
in this process is to analyze the code, identify and count repetitive components,
and extract and partition them from the original top-level design. To achieve
this, we design a pass in MLIR that performs these analyses. This pass exam-
ines hardware module hierarchies in MLIR by computing direct and flattened
instance counts within a hw::InstanceGraph. It identifies the top-level mod-
ule using a heuristic, computes direct instance counts, and recursively derives
flattened counts–estimating the occurrence of each module in a fully flattened
design. The pass then returns these counts as a mapping. With this analysis, we
can partition the original design into multiple instances and extract repetitive
instances as separate modules.

3.2 CPU-parallel Simulation Code Generation

After analyzing repetitive components and decomposing the deep learning RTL
design into separate modules, we apply a set of IR transformations. This process
converts the design from the HW dialect to the LLVM dialect, enabling efficient
simulation of each module. An example of this MLIR-based transformation is
shown in Listing 2.

1 module attributes {llvm.data_layout = ""} {
2 ...
3 llvm.mlir.global internal @shiftreg () : i1
4 llvm.mlir.global linkonce_odr @clock () : i1
5 llvm.mlir.global linkonce_odr @reset () : i1
6 ...
7 llvm.func @PE() {
8 ...
9 %25 = llvm.mlir.addressof @shiftreg : !llvm.ptr <i1 >

10 %25 = llvm.mlir.addressof @reset : !llvm.ptr <i1 >
11 %26 = llvm.load %25 : !llvm.ptr <i1 >
12 ...
13 llvm.store %7121, %10412 : !llvm.ptr <i16 >
14 llvm.return
15 }
16 }

Listing 2: Example RTL evaluation code in LLVM Dialect.

In the LLVM dialect, signals and internal states are allocated as global vari-
ables in the data segment. When lowered to LLVM IR and further to an object
file, the evaluation function @PE is bound to these global variables. For deep
learning accelerators with thousands of PEs, this approach leads to compiling
identical code thousands of times, resulting in a large executable with severe
code redundancy. To address this, we propose a new simulation paradigm that
decouples data from the evaluation function. Instead of binding to global vari-
ables, we define a struct that holds all signals and states in a header file and



pass a pointer to this struct as an argument to the evaluation function. We refer
to this as the Global-to-Struct pass.

Listing 3 provides an example where the evaluation function takes a struct
pointer as an argument, with the struct defined in a header file. To correctly
determine memory locations within the struct, we record the byte offsets of all
data during the code generation phase. This ensures that the evaluation function
can accurately access the converted addresses without error. By separating data
from the function, we compile the evaluation function only once, while allocating
multiple instances of the struct at runtime. This allows multiple instances of the
function to be launched concurrently, reducing data hazards and synchronization
overhead. With the function and header file prepared, we use a CPU-parallel
library (OpenMP) to perform parallel simulation for each cycle.

1 // LLVM Dialect
2 module attributes {llvm.data_layout = ""} {
3 llvm.func @PE(%arg0: !llvm.ptr <i8 >) {
4 %0 = llvm.mlir.constant (0 : i64) : i64
5 %1 = llvm.getelementptr %arg0 [%0] : (!llvm.ptr <i8 >, i64)

-> !llvm.ptr <i8 >
6 %2 = llvm.bitcast %1 : !llvm.ptr <i8> to !llvm.ptr <i16 >
7 ...
8 llvm.return
9 }

10 }
11 // C++ header file
12 typedef struct EvalContext {
13 // Field 0 - Original global: @mem_ext - Byte offset: 0
14 char mem_ext [8];
15 ...
16 } EvalContext;
17 void PE(EvalContext* ctx);

Listing 3: Example RTL evaluation code in LLVM dialect with a struct pointer
as an argument, and the corresponding struct defined in a C++ header file.

3.3 GPU-parallel Simulation Code Generation

Figure 3 illustrates the GPU code generation process in ScaleRTL. Unlike prior
work [14], which uses the GPU dialect to generate GPU-based simulation code,
we found that relying solely on the provided GPU dialect limits control over
kernel management and optimization from the host side. To address this chal-
lenge, we design a host-side CUDA code generator that automatically invokes
CUDA driver APIs to load modules, manage memory, and launch kernels. On
the device side, similar to CPU-parallel code generation, we generate the eval-
uation function in the LLVM dialect. Since GPU supports launching thousands
of threads that execute the same kernel function in a SIMT fashion, we first
allocate a chunk of device memory for structs. For each thread, it is essential to



cuModuleGetFunction

LLVM

PTX

NVVM

Intermediate file

MLIR Dialect

Output

External Library

Host

fatbin

GPU-parallel RTL Simulation

Device

cuModuleLoadData

cuLaunchKernel

CUDA Driver API

cuStreamCreate

cuGraphCreate

…
header

Fig. 3: GPU code generation flow in ScaleRTL.

compute the correct address and offset to locate the corresponding struct that
the thread will evaluate. To achieve this, we precompute and map each data
address during code generation by calculating the base address of the struct and
the offset of a given data field. Listing 4 shows an example evaluation kernel
using the NVVM dialect, where thread and block IDs are retrieved and used
to compute global memory addresses. Once the LLVM and NVVM dialects are
generated, we use the LLVM static compiler llc to lower the code to PTX. To
reduce the overhead of just-in-time (JIT) compilation, where PTX is offloaded
to the GPU and compiled to SASS for the first execution, we use the PTX as-
sembler ptxas to compile PTX into architecture-specific binaries and package
them as a fatbin. This approach improves GPU performance while maintaining
compatibility across different GPU architectures.

1 module attributes {llvm.data_layout = ""} {
2 llvm.func @PE(%arg0: !llvm.ptr <i8 >) {
3 %0 = nvvm.read.ptx.sreg.tid.x : i32
4 %1 = nvvm.read.ptx.sreg.ctaid.x : i32
5 %2 = nvvm.read.ptx.sreg.ntid.x : i32
6 ...
7 %10 = llvm.getelementptr %arg0 [%9] : (!llvm.ptr <i8 >,

i64) -> !llvm.ptr <i8 >
8 ...
9 llvm.return

10 }
11 }

Listing 4: Example GPU-based RTL evaluation code in LLVM and NVVM
Dielact.

RTL simulation typically runs for thousands of cycles. If we use stream-
based execution, repetitive kernel launches will accumulate significant overhead.
To mitigate this issue, we leverage CUDA Graph [8] to merge successive kernel



calls into a single simulation task graph to reduce kernel launch overhead and
improve GPU-based simulation performance.

4 Experimental Results

We evaluate the performance of ScaleRTL on four deep learning accelerator RTL
designs: Conv2D [6], GEMM [6], Gemmini [2], and SIGMA [11]. Experiments
are conducted on a 64-bit Linux machine with an Intel i5-13500 CPU and an
NVIDIA RTX A4000 GPU. CPU code generation utilizes LLVM 17’s clang and
llc compilers, while GPU code generation employs CUDA Toolkit 12.6, tar-
geting compute capability 8.6. All code is compiled with the -O2 optimization
flag. In the following sections, we refer to ScaleRTL with CPU code genera-
tion as ScaleRTLC and ScaleRTL with GPU code generation as ScaleRTLG. We
consider Verilator [12], Khronos [17], and BatchSim [13] as baseline CPU-based
simulators. Verilator and BatchSim are configured with 4 threads, while Khronos
runs in single-threaded mode as it doesn’t support parallelism. All simulations
use a single input stimulus; therefore, we do not include the GPU-based RTL
simulator RTLflow [10], as it is designed for batch-stimulus scenarios, which is
a different scope of work. We also exclude ESSENT [1] and its successors [15,
16], as they encounter out-of-memory errors during code generation. To ensure
consistency, all simulation results are averaged over five runs.

4.1 Code Generation and Compilation Results

Table 1 presents the end-to-end compilation time and generated executable size
for Conv2D, GEMM, Gemmini, and SIGMA across different RTL simulators.
The end-to-end compilation time includes the transformation from RTL source
code to simulation code (C++ or LLVM IR) and the subsequent compilation and
linking process to generate the final binary. For baseline simulators (Verilator,
Khronos, and BatchSim), their inability to detect repetitive components leads to
significant redundant code generation and compilation overhead. As the number
of PEs increases, both compilation time and executable size grow proportionally.
Even worse, compiling designs with thousands of PEs can take several hours to
days, which could significantly hamper the turnaround time of hardware designs.
In contrast, ScaleRTLC and ScaleRTLG complete compilation in just a few sec-
onds, achieving up to 70,000× compilation speedup compared to the baselines.
This improvement comes from ScaleRTL’s ability to detect repetitive compo-
nents in deep learning accelerator designs, generating evaluation functions only
for PEs and other critical units, and invoking them with the corresponding data
structures at runtime.

To demonstrate the scalability of ScaleRTL’s compilation time, Figure 4
shows the compilation time of Gemmini and SIGMA on different RTL simula-
tors as the number of PEs increases. The results clearly indicate that ScaleRTL
achieves sublinear overhead growth, even as the design size increases exponen-
tially. This trend highlights ScaleRTL’s efficiency and scalability in handling
deep learning accelerator RTL simulations, even for large-scale designs.



Table 1: Comparison of compilation time (T) and generated executable size for
Conv2D, GEMM, Gemmini, and SIGMA among different RTL simulators.

Design #PEs Verilator Khronos BatshSim ScaleRTLC ScaleRTLG

T(s) Size(MB) T(s) Size(MB) T(s) Size(MB) T(s) Size(MB) T(s) Size(MB)

Conv2D

27 9 0.4 6 0.2 3 0.6 2 0.08 4 1.1
29 13 1.1 103 0.8 20 2.4 2 0.08 4 1.1
211 39 3.8 2633 3.5 302 9.6 2 0.08 4 1.1
213 163 15 41428 14 7796 39 2 0.08 4 1.1

GEMM

27 25 0.3 2 0.1 3 0.4 1 0.05 4 1.1
29 48 0.9 27 0.5 11 2 1 0.05 4 1.1
211 224 3.1 1135 2.3 139 7.7 1 0.05 4 1.1
213 2053 12 72477 9 2751 31 1 0.05 4 1.1

Gemmini

25 83 2.3 118 0.7 38 0.8 25 0.3 4 1.2
27 380 8.5 1897 3 592 3.3 33 0.3 5 1.2
29 1621 34 26183 12 9439 13 33 0.3 5 1.2
211 17893 132 357498 47 92673 52 32 0.3 5 1.2

SIGMA

25 41 0.7 7 0.2 9 0.3 3 0.1 8 1.4
27 94 2.3 99 0.9 59 1.3 3 0.1 10 1.4
29 443 8.7 1552 3.9 1053 5 3 0.1 10 1.4
211 4920 35 22248 16 10969 20 4 0.1 11 1.4

4 5 6 7 8 9 10 11
Number of PEs (log2)

101

102

103

104

105

C
om

pi
la

tio
n 

Ti
m

e 
(s

ec
)

Compilation Time for Gemmini
Verilator
Khronos
BatchSim
ScaleRTLC

ScaleRTLG

4 5 6 7 8 9 10 11
Number of PEs (log2)

101

102

103

104

C
om

pi
la

tio
n 

Ti
m

e 
(s

ec
)

Compilation Time for SIGMA
Verilator
Khronos
BatchSim
ScaleRTLC

ScaleRTLG

Fig. 4: Compilation time of Gemmini and SIGMA accelerators among different
RTL simulators as the number of PEs increases exponentially.

4.2 Overall Simulation Performance Comparison

Figure 5 shows the simulation speedup of Conv2D, GEMM, Gemmini, and
SIGMA on different RTL simulators, over the baseline Verilator. For small-scale
designs, ScaleRTLC and ScaleRTLG do not outperform other simulators, as the
baseline simulators can fit the RTL design within the cache and apply opti-
mizations for higher efficiency. However, for mid-scale to large-scale designs,
ScaleRTLC and ScaleRTLG exhibit increasing speedup as the design size grows.
This is because ScaleRTLC evaluates components by passing pointers to structs,
improving data locality and reducing synchronization overhead. Additionally,
ScaleRTLG employs a block of threads to evaluate identical components, which



exploits highly parallel SIMT execution on the GPU. Consequently, ScaleRTLC
achieves a 12×–15× speedup, and ScaleRTLG achieves an 11×–300× speedup
at the largest design sizes.

6 7 8 9 10 11 12 13

100

101

Sp
ee
du
p

Conv2D
Verilator
Khronos
BatchSim
ScaleRTLC
ScaleRTLG

6 7 8 9 10 11 12 13

100

101

Sp
ee
du
p

GEMM
Verilator
Khronos
BatchSim
ScaleRTLC
ScaleRTLG

4 5 6 7 8 9 10 11

100

101

102

Sp
ee
du
p

Gemmini
Verilator
Khronos
BatchSim
ScaleRTLC
ScaleRTLG

4 5 6 7 8 9 10 11
Number of PEs (log2)

10−1

100

101

Sp
ee

du
p

SIGMA
Verilator
Khronos
BatchSim
ScaleRTLC

ScaleRTLG

Fig. 5: Overall simulation speedup of Conv2D, GEMM, Gemmini, and SIGMA on
different RTL simulators as the number of PEs increases exponentially. Speedup
is measured relative to the baseline Verilator.



4.3 CPU and GPU Simulation Runtime Analysis

Figure 6 shows the simulation time of Gemmini and SIGMA on different RTL
simulators as the number of PEs increases exponentially. All CPU-based simu-
lators, including ScaleRTLC, exhibit linear or superlinear simulation growth be-
cause CPU threads are limited, and the total executed instructions scale propor-
tionally with the design size. In contrast, ScaleRTLG exhibits sublinear growth.
For instance, the simulation time for Gemmini remains around 0.1 seconds, even
as the size increases from 24 to 211. This is because GPU consists of multi-
ple streaming multiprocessors (SMs), each capable of managing thousands of
threads. As a result, GPU-based simulation benefits from latency hiding through
context switching and achieves higher concurrency. This underscores ScaleRTL’s
efficiency and scalability in deep learning accelerator RTL simulation, especially
for large-scale designs.

4 5 6 7 8 9 10 11
Number of PEs (log2)

10−1

100

101

102

Si
m

ul
at

io
n 

Ti
m

e 
(s

ec
)

Simulation Time for Gemmini
Verilator
Khronos
BatchSim
ScaleRTLC

ScaleRTLG

4 5 6 7 8 9 10 11
Number of PEs (log2)

10−1

100

101

Si
m

ul
at

io
n 

Ti
m

e 
(s

ec
)

Simulation Time for SIGMA
Verilator
Khronos
BatchSim
ScaleRTLC

ScaleRTLG

Fig. 6: Simulation time of Gemmini and SIGMA accelerators on different RTL
simulators as the number of PEs increases exponentially.

4.4 Performance Result of CUDA Graph

Figure 7 compares the performance of CUDA Stream-based and CUDA Graph-
based execution. Since GPU-based simulation involves consecutive kernel calls,
connecting these kernels into a graph is crucial to reducing kernel launch over-
head. Figure 7a and 7b illustrate simulation time over increasing cycles for
both GPU-based approaches on the large Gemmini and SIGMA designs. CUDA
Graph-based simulation consistently outperforms stream-based simulation across
all evaluated scenarios. For instance, in the Gemmini design, CUDA Graph-based
simulation reduces execution time by a consistent 60 milliseconds compared to
stream-based execution.



0 10 20 30
Cycles (K)

0

100

200

300
Ti

m
e 

(m
s)

Simulation Time for Gemmini
ScaleRTLG-Stream
ScaleRTLG-Graph

(a) Gemmini (211 PEs)

0 10 20 30
Cycles (K)

0

250

500

750

1000

1250

Ti
m

e 
(m

s)

Simulation Time for SIGMA
ScaleRTLG-Stream
ScaleRTLG-Graph

(b) SIGMA (211 PEs)

Fig. 7: Simulation results comparing CUDA Stream-based and CUDA Graph-
based execution.

5 Conclusion

This paper presents ScaleRTL, a scalable and unified code generation flow that
automatically produces optimized parallel RTL simulations for deep learning
accelerators. Built atop the MLIR infrastructure, ScaleRTL identifies repetitive
design patterns, reduces code size, accelerates compilation, and generates effi-
cient parallel simulation executables for both CPU and GPU targets. Compared
to state-of-the-art RTL simulators, ScaleRTL achieves a compilation speedup of
three to five orders of magnitude and up to 15× and 300× simulation speedup
on CPU and GPU, respectively. Future work includes integrating ScaleRTL with
MLIR and CIRCT to support the compiler community in exploring RTL simu-
lation research.

Acknowledgments. This project is supported by NSF grants 2235276, 2349144,
2349143, 2349582, and 2349141.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.

References

1. Beamer, S., Donofrio, D.: Efficiently Exploiting Low Activity Factors to Accelerate
RTL Simulation. In: 2020 57th ACM/IEEE DAC. pp. 1–6. IEEE (2020)

2. Genc, H., Kim, S., Amid, A., Haj-Ali, A., Iyer, V., Prakash, P., Zhao, J., Grubb,
D., Liew, H., Mao, H., et al.: Gemmini: Enabling Systematic Deep-Learning Archi-
tecture Evaluation via Full-Stack Integration. In: DAC 2021. pp. 769–774. IEEE
(2021)



3. Huang, T.W., Lin, D.L., Lin, C.X., Lin, Y.: Taskflow: A Lightweight Parallel and
Heterogeneous Task Graph Computing System. IEEE Transactions on Parallel and
Distributed Systems (TPDS) (2022)

4. Huang, T.W., Wong, M.: OpenTimer: A High-Performance Timing Analysis Tool.
In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
(2015)

5. Izraelevitz, A., Koenig, J., Li, P., Lin, R., Wang, A., Magyar, A., Kim, D.,
Schmidt, C., Markley, C., Lawson, J., et al.: Reusability is FIRRTL ground: Hard-
ware construction languages, compiler frameworks, and transformations. In: 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). pp.
209–216. IEEE (2017)

6. Jia, L., Luo, Z., Lu, L., Liang, Y.: TensorLib: A Spatial Accelerator Generation
Framework for Tensor Algebra. In: 2021 58th ACM/IEEE Design Automation
Conference (DAC). pp. 865–870. IEEE (2021)

7. Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pienaar, J., Riddle,
R., Shpeisman, T., Vasilache, N., Zinenko, O.: MLIR: Scaling Compiler Infrastruc-
ture for Domain Specific Computation. In: CGO 2021. pp. 2–14. IEEE (2021)

8. Lin, D.L., Huang, T.W.: Efficient GPU Computation using Task Graph Paral-
lelism. In: European Conference on Parallel and Distributed Computing (Euro-Par)
(2021)

9. Lin, D.L., Huang, T.W., Miguel, J.S., Ogras, U.: TaroRTL: Accelerating RTL Sim-
ulation using Coroutine-based Heterogeneous Task Graph Scheduling. In: Euro-Par
2024 (2024)

10. Lin, D.L., Ren, H., Zhang, Y., Khailany, B., Huang, T.W.: From RTL to CUDA:
A GPU Acceleration Flow for RTL Simulation with Batch Stimulus. In: ACM
International Conference on Parallel Processing (ICPP) (2022)

11. Qin, E., Samajdar, A., Kwon, H., Nadella, V., Srinivasan, S., Das, D., Kaul, B.,
Krishna, T.: SIGMA: A Sparse and Irregular GEMM Accelerator with Flexible
Interconnects for DNN Training. In: 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). pp. 58–70. IEEE (2020)

12. Snyder, W.: Verilator: Open Simulation Goes Multithreaded. In: ORConf (2018)
13. Tong, J., Chang, L., Ogras, U.Y., Huang, T.W.: BatchSim: Parallel RTL Simulation

using Inter-cycle Batching and Task Graph Parallelism. In: 2024 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI). pp. 789–793. IEEE (2024)

14. Trevisan Jost, T., Thangamani, A., Colin, R., Loechner, V., Genaud, S., Bramas,
B.: GPU Code Generation of Cardiac Electrophysiology Simulation with MLIR.
In: European Conference on Parallel Processing. pp. 549–563. Springer (2023)

15. Wang, H., Beamer, S.: RepCut: Superlinear Parallel RTL Simulation with
Replication-Aided Partitioning. In: Proceedings of the 28th ACM International
Conference on ASPLOS, Volume 3. pp. 572–585 (2023)

16. Wang, H., Nijssen, T., Beamer, S.: Don’t Repeat Yourself! Coarse-Grained Circuit
Deduplication to Accelerate RTL Simulation. In: Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 4. pp. 79–93 (2024)

17. Zhou, K., Liang, Y., Lin, Y., Wang, R., Huang, R.: Khronos: Fusing Memory
Access for Improved Hardware RTL Simulation. In: Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture. pp. 180–193 (2023)


