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ABSTRACT
Recent static timing analysis (STA) tools have utilized task de-

pendency graph (TDG) parallelism to enhance the STA runtime

performance. Although TDG parallelism shows promising speedup,

the overhead of scheduling a TDG can become dominant as the

TDG becomes larger. To minimize the scheduling overhead, several

TDG partitioning algorithms have been proposed to reduce the

TDG size without affecting its task parallelism. Despite improved

performance, existing TDG partitioners all fall short of incremental
partitioning, limiting their practical use in STA tools that support

timing-driven operations. To overcome this limitation, we propose

iTAP, an incremental TDG partitioner to fully leverage the power

of TDG partitioning in task-parallel STA applications. Compared to

a state-of-the-art full TDG partitioner, iTAP enhances the overall

STA performance by up to 2.97×.
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1 INTRODUCTION
Static Timing Analysis (STA) is a crucial step in the chip design

flow to verify the timing constraints of a circuit. STA can be very

time-consuming due to the growing circuit complexity. In response,
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Figure 1: An example of an incremental timing update itera-
tion in STA. The inserted buffer (marked in grey) in the cir-
cuit shown in (a) results in two tasks and three edges inserted
in the TDG shown in (b). Since the TDG has been partitioned
into 𝑃1 and 𝑃2 in the last iteration, the inserted tasks and
edges introduce a cycle between these two partitions.

various efforts have been made to parallelize STA [20, 31, 43, 75].

Among these efforts, the task-parallel STA introduced by Open-

Timer [31, 43] has proven to be one effective approach because it

is free from expensive level-by-level synchronization as in other

timers [43, 75]. Specifically, OpenTimer models timing propaga-

tion as a task dependency graph (TDG). For example, in Figure 1,

OpenTimer expresses the STA of the circuit in (a) as the TDG in

(b), where each task corresponds to a specific STA task (e.g., delay

calculation) and each edge denotes the dependency between two

STA tasks. By delegating such a TDG to a task graph scheduling

environment [35, 40], OpenTimer can efficiently execute STA in

parallel across multicore CPUs.

Despite the promising performance of TDG parallelism, the

scheduling overhead, including building and executing a TDG, can

be substantial in large task-parallel STA workloads. For instance,

when analyzing a circuit with 1.5 million gates, more than 50% of

the runtime is spent on building a TDG with 4 million tasks and 5

million dependencies [78]. However, the optimal parallel execution

performance is achievable by only 8 to 16 CPU threads [20]. This

indicates that a large TDG is not preferable given a small amount of
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saturated CPU threads. Moreover, most timing propagation tasks

finish real quick, typically similar to the time of scheduling a task to

a CPU thread. For instance, a backward propagation task in Open-

Timer [31] typically finishes within 0.5-50 us, yet scheduling this

task using OpenTimer’s Taskflow [40] scheduler takes 0.2-3 us [78].

Therefore, finding the right balance between the scheduling over-

head and TDG granularity is crucial for improving the performance

of task-parallel STA applications.

To address this issue, Zhang et al. recently introduced G-

PASTA [78], a GPU-accelerated TDG partitioning algorithm that

clusters tasks to reduce the TDG size. Clustered tasks within one

partition run sequentially based on their topological order in the

original TDG. This approach reduces the scheduling overhead be-

cause it eliminates the need to schedule tasks individually across

multiple threads. Instead, an entire partition is scheduled once

and executed by a single thread. Compared to other sequential

TDG partitioning algorithms such as Vivek [72] and GDCA [72],

G-PASTA [78] achieves fast partitioning runtime by leveraging

the power of GPU to efficiently partition the TDG. Although G-

PASTA [78] improves the partitioning performance, it is restricted

to full partitioning and does not support incremental partitioning.
However, practical STA tools require incrementality to work with

timing-driven optimization [3]. Specifically, when a TDG is incre-

mentally changed, G-PASTA [78] needs to repartition the entire

TDG from scratch even when only a small fraction of the TDG

needs to be repartitioned. For example, in Figure 1 (a), a buffer

is inserted into the circuit by a timing-driven operation, which is

represented as task and edge insertions in the corresponding TDG

shown in Figure 1 (b). Since the TDG has been partitioned into 𝑃1

and 𝑃2 in the previous iteration, the inserted tasks and edges intro-

duce a cycle between these two partitions, which is illegal because

we cannot schedule a TDG with cycles. In this case, G-PASTA [78]

has to repartition the entire TDG in (b) to remove the cycle. In

practice, timing optimization may incur millions of incremental it-

erations. Without incremental partitioning, we cannot fully harness

the power of TDG partitioning in task-parallel STA applications.

However, designing an efficient incremental TDG partitioning

algorithm is challenging for the following three reasons: (1) We

need to effectively identify a minimal set of tasks necessary for initi-

ating incremental partitioning. (2) During incremental partitioning,

we need to avoid traversing too many tasks to update partitions.

Otherwise, it has no difference from full partitioning. (3) Incre-

mental partitioning must resolve any potential cycles introduced

by incremental operations. To overcome these challenges, we pro-

pose iTAP, an incremental TDG partitioner for task-parallel STA.

Compared to existing TDG partitioners, iTAP can incrementally

update partitions in response to changes in the TDG topology. We

summarize iTAP’s technical contributions as follows:

• We propose a strategy to effectively identify a minimal set of

tasks necessary for initiating incremental partitioning.

• We design an effective incremental clustering algorithm that com-

pletes incremental partitioning by traversing a minimal number

of tasks without introducing any cycles.

• We give rigorous proof to verify the correctness of our incremen-

tal cycle-free clustering algorithm.

We evaluate the performance of iTAP on a set of TDGs and

incremental operations obtained from OpenTimer [31] and 2015

TAU Contest [26]. Compared to G-PASTA [78], iTAP enhances the

overall STA performance by up to 2.97×. We plan to open the source

of iTAP to benefit the STA community.

2 BACKGROUND
2.1 TDG Partitioning
The inputs of TDG partitioning include: (1) a TDG where each

task corresponds to a specific timing propagation task (e.g., delay

calculation) and each edge corresponds to the dependency between

two tasks, and (2) an adjustable partition size parameter to limit

the maximum number of tasks within a partition. The objective

is to partition the TDG to an optimal granularity without intro-

ducing any cycles so that the partitioned TDG can deliver better

runtime performance than the original TDG. TDG partitioning

stands apart from conventional graph or hypergraph partitioners

such as Metis [53] and Kahypar [73] by targeting partitioning a di-
rected acyclic graph (DAG) to minimize scheduling overhead while

maintaining the original TDG parallelism. Besides, since partition-

ing a TDG is conceptually identical to clustering the tasks in a

TDG, in this paper, the two terms, partitioning and clustering, are

interchangeable.

2.2 G-PASTA
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Figure 2: An example of G-PASTA’s [78] partitioning process
in three iterations. Threads 1, 2, and 3 traverse the TDG by
parallel BFS and assign partition IDs to the tasks. Under G-
PASTA’s [78] constraint, each task with multiple dependents
(marked in grey) is clustered into its dependent’s partition
with the largest partition ID (e.g., the task with dependents
from 𝑃0 and 𝑃1 is clustered into 𝑃1).

iTAP is built on top of G-PASTA [78] because of its fast parti-

tioning runtime and high partitioning quality. In this section, we

provide a brief overview of G-PASTA [78]. By leveraging the power

of GPU, G-PASTA [78] efficiently partitions the TDG by assigning

partition IDs to the tasks using parallel breadth-first search (BFS).

Figure 2 illustrates G-PASTA’s [78] partitioning process in three

iterations. In the first iteration (a), each thread assigns a source

task with a new partition ID (𝑃0, 𝑃1, or 𝑃2). In the following two

iterations (b) and (c), each thread traverses to the next BFS level

and assigns a partition ID to each available task.

However, such parallel partitioning can easily introduce cycles

to the partitioned TDG. To address this, G-PASTA [78] introduces

a key constraint on tasks’ partition IDs, which is, the partition ID
of a task must be no smaller than the partition IDs of its dependents.
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Figure 3: An example that inserting an edge into a partitioned
TDG results in a cycle, thus requiring repartitioning the TDG.
(a) Initial partitions. (b) A new edge is inserted, leading to a cy-
cle between 𝑃1 and 𝑃2. To remove this cycle, (c) G-PASTA [78]
traverses the entire TDG to repartition it, while (d) iTAP only
traverses three tasks to update partitions.

This constraint, as proven in [78], effectively eliminates cycles by

preventing backward dependencies during partitioning. Based on

this constraint, in Figure 2 (b) and (c), each task with multiple de-

pendents (marked in grey) is clustered into its dependent’s partition

with the largest partition ID (e.g., the task with dependents from

𝑃0 and 𝑃1 is clustered into 𝑃1).

Despite the fast partitioning runtime offered by GPU parallelism,

G-PASTA [78] lacks the support for incrementality-it cannot effi-
ciently update partitions without repartitioning the entire TDG when
the topology changes. This limitation hinders G-PASTA [78] from

fully utilizing its fast partitioning capabilities in incremental timing

analysis, where the TDG topology is frequently modified, as shown

in the example in Figure 3.
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Figure 4: Four types of incremental operations on a TDG.

To achieve incremental partitioning, we first examine four types

of incremental operations that can be applied to a previously par-

titioned TDG: inserting edges, inserting tasks, removing edges, and
removing tasks, as shown in Figure 4. We apply incremental parti-

tioning when inserting edges and inserting tasks because (1) insert-

ing edges between partitioned tasks can introduce illegal cycles (see

Figure 4 (a)), and (2) continuously inserting tasks over many incre-

mental iterations without partitioning them can lead to too many

tasks in the TDG (see Figure 4 (b)), thus increasing the scheduling

overhead. However, removing edges (Figure 4 (c)) and removing

tasks (Figure 4 (d)) do not necessitate incremental partitioning, as

they neither introduce cycles nor increase the scheduling overhead.

To eliminate the potential cycles caused by edge insertions between

partitioned tasks, we identify all the partitioned tasks affected by

edge insertions and define them as type-1 frontiers. On the other

hand, to mitigate the increased scheduling overhead from task inser-

tions, we identify all the newly inserted tasks and their connected

partitioned tasks and define them as type-2 frontiers.

In this paper, iTAP focuses on resolving potential cycles and

mitigating the increased scheduling overhead, which is caused by

edge and task insertions, by partitioning these two types of frontiers.

As shown inAlgorithm 1, iTAP has two stages: (1) identify a small set
of tasks from type-1 and type-2 frontiers, defined as initial frontiers,
to initiate incremental partitioning (lines 1-2), and (2) apply our
incremental cycle-free clustering algorithm on the frontiers (lines
3-4).

Algorithm 1: Overview of iTAP

Input: list of partitioned tasks T, list of newly inserted

edges E_n, list of newly inserted tasks T_n
Output: T with partition ID par_id assigned to each task

1 type1_ftr_queue← identify_initial_type1_frontiers(T, E_n);
2 type2_ftr_queue← identify_initial_type2_frontiers(T, T_n);
3 T ← handle_type1_frontiers(type1_ftr_queue);
4 T ← handle_type2_frontiers(type2_ftr_queue);

3.1 Identify Initial Frontiers
To initiate incremental partitioning, we need to identify a set of

initial frontiers from type-1 and type-2 frontiers separately as the

starting point for our incremental cycle-free clustering algorithm.

Algorithm 2: identify_initial_type1_frontiers(T, E_n)
Input: T, E_n
Output: type1_ftr_queue filled with initial type-1 frontiers

1 foreach e ∈ E_n
2 if e.from_task.partitioned & e.to_task.partitioned
3 type1_ftr_queue.push(e.from_task);

(1) Identify initial type-1 frontiers. Algorithm 2 shows that when

an edge is inserted between two partitioned tasks, the source task of

the edge is considered as an initial type-1 frontier as it is the starting

point where a cycle may be introduced. As shown in Figure 5 (a),

a cycle is introduced between 𝑃0 and 𝑃1 when an edge is inserted

between tasks 1 and 2. In this case, task 1 is an initial type-1 frontier

and pushed into type-1 frontier queue (type1_ftr_queue).

Algorithm 3: identify_initial_type2_frontiers(T, T_n)
Input: T, T_n
Output: type2_ftr_queue filled with initial type-2 frontiers

1 foreach t ∈ T_n
2 if t.fanin.size = 0

3 type2_ftr_queue.push(t);
4 else if all t.dependents are partitioned
5 type2_ftr_queue.push(t);

(2) Identify initial type-2 frontiers. Algorithm 3 shows that the

inserted (unpartitioned) tasks that have no dependents (lines 2-3)

along with those that have only partitioned dependents (lines 4-5)

are initial type-2 frontiers. As illustrated in Figure 5 (b), among

unpartitioned tasks, tasks 5 and 8 have no dependents, and task 7

has only partitioned dependents, so they are initial type-2 frontiers

and pushed into type-2 frontier queue (type2_ftr_queue).
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Figure 5: An example of initial type-1 frontiers (a) and initial
type-2 frontiers (b). (a) The source task of a new edge (task
1) is an initial type-1 frontier (marked in blue). (b) The new
(unpartitioned) tasks that have no dependents (tasks 5 and
8) along with those that have only partitioned dependents
(task 7) are initial type-2 frontiers (marked in yellow).

3.2 Incremental Cycle-free Clustering
Algorithm

Once we have identified these two types of initial frontiers, we can

repartition the TDG using our incremental cycle-free clustering

algorithm. Here, we have two challenges: (1) We need to minimize

the number of traversed tasks during incremental partitioning. (2)

Incremental partitioning must resolve any potential cycles intro-

duced by incremental operations. To avoid cycles, iTAP adopts

G-PASTA’s [78] cycle-free constraint: the partition ID of a task
must be no smaller than the partition IDs of its dependents. However,
maintaining the cycle-free constraint in incremental partitioning is

nontrivial because incremental operations are randomly applied to

the TDG and we do not know which ones of these operations can

introduce cycles. To overcome these two challenges, our algorithm

operates in two phases: (1) handle type-1 frontiers, and (2) handle
type-2 frontiers.

(1) Handle type-1 frontiers. The goal of this phase is to eliminate

the potential cycles due to inserted edges between the partitioned

tasks. This is done by updating the partition IDs of type-1 frontiers

to meet the cycle-free constraint. As presented in Algorithm 4, with

initial type-1 frontiers stored in type1_ftr_queue by Algorithm 2,

we initiate a BFS starting from initial type-1 frontiers. Every time

we pop a frontier from type1_ftr_queue, we examine its partitioned

successors. If a successor’s partition ID is smaller than that of

the frontier, we update the partition ID of this successor with the

frontier’s partition ID (lines 5-6). Finally, we push this successor

into type1_ftr_queue as it will be the type-1 frontier in the next

incremental partitioning iteration. Figure 6 (a)-(b) illustrate phase

1 of our algorithm in two iterations.

Algorithm 4: handle_type1_frontiers(type1_ftr_queue)
Input: type1_ftr_queue filled with initial type-1 frontiers

1 while !type1_ftr_queue.empty()

2 cur_task← type1_ftr_queue.pop();
3 foreach suc ∈ cur_task.fanouts
4 if suc.partitioned & suc.par_id < cur_task.par_id
5 suc.par_id← cur_task.par_id;
6 type1_ftr_queue.push(suc);

(2) Handle type-2 frontiers. The goal of this phase is to parti-

tion the newly inserted tasks to mitigate the increased scheduling

overhead caused by task insertions without introducing any cycles.

This is done by clustering type-2 frontiers under the cycle-free

constraint. As shown in Algorithm 5, with initial type-2 frontiers

stored in type2_ftr_queue by Algorithm 3, we first cluster a frontier

popped from the queue in the current partitioning iteration, then

traverse its successors by topological sorting to identify the next

frontiers for the next partitioning iteration.

Algorithm 5: handle_type2_frontiers(type2_ftr_queue)
Input: type2_ftr_queue filled with initial type-2 frontiers

1 while !type2_ftr_queue.empty()

2 cur_task← type2_ftr_queue.pop();
3 cluster_current_frontiers(cur_task);
4 identify_next_frontiers(cur_task);

Algorithm 6 shows howwe cluster type-2 frontiers. To ensure the

partition IDs of these frontiers satisfy the cycle-free constraint, we

first obtain the largest partition ID from its partitioned dependents

(𝐿𝑝𝑑) and the smallest partition ID from its partitioned successors

(𝑆𝑝𝑠). To maintain the cycle-free constraint, the partition ID of this

frontier should be no smaller than 𝐿𝑝𝑑 and no larger than 𝑆𝑝𝑠 . We

then categorize type-2 frontiers into the following four cases and

cluster them accordingly:

Algorithm 6: cluster_current_frontiers(cur_task)
Input: type-2 frontier cur_task in the current partitioning

iteration

Global :partition size P_s, current maximum partition ID

max_par_id
1 [Lpd, Sps]← get_Lpd_and_Sps(cur_task);
2 if Lpd does not exist & Sps exists // case A

3 cur_task.par_id← Sps;
4 else if Lpd does not exist & Sps does not exists // case B

5 cur_task.par_id← ++max_par_id;
6 else if Lpd exists & Sps does not exist // case C

7 if number of tasks in partition Lpd < P_s
8 cur_task.par_id← Lpd;
9 else
10 cur_task.par_id← ++max_par_id;
11 else if Lpd exists & Sps exists // case D

12 cur_task.par_id← Lpd;
13 mark cur_task as partitioned;

A Type-2 frontier does not have partitioned dependents but

has partitioned successors, i.e., 𝐿𝑝𝑑 does not exist but 𝑆𝑝𝑠 exists

(lines 2-3). In this case, we cluster this frontier into partition 𝑆𝑝𝑠

since its partition ID should be no larger than 𝑆𝑝𝑠 .

B Type-2 frontier has neither partitioned dependents nor parti-

tioned successors, i.e., Neither 𝐿𝑝𝑑 nor 𝑆𝑝𝑠 exists (lines 4-5). In this

case, we assign a new partition ID to this frontier since its partition

ID is not constrained by 𝐿𝑝𝑑 or 𝑆𝑝𝑠 .
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𝑃ℎ𝑎𝑠𝑒 1. ℎ𝑎𝑛𝑑𝑙𝑒 𝑡𝑦𝑝𝑒-1 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑠 𝑃ℎ𝑎𝑠𝑒 2. ℎ𝑎𝑛𝑑𝑙𝑒 𝑡𝑦𝑝𝑒-2 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑠

Figure 6: An example of incremental cycle-free clustering algorithm in eight iterations under the partition size of 3. Phases 1 and
2 of our algorithm are shown in (a)-(b) and (c)-(h) respectively. The initial frontiers in the queues are obtained by Algorithm 2
and Algorithm 3 from Figure 5. In phase 1, (a) we pop task 1 and traverse its partitioned successors, tasks 2 and 3. Since task 2’s
partition ID (𝑃0) is smaller than task 1’s (𝑃1), we update task 2’s partition ID as 𝑃1 and push it into 𝑡𝑦𝑝𝑒1_𝑓 𝑡𝑟_𝑞𝑢𝑒𝑢𝑒. (b) We pop
task 2 and since it has no partitioned successors, 𝑡𝑦𝑝𝑒1_𝑓 𝑡𝑟_𝑞𝑢𝑒𝑢𝑒 is empty. So phase 1 ends. In phase 2, (c) we pop task 8, which
falls under case A , so we cluster task 8 into 𝑃0. Then we traverse task 8’s successors by topological sorting and push task 0 into
𝑡𝑦𝑝𝑒2_𝑓 𝑡𝑟_𝑞𝑢𝑒𝑢𝑒. (d) We pop task 5, which falls under case B , so we assign it with a new partition 𝑃2. Then we push task 5’s
successors, tasks 4 and 6 into 𝑡𝑦𝑝𝑒2_𝑓 𝑡𝑟_𝑞𝑢𝑒𝑢𝑒. (e) We pop task 7, which falls under case C . Since 𝑃1 already has three tasks, we
assign task 7 with a new partition 𝑃3. (f) We pop task 0, which falls under case D , so it stays in 𝑃0. We do not identify any of
task 0’s successors as a frontier since they all satisfy the cycle-free constraint. Finally, in (g)-(h), we pop tasks 4 and 6 in turns.
They both fall under case C . Since 𝑃2 still has space, we cluster them into 𝑃2. Since 𝑡𝑦𝑝𝑒2_𝑓 𝑡𝑟_𝑞𝑢𝑒𝑢𝑒 is empty, phase 2 ends.

C Type-2 frontier has partitioned dependents but does not have

partitioned successors, i.e., 𝐿𝑝𝑑 exists but 𝑆𝑝𝑠 does not exist (lines

6-10). In this case, since the partition ID of this frontier should be

no smaller than 𝐿𝑝𝑑 , we cluster it into partition 𝐿𝑝𝑑 only if there is

still space in partition 𝐿𝑝𝑑 (lines 7-8). Otherwise, we assign it with

a new partition ID (lines 9-10).

D Type-2 frontier has both partitioned dependents and parti-

tioned successors, i.e., both 𝐿𝑝𝑑 and 𝑆𝑝𝑠 exist (lines 11-12). In this

case, we cluster this frontier into partition 𝐿𝑝𝑑 since it is possible

that 𝐿𝑝𝑑 > 𝑆𝑝𝑠 , leaving us no choice but to cluster this frontier

into partition 𝐿𝑝𝑑 and update its successors in later partitioning

iterations to preserve the cycle-free constraint.

After we cluster a type-2 frontier in the current partitioning iter-

ation, we traverse its successors by topological sorting to identify

the frontiers for the next partitioning iteration. As presented in

Algorithm 7, we apply a topological sorting on the successors of

a type-2 frontier in the current iteration by using a dependency

counter dep_cnt to count the visited fanin dependencies of its suc-

cessors. Once dep_cnt of a successor equals the size of its fanin,

this successor is identified as the frontier in the next iteration and

pushed into type2_ftr_queue. Additionally, if a successor is par-

titioned and its partition ID is smaller than that of the current

frontier (lines 6-7), we also push it into type2_ftr_queue to update

its partition ID in the subsequent iterations.

Figure 6 (c)-(h) shows phase 2 of our algorithm under the par-

tition size of 3 in six iterations. During each iteration, we pop a

type-2 frontier from type2_frt_queue, decide which of the above

four cases it can be applied to (Algorithm 6), and cluster this frontier

Algorithm 7: identify_next_frontiers(cur_task)
Input: type-2 frontier cur_task in the current partitioning

iteration

1 foreach suc ∈ cur_task.fanout
2 update suc.dep_cnt;
3 if suc.dep_cnt = suc.num_fanin_dependents

4 type2_ftr_queue.push(suc);
5 continue;

6 if suc.partitioned & suc.par_id < cur_task.par_id
7 type2_ftr_queue.push(suc);

accordingly. Next, we traverse its successors and identify which suc-

cessors will be the next frontiers by Algorithm 7. These identified

successors are then pushed into type2_ftr_queue for the subsequent
partitioning iterations.

Our incremental clustering algorithm resolves the potential cy-

cles due to incremental operations by maintaining the cycle-free

constraint. More importantly, our algorithm largely reduces the

number of tasks we need to traverse to complete the partitioning,

thus providing faster partitioning runtime than G-PASTA [78].

3.3 Proof
In this section, we give rigorous proof that our incremental cycle-

free algorithm does not introduce any cycles to the partitioned TDG

by showing that it satisfies the cycle-free constraint: the partition ID
of a task must be no smaller than the partition IDs of its dependents.
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Figure 7: Illustrations of A , B , C , and D in Algorithm 6.
𝑚𝑎𝑥 refers to 𝑚𝑎𝑥_𝑝𝑎𝑟_𝑖𝑑 , which is the current maximum
partition ID of the TDG.

Since our algorithm has two phases (Algorithm 4 and Algorithm 5),

we prove them separately:

Theorem 1. Phase 1 of our algorithm (Algorithm 4) does not intro-
duce any cycles during the partition process.

Proof. In algorithm 4, we identify the source task of an inserted

edge between partitioned tasks as a frontier. From this frontier, we

initiate a BFS to traverse its successors in the subsequent BFS levels

to maintain the cycle-free constraint. This operation is applied for

every inserted edge between partitioned tasks sequentially. There-

fore, the cycle-free constraint is preserved in phase 1, thus no cycles

will be introduced. □

For ease of proving the correctness of phase 2 of our algorithm

(Algorithm 5), given a TDG 𝐺 and a type-2 frontier 𝑓 𝑡𝑟𝑖 ∈ 𝐺 , we
define the set of dependents of 𝑓 𝑡𝑟𝑖 as𝐷 (𝑖), the set of its partitioned
dependents as 𝑃𝐷 (𝑖), and the set of its partitioned successors as

𝑃𝑆 (𝑖). We also define the partition ID of 𝑓 𝑡𝑟𝑖 as 𝑝𝑎𝑟_𝑖𝑑 (𝑖) and the

current maximum partition ID as𝑚𝑎𝑥_𝑝𝑎𝑟_𝑖𝑑 . We then propose:

Theorem 2. Phase 2 of our algorithm (Algorithm 5) does not intro-
duce any cycles during the partitioning process.

Proof. Algorithm 5 has two steps: (1) cluster current frontiers

(Algorithm 6), and (2) identify next frontiers (Algorithm 7). We first

prove the correctness of Algorithm 6 by examining the four cases

below:

A 𝑃𝐷 (𝑖) = ∅ and 𝑃𝑆 (𝑖) ≠ ∅, 𝑝𝑎𝑟_𝑖𝑑 (𝑖) = 𝑆𝑝𝑠 , as visualized in

Figure 7 (a). Since Algorithm 5 operates by topological sorting, all

dependents of all 𝑓 𝑡𝑟𝑖 must be partitioned, i.e., ∀𝑓 𝑡𝑟𝑖 ∈ 𝐺 , 𝐷 (𝑖) =
𝑃𝐷 (𝑖). So 𝐷 (𝑖) = ∅. Therefore, regardless of the value of 𝑝𝑎𝑟_𝑖𝑑 (𝑖),
the cycle-free constraint is satisfied.

B 𝑃𝐷 (𝑖) = ∅ and 𝑃𝑆 (𝑖) = ∅, 𝑝𝑎𝑟_𝑖𝑑 (𝑖) =𝑚𝑎𝑥_𝑝𝑎𝑟_𝑖𝑑 + 1, as vi-
sualized in Figure 7 (b). Similar to case A , the cycle-free constraint

is satisfied.

C 𝑃𝐷 (𝑖) ≠ ∅ and 𝑃𝑆 (𝑖) = ∅, 𝑝𝑎𝑟_𝑖𝑑 = 𝐿𝑝𝑑 or𝑚𝑎𝑥_𝑝𝑎𝑟_𝑖𝑑 + 1,
as visualized in Figure 7 (c). Since 𝐷 (𝑖) = 𝑃𝐷 (𝑖), here 𝐿𝑝𝑑 is the

largest partition ID of all dependents. Therefore, the cycle-free

constraint is satisfied.

D 𝑃𝐷 (𝑖) ≠ ∅ and 𝑃𝑆 (𝑖) ≠ ∅, 𝑝𝑎𝑟_𝑖𝑑 = 𝐿𝑝𝑑 , as visualized in

Figure 7 (d). Similar to case C , the cycle-free constraint is satisfied.

After clustering the current frontiers based on these four cases,

Algorithm 5 examines their successors by topological sorting. If the

partition IDs of these successors need to be updated, they will be

the frontiers in the next partitioning iteration (Algorithm 7), which

again, will fall under the above four cases. Therefore, we prove

Theorem 2 is correct. With Theorem 1 and Theorem 2, we prove

the correctness of our incremental cycle-free clustering algorithm.

□

4 EXPERIMENTAL RESULTS
We implemented iTAP in C++ and compiled it using g++ v11.4

with -O2 and -std=c++17 enabled. We performed experiments

on a 4.8 GHz 64-bit Linux machine equipped with an Intel Core

i5-13500 CPU and an Nvidia RTX A4000 GPU. We consider G-

PASTA [78] as our baseline due to its fast partitioning runtime

and high partitioning quality compared with other existing TDG

partitioners [1, 72]. We implemented G-PASTA [78] in CUDA and

compiled it using nvcc v12.2 with -O2 enabled.
To conduct the experiments, we perform one initial full tim-

ing update and 1K subsequent incremental timing updates on six

industrial circuits. We generate the TDGs of these circuits using

OpenTimer [31], where each task performs a timing propagation. In

the initial full-timing update, we use G-PASTA [78] to partition the

TDGs. For each subsequent incremental timing update, we apply

a mix of 40 random incremental operations, including removing

edges, removing tasks, inserting edges, and inserting tasks based on

the setting of 2015 TAU Contest [26]. We then partition the TDGs

with G-PASTA [78] and iTAP independently. Since iTAP requires

users to specify a partition size, we use the value that yields optimal

performance in G-PASTA [78]. The statistics of the circuit TDGs

and their partitioning results are presented in Table 2. All data is

an average of 10 runs.

4.1 Partitioning Performance Comparison
Table 1 compares the overall partitioning performance per incre-

mental timing update iteration between G-PASTA [78] and iTAP

with respect to the partitioning runtime as well as their improve-

ment on building time and runtime of partitioned TDGs. The entries

under 𝑇𝐵𝑢𝑖𝑙𝑑 , 𝑇𝑅𝑢𝑛 , and 𝑇𝑇𝑜𝑡𝑎𝑙 show TDG building time, TDG run-

time, and their aggregate total time before partitioning per incre-

mental timing update. The entries under 𝑇𝐵𝑢𝑖𝑙𝑑𝑃 and 𝑇𝑅𝑢𝑛𝑃 show

TDG building time and TDG runtime after partitioning per incre-

mental timing update. The entries under the 𝑇𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 show the

partitioning runtime of G-PASTA [78] and iTAP. The entries under

𝑇𝑇𝑜𝑡𝑎𝑙𝑃 show the aggregate total time including𝑇𝐵𝑢𝑖𝑙𝑑𝑃 ,𝑇𝑅𝑢𝑛𝑃 , and

𝑇𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 after partitioning, along with the speedup over 𝑇𝑇𝑜𝑡𝑎𝑙 .

Overall, for all circuits, G-PASTA [78] and iTAP both enhance

the STA performance by reducing the TDG size and scheduling

overhead. Nonetheless, iTAP outperforms G-PASTA [78] across

all circuit benchmarks. For instance, iTAP improves the STA per-

formance by 1.86-2.97×, whereas G-PASTA [78] is 1.11-1.98×. Re-
garding the partitioning runtime, iTAP is significantly faster than

G-PASTA [78] because iTAP supports incrementality, i.e., incre-

mentally updating partitions instead of repartitioning the entire

TDG. For example, in the largest circuit, leon2, the speedup of iTAP

over G-PASTA [78] on the partitioning runtime is 29.80×.
Figure 8 visualizes the partitioning performance by breaking

down the runtime for one incremental timing update iteration.

We can clearly see that iTAP further reduces STA runtime than

G-PASTA [78] due to faster partitioning runtime. We do observe

that as the circuit size grows larger, for one incremental timing
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Table 1: Comparison of overall performance per incremental timing update iteration between G-PASTA [78] and iTAP, along
with their improvements on TDGs generated from circuit benchmarks in OpenTimer [31].

circuit

𝑇𝐵𝑢𝑖𝑙𝑑 𝑇𝑅𝑢𝑛 𝑇𝑇𝑜𝑡𝑎𝑙 𝑇𝐵𝑢𝑖𝑙𝑑𝑃 (ms) 𝑇𝑅𝑢𝑛𝑃 (ms) 𝑇𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (ms) 𝑇𝑇𝑜𝑡𝑎𝑙𝑃 (ms)

(ms) (ms) (ms) G-PASTA iTAP G-PASTA iTAP G-PASTA iTAP G-PASTA iTAP

wb_dma 0.79 1.22 2.01 0.06 0.06 0.87 0.77 0.87 0.03 1.8 (1.11×) 0.86 (2.33×)
ac97_ctrl 3.59 3.45 7.04 0.65 0.61 1.95 1.57 1.66 0.82 4.26 (1.65×) 3.00 (2.34×)
aes_core 5.91 5.34 11.25 1.49 1.43 2.37 2.01 2.28 0.34 6.14 (1.83×) 3.78 (2.97×)
des_perf 25.08 25.16 50.24 11.21 11.40 10.30 9.90 3.76 0.56 25.27 (1.98×) 21.86 (2.29×)
vga_lcd 32.51 32.93 65.44 17.05 16.66 14.34 13.7 4.07 0.58 35.46 (1.84×) 30.94 (2.11×)
leon2 335.27 350.51 685.78 219.13 223.20 144.44 142.96 24.74 0.83 388.31 (1.76×) 366.99 (1.86×)

𝑇𝐵𝑢𝑖𝑙𝑑 ,𝑇𝑅𝑢𝑛 : TDG building time and runtime before partitioning 𝑇𝑇𝑜𝑡𝑎𝑙 = 𝑇𝐵𝑢𝑖𝑙𝑑 +𝑇𝑅𝑢𝑛
𝑇𝐵𝑢𝑖𝑙𝑑𝑃 ,𝑇𝑅𝑢𝑛𝑃 : TDG building time and runtime after partitioning 𝑇𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 : partitioning runtime 𝑇𝑇𝑜𝑡𝑎𝑙𝑃 = 𝑇𝐵𝑢𝑖𝑙𝑑𝑃 +𝑇𝑅𝑢𝑛𝑃 +𝑇𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

Table 2: The number of tasks and dependencies in the original TDGs generated by OpenTimer [31] and the partitioning results
by G-PASTA [78] and iTAP. The reduction ratio (×) is with respect to the original TDG.

circuit

Origin G-PASTA iTAP

#tasks #deps #tasks #deps #tasks #deps

wb_dma 13.1K 33.2K 6.4K (2.0×) 8.9K (3.7×) 3.3K (3.9×) 10.1K (3.2×)
ac97_ctrl 42.4K 107.1K 15.1K (2.8×) 38.9K (2.7×) 11.7K (3.6×) 42.2K (2.5×)
aes_core 66.8K 86.4K 17.6K (3.7×) 59.7K (1.4×) 13.8K (4.8×) 63.6K (1.3×)
des_perf 303.7K 387.3K 67.1K (4.5×) 285.1K (1.3×) 62.4K (4.8×) 288.2K (1.3×)
vga_lcd 397.8K 498.9K 87.7K (4.5×) 361.3K (1.3×) 83.9K (4.7×) 366.9K (1.3×)
leon2 4.3M 5.3M 750.0K (5.7×) 3.4M (1.5×) 750.2K (5.7×) 3.4M (1.5×)

update iteration, the partitioning runtime improvement by iTAP

does not significantly reduce the overall STA runtime. However,

practical timing-driven optimization often involves millions of it-

erations [3]. For a circuit such as leon2, reducing 20 milliseconds

per iteration can accumulate to several hours of runtime reduction

over millions of iterations. As we shall show in Figure 9, this per-

iteration improvement will contribute significantly to the overall

STA performance.
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Figure 8: Runtime breakdown of one incremental timing up-
date iteration including partitioning, building and running
the TDG. Origin indicates the STA runtime without any par-
titioning.

4.2 STA Runtime over Incremental Iterations
Figure 9 compares the overall STA runtime of G-PASTA [78] and

iTAP over 1K incremental timing update iterations, where the two

partitioners are invoked separately to partition the modified TDG.
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Figure 9: Comparison of STA runtime improvement between
G-PASTA [78] and iTAP over 1K incremental timing itera-
tions. The black lines represents the original runtimewithout
any partitioning.

The overall STA runtime comprises the time spent on TDG parti-

tioning as well as building and running the partitioned TDG. The

black lines indicate the original STA runtime without any parti-

tioning. We can see from Figure 9 that compared to G-PASTA [78],

iTAP further improves the performance of STA over incremental

timing iterations due to its capability of incremental partitioning.

The performance advantage of iTAP over G-PASTA [78] continues

to increase over iterations.

4.3 Partitioning Runtime Over Incremental
Iterations

Figure 10 compares the partitioning runtime of G-PASTA [78] and

iTAP over 1K incremental timing update iterations. In general, iTAP
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Figure 10: Partitioning runtime comparison between iTAP
and G-PASTA [78] over 1K incremental timing update itera-
tions.

significantly outperforms G-PASTA [78] in terms of the partition-

ing runtime, demonstrating a substantial advantage regardless of

the circuit size. We do observe that over iterations, the partition-

ing runtime of iTAP increases slightly, and that of G-PASTA [78]

remains stable. Still, such fluctuations cannot bridge the significant

speedup gap that iTAP holds over G-PASTA [78], which is brought

by incrementally updating the partitions without traversing the

entire TDG.

5 CONCLUSION
In this paper, we have proposed iTAP, an incremental TDG parti-

tioner for task-parallel static timing analysis (STA). iTAP introduces

an efficient incremental partitioning algorithm that completes in-

cremental partitioning by traversing a minimal amount of tasks

without introducing any cycles. Compared to a state-of-the-art full

TDG partitioner, iTAP enhances the overall STA performance by up

to 2.97×. Inspired by the success of GPU computing in graph pro-

cessing [2–19, 21–25, 27–34, 36–39, 41–52, 54–71, 74, 76, 77, 79, 80],

we plan to extend iTAP to GPU task graph applications.
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