
Late Breaking Results: Statistical Timing Graph
Scheduling Algorithm for GPU Computation

Chih-Chun Chang1 and Tsung-Wei Huang1

1University of Wisconsin–Madison, USA
{chih-chih.chang, tsung-wei.huang}@wisc.edu

Abstract—Statistical Static Timing Analysis (SSTA) is a crucial tech-
nique in digital circuit design because it addresses on-chip variations
(OCV) by propagating timing distributions instead of fixed delays.
However, the computational complexity of SSTA demands significant
memory and long runtimes. While GPUs offer opportunities to accelerate
SSTA, their limited memory capacity makes it challenging to handle
large-scale SSTA workloads. To address this challenge, we propose a
statistical timing graph (STG) scheduling algorithm combined with a
GPU memory management strategy. We have shown up to 4.9× speedup
on a GPU with 16 GB memory compared to a 20-thread CPU baseline
when solving an 18.2 GB STG.

I. INTRODUCTION

Statistical static timing analysis (SSTA) enhances digital circuit
design by providing more accurate delay estimates than traditional
STA [1]. By modeling delays as probability distributions, SSTA
effectively accommodates various on-chip variation (OCV). For in-
stance, [2] uses Monte Carlo simulation to evaluate timing yield as
the fraction of samples meeting timing constraints. However, the
method is computationally intensive due to the extensive sample
exploration required. To address this, [3] implements a GPU-based
Monte Carlo SSTA engine, achieving speedups of up to two orders
of magnitude compared to a CPU-based implementation. Despite
this, performing incremental analysis using Monte Carlo-based SSTA
remains a significant challenge because of the re-sampling overhead.
In contrast, the block-based SSTA methods [4] represent gate delays
and arrival times as random variables and propagate these quantities
through the timing graph using statistical operations as shown in
Figure 1. Gate delays are represented as probability density functions
(PDFs), with multiple PDFs assigned to handle various corner cases.
Arrival times are represented as cumulative distribution functions
(CDFs), which propagate through the circuit. Due to this linearity,
block-based SSTA is more efficient than sampling-based counterparts.

PI1

PI2

PI3

PO1

PO2

a

b

c

d

e

f
g

h
i

j

k

Gate Delay PDFs

Arrival Time CDFs

max
sum

Figure 1: Illustration of a block-based SSTA problem. Gate delays
and arrival times are modeled as random variables and propagated
through the circuit graph using statistical max and sum operators.

With increasing circuit sizes and shrinking transistor dimensions,
more OCVs emerge due to manufacturing process variations. For
example, completing block-based SSTA on large designs with over

three million pins [5], while accounting for tens of early and late
arrival times per pin and more than a dozen corner files can require
memory exceeding hundreds of gigabytes (GB). Such significant
memory demand poses a major challenge for accelerating block-based
SSTA using GPUs which typically have limited memory capacities
compared to CPU (e.g., 24 GB memory for NVIDIA GeForce RTX
4090). To overcome the challenge, we introduce an STG scheduling
algorithm combined with a GPU memory management strategy to
improve the SSTA runtime performance on GPU. We’ve evaluated
the performance using timing graphs generated by [6]. Compared to
a 20-thread CPU baseline, our method achieves a 4.9× speedup when
solving an 18.2 GB STG. We plan to open-source our algorithms to
benefit the timing research community.

(a) (b)

2

2
2

3

3

4
4
4 5

5
61

2

1

1
1

1

2

2
2
3 4

4
41

1

Execution Order: 1→2→3→4→5→6 Execution Order: 1→2→3→4

Figure 2: (a) The STG of the circuit, shown in Figure 1, is structured
with the execution order assigned to each node based on the topo-
logical sorting algorithm. (b) Our scheduling algorithm generates a
scheduled STG with an execution order assigned to each node for
GPU processing.

II. PROBLEM DEFINITION AND CHALLENGES

Given a statistical timing graph (STG), where nodes represent pins
with timing quantities and edges represent dependencies, and a target
GPU memory capacity, our goal is to schedule the STG with an
optimized execution order that maximizes GPU memory utilization,
minimizes CPU-GPU communication, and enhances GPU parallelism
to improve SSTA runtime. We focus on circuits that fit within the
CPU’s main memory but may exceed the GPU’s memory capacity as
the amount of timing data increases. This formulation arises from
our collaboration with industrial partners, highlighting a common
challenge in accelerating large SSTA workloads using GPUs.

Scheduling STG on a GPU is challenging due to limited memory,
requiring frequent data swapping and strict execution order to ensure
correctness. A node can only execute after its parent nodes have
completed their computations, as seen in Figure 2(b), where tasks
in Level 2 must wait for Level 1 outputs. Additionally, maximizing
GPU parallelism is crucial for accelerating SSTA runtime, requiring
efficient resource utilization while respecting data dependencies.
Prioritizing data transfers that enhance GPU occupancy is key to



achieving optimal performance. Furthermore, effective memory man-
agement is essential, as limited GPU memory necessitates careful
tracking and timely swapping of data to prevent out-of-memory
issues.

III. ALGORITHM

To address the above challenges, we propose a STG scheduling
algorithm and a GPU memory management strategy designed for
efficiently solving SSTA problems on GPUs.

The scheduling algorithm manages STG dependencies to ensure
correct execution order while optimizing data transfers to maximize
GPU parallelism. Each node in the STG has two dependency coun-
ters: predecessor and successor. The predecessor counter ensures that
all parent nodes of a node are present in GPU memory before it
can begin to schedule. When a node’s timing data is transferred to
GPU, the predecessor counters of its child nodes are incremented.
Once the counter value of a node matches its in-degree, the node is
ready to schedule. Conversely, the successor counter, initialized to
the node’s out-degree, tracks the number of unfinished child nodes.
Upon completing its computation, a node decrements the successor
counters of its parent nodes. If a successor counter reaches zero, it
indicates that the node’s data is no longer needed and can be evicted
from GPU memory, freeing space for other computations.

c

a

b
d

e

f
g

h
k

j

OI

i

0 / 4

1 / 1

1 / 1

1 / 1

1 / 1

0 / 2

0 / 12 / 1

0 / 1

0 / 1
0 / 1

0 / 1

0 / 0

0 1 2 3 4 5

a b c i d
e f g h j k

a
b
c
i

d

0 1 2 3 4 5
I a b c i d

S1

S2

S3

S4

O
F

C
W M

c

a

b
d

e

f
g

h
k

j

OI

i

0 / 0

1 / 0

1 / 0

1 / 0

1 / 1

1 / 2

1 / 12 / 1

1 / 1

0 / 1
0 / 1

0 / 1

0 / 0

3 4 5
0 1 2

O
F

3 4 5 0 1 2O
F

C
W

e f g
h j k

e
f

g

0 1 2 3 4 5
e f g c i d

S1

S2

S3

S4

M

CPU Scheduler GPU

Figure 3: Illustration of our scheduling algorithm. Each node in
the STGs on the left is equipped with a predecessor and successor
counter, which are displayed at the top of each node. The upper part
illustrates how the first execution order node in Figure 2 is scheduled
by our scheduler and how its data is transferred to GPU memory. The
lower part shows the second-order node. O represents the occupied
queue, F the free queue, C the computation queue, W the waiting
queue, M the GPU memory (with a size of six units), and Si the
CUDA stream.

Our GPU memory management algorithm integrates with the
scheduler to efficiently handle GPU memory limitations. A large
memory pool is allocated, managed by two queues: free queue
(available memory segments) and occupied queue (used memory
segments). Initially, all memory pointers are in the free queue, and the
occupied queue is empty. Each node’s predecessor counter starts at
zero, and its successor counter is initialized to its out-degree. When
the scheduler requests memory, a pointer is moved from the free
queue to the occupied queue. After GPU kernels complete, nodes
in the occupied queue with successor counters at zero are evicted,
their data copied back to CPU, and their memory pointers returned
to the free queue. If no memory is available in the free queue, the
oldest data in the occupied queue is evicted, copied to CPU, and

its pointer returned to the free. Unfinished nodes are rescheduled,
and their children’s predecessor counters are updated. This algorithm
ensures efficient memory use and prevents out-of-memory issues (see
Figure 3).

IV. EXPERIMENTAL RESULTS

We evaluated the performance of our algorithm on 9 timing graphs
derived from industrial circuits provided by [6]. Timing quantities
were sampled from a standard normal distribution, with varying sizes
assigned to each circuit pin to generate STGs of different scales. We
implemented a CPU-based timer in C++ (cpp) and a GPU-based timer
using cudaFlow [7] (cuf ) as our baselines. cpp constructs a task graph
for statistical sum and max operations on STG nodes and utilizes 20
CPU threads, and cuf builds the dependencies using CUDA Graph on
GPU. All experiments were conducted on a 64-bit machine equipped
with an Intel processor (20 threads, 128 GB RAM) and an NVIDIA
A4000 GPU (16 GB memory). The interconnect bandwidth between
the CPU and GPU is 25 GB/s bidirectional.

Circuit ∥V∥ / ∥E∥ Size cpp cuf ours
aes_core_1

66K / 86K
1.0 679 15405 370 (1.8×)

aes_core_2 2.0 1306 15599 450 (2.9×)
aes_core_3 3.1 1870 15576 396 (4.7×)
des_perf_1

303K / 387K
4.6 3106 OOM 1813 (1.7×)

des_perf_2 9.2 5798 OOM 2108 (2.7×)
des_perf_3 13.8 8474 OOM 1760 (4.8×)
vga_lcd_1

397K / 489K
6.0 4051 OOM 2367 (1.7×)

vga_lcd_2 12.1 7651 OOM 2271 (3.4×)
vga_lcd_3 18.2 11214 OOM 2297 (4.9×)

Table I: Runtime performance comparison (milliseconds) among cpp,
cuf and ours across various STG sizes (GB). OOM denotes out-of-
memory on the GPU.

Table I presents a runtime performance comparison among cpp,
cuf and our algorithm across various STG sizes. Our algorithm
consistently outperforms cpp and cuf in all benchmarks. For instance,
the aes_core_3 circuit (3.1 GB) achieves a 4.7× speedup over cpp.
Similarly, the des_perf_3 circuit (13.8 GB) and vga_lcd_3 circuit
(18.2 GB) achieve speedups of 4.8× and 4.9×, respectively. As
shown in the table, the performance improvement becomes more
significant with larger circuit sizes, demonstrating the scalability
of our algorithm. Additionally, cuf encounters GPU out-of-memory
(OOM) issues on larger circuits due to the GPU memory limitation.
In contrast, our scheduling algorithm with the GPU memory man-
agement strategy overcomes this limitation.

To further contribute to the timing analysis research community,
we plan to open-source our algorithms.

REFERENCES

[1] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statistical timing
analysis: From basic principles to state of the art,” IEEE TCAD, vol. 27,
no. 4, pp. 589–607, 2008.

[2] R. Kanj, R. Joshi, and S. Nassif, “Mixture importance sampling and its
application to the analysis of sram designs in the presence of rare failure
events,” in ACM/IEEE DAC, 2006, pp. 69–72.

[3] K. Gulati and S. P. Khatri, “Accelerating statistical static timing analysis
using graphics processing units,” in IEEE/ACM ASPDAC, 2009.

[4] A. Devgan and C. Kashyap, “Block-based static timing analysis with
uncertainty,” in IEEE/ACM ICCAD, 2003, pp. 607–614.

[5] J. Hu, G. Schaeffer, and V. Garg, “Tau contest on incremental timing
analysis,” in ICCAD. Austin, TX, USA: IEEE, 2015.

[6] T.-W. Huang, G. Guo, C.-X. Lin, and M. D. Wong, “Opentimer v2: A
new parallel incremental timing analysis engine,” TCAD, 2020.

[7] D.-L. Lin and T.-W. Huang, “Efficient gpu computation using task graph
parallelism,” in Euro-Par, Springer. Cham, Switzerland: Springer, 2021.


	Introduction
	PROBLEM DEFINITION AND CHALLENGES
	Algorithm
	Experimental Results
	References

