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Abstract—Multi-bit flip-flop (MBFF) banking and debanking is a widely
adopted technique for optimizing power and total negative slack (TNS)
during the post-placement stage of digital design. While banking flip-
flops can reduce both power and area, excessive banking may lead to
increased TNS due to significant register displacement, as well as bin density
violations (BDVs) caused by over-placing MBFFs in legalized regions. To
address these challenges, the EDA community recently organized a CAD
Contest seeking innovative solutions from both academia and industry. In
response, we present TIMBER, a fast and effective optimization algorithm
that balances competing objectives in MBFF placement. Unlike existing
methods, TIMBER employs a bin-density-aware placement strategy that
simultaneously minimizes BDVs and TNS, while also achieving gains in power
and area efficiency. To further enhance the runtime performance, TIMBER
incorporates a parallelization strategy. Experimental results on the official
2024 CAD Contest benchmarks demonstrate that TIMBER outperforms the
first-place winner, delivering on average 13.08 x better solution quality, zero
BDVs, 5.06x faster single-threaded runtime, 3.56 x lower memory usage and
up to 72.49x speedup in multi-threaded execution.

I. INTRODUCTION

Multi-bit flip-flop (MBFF) banking and debanking is a widely adopted
technique for optimizing power and total negative slack (TNS) during
the post-placement stage of digital design [1]. MBFF banking is widely
used to reduce area and power consumption by merging single-bit FFs
into shared clocking structures [4]. As a result, MBFF banking not
only improves energy and area efficiency, but also reduces the need for
additional clock and routing resources [2], [3]. Despite these advantages,
excessive MBFF banking can degrade timing on critical paths due to
displacement of registers from their original locations. On the other hand,
MBFF debanking splits MBFFs to smaller-bit FFs in order to recover
timing, albeit at a cost of increasing power and area [5]. Figure 1 gives
an example of MBFF banking and debanking.
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Figure 1: An example of MBFF banking and debanking to optimize
timing, power, and area during the post-placement stage.
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Due to the contrasting objectives, designing a good MBFF banking
and debanking strategy is very challenging. This challenge is further ex-
acerbated by additional resource constraints, such as limited bin capacity
during MBFF placement. Exceeding the allowable bin capacity can lead
to bin density violation (BDV). Specifically, BDVs occur when standard
cells are unevenly distributed across placement bins, resulting in routing

congestion, longer wirelengths, and degraded timing performance [8].
These violations can also hinder clock tree synthesis and strain the power
delivery network, causing IR drops and localized thermal issues [9].
As a result, bin density control is a critical consideration in MBFF
placement [10].

Several prior works have explored MBFF-based optimizations. For
instance, [12] utilizes a weighted clustering approach based on k-
means to group spatially close registers. Building on this, [13] applies a
mean-shift algorithm to generate more stable and refined clusters. Other
approaches, such as [14], employ mixed-driving MBFFs to optimize
power by adjusting driving strengths based on local load conditions.
Additionally, MBFFs are widely integrated in methods presented in
[15]-[18]. However, these methods primarily emphasize banking, often
overlooking the complementary role of debanking, which can limit their
effectiveness in navigating trade-offs among power, area, and timing. In
addition, they often neglect the bin density constraint as an optimization
objective, which can lead to suboptimal placement results with increased
routing congestion and degraded timing.

To address these problems, the EDA community organized a CAD
Contest in 2024 ICCAD [6] to seek novel solutions for MBFF op-
timization from both academia and industry. However, as presented
by [7], there remains substantial room for improvement, even in the
first-place solution. Consequently, we propose TIMBER, a fast algorithm
that generates a placement optimized for timing, area, and power under a
bin density constraint. Unlike existing methods, TIMBER employs a bin-
density-aware placement strategy that simultaneously minimizes BDVs
and TNS, while also achieving gains in power and area efficiency. We
summarize three key technical innovations below:

« Balanced register selection: We propose a fast, balanced selection
strategy that evaluates multiple candidate groupings and selects the
combination that best satisfies the overall design objectives.

« Bin density-aware placement: We efficiently explore all legal place-
ments within a local window, prioritizing those that minimize timing
degradation and BDV impact while preserving power and area benefits.

« Parallel efficiency: We adopt a multi-threaded design that partitions
the die into independent regions, enabling concurrent execution and
yielding substantial improvements in runtime efficiency.

We evaluate TIMBER on the ICCAD 2024 Contest Problem B
benchmark suite [6], which includes designs with 101K-150K cells and
approximately 20K registers. Compared with the first-place solution,
TIMBER achieves an average speedup of 5.06x and 13.08x lower final
cost score in single-threaded mode, while reducing peak memory usage
by 3.56x. Using the default parameters given by the contest, TIMBER
introduces zero BDVs and demonstrates strong robustness under varying
bin utilization thresholds; achieving up to 42% fewer violations when the
threshold is lowered to 80%. In parallel execution, TIMBER achieves a
peak speedup of 72.49x using 16 threads.



II. PROBLEM FORMULATION

We build TIMBER atop the problem formulation of 2024 ICCAD Con-
test Problem B [6], which provides a rigorous benchmarking environment
for us to evaluate the solution quality of an MBFF placement algorithm.
The input data consists of combinational gates and sequential elements
(i.e., flip-flops (FFs)). Combinational gates are fixed in both structure and
location as they cannot be modified or relocated. In contrast, FFs can be
moved, merged (banked), or split (debanked) to optimize the placement
objective in terms of timing, power, area, and bin density. Specifically,
the objective is a weighted cost function defined as follows:

Z(a-TNS(i)Jrﬂ-Power(i)Jrv-Area(i))JrA'D (1)
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where «, 3, 7, and A are weights, ¢ denotes an FF, TNS(7) is the
total negative slack associated with an FF 4, Power(:) is its power
consumption, and Area(i) is its area. D represents the number of violated
bins under the given utilization threshold e. The die region is organized
into rows of placement sites, which is referred to as placement rows.
To accommodate routing congestion, the die region is partitioned into
uniform bins each of size Bw X Bp, defined per testcase. A bin is
violated if its utilization exceeds the given threshold e.

A. Placement Constraints

The output placement must satisfy the following constraints:

1) All instances must be placed entirely within the die region.

2) Instances must not overlap and must align with the available place-
ment sites within the placement rows.

3) Nets connected to FFs must preserve functional equivalence relative
to their original data input behavior.

A standard cell library is provided, specifying the dimensions, area,
power, and timing characteristics of all available FFs that can be utilized
in the final placement.

B. Timing Calculation

Timing is computed based on the displacement of FFs from their
original locations and can be estimated by [21], [22]. In the initial
placement, the D pin of each register is associated with an input slack
value, and the corresponding Q pin has an intrinsic delay of Jo. As
illustrated in Figure 2, consider a pair of FFs, F'F (launching register)
and F'F> (capturing register). If F'F} and F'F5, are moved or modified
such that their wirelengths change from W; to W{ and W3 to W3,
respectively, and the delay of F'Fy changes from dy to d), the slack at
F'F5 is updated as:

Slack(FFy) = Slack(FFz) + (8o — 8)+

2
TX(Wl—W{)+TX(W3—Wé) @

where 7 denotes the displacement delay factor, provided as part of the
testcase.
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Figure 2: A pair of launching (FF1) and capturing (FF2) FFs. W;
denotes the wirelength of the net between Q/OUT and D/IN.

C. MBFF Banking and Debanking

The D pin and Q pin of each register are the fundamental unit for
banking (merging) and debanking (splitting) MBFFs. FFs can be merged
to form larger instances or split into smaller ones. Banking FFs generally
improves power and area efficiency due to shared clocking resources,
but this often comes at the cost of timing degradation and bin density
violations. Debanking, on the other hand, can alleviate pressure on
timing and bin constraints, but increases power consumption and area
overhead. Therefore, the central challenge of the CAD Contest is to
strike an effective balance between MBFF banking and debanking while
meeting all specified placement constraints. Furthermore, all resulting
FF configurations must conform to the standard cell library definitions
provided in each input testcase.

III. ALGORITHM

In this section, we discuss TIMBER, a fast and efficient algorithm
for timing and power optimization using MBFFs. TIMBER consists of
three key steps, register candidate formation step, placement candidate
selection step, and legalization step. First, in the register candidate
formation step, all feasible register groupings are generated for each
register pin, as permitted by the standard library. Next, in the placement
location candidate selection step, each combination is evaluated and
assigned to the most suitable subregion within the defined window, based
on a cost function that balances power, area, timing and BDV penalty.
Finally, in the legalization step, the registers are minimally displaced
to eliminate overlaps while preserving timing integrity and avoiding bin
density violations. Table I lists some symbols that we will use frequently
in the following sections.

TABLE I: Frequently Used Notations

Symbol | Description
Penalty coefficient for TNS
Penalty coefficient for power

a
B
Y Penalty coefficient for area
A
€

Penalty coefficient for bin density violations
Maximum bin utilization ratio

Wx Width of the placement window
Wy Height of the placement window
Ty Maximum number of window shift trials

A. Register Candidate Formation

1) Forming Clock Groups: To preserve functional correctness, which
is a strict requirement outlined in the problem formulation, only register
pins sharing the same clock net are eligible to be grouped together.
Therefore, as a preprocessing step, all register pins are first partitioned
according to their associated clock nets.

2) Sorting the Cell Library: The cell library consists of several multi-
bit registers varying in size, area, and power consumption. For each
available size, we select the register candidate that maximizes the value
of B-power+-y-area. This ensures that each chosen candidate contributes
the most toward improving the cost function defined in Equation 1.

3) Balanced Nearest Neighbor Combination Formation: Each unvis-
ited register pin is considered as a seed for forming a combination using
the candidates selected in the previous step. If a candidate supports
k bits, the algorithm identifies the k nearest neighboring register pins
to form a potential grouping. Once a valid combination is formed,
all k participating register pins are marked as visited to avoid reuse.
Combinations are attempted in descending order of size, and the process
halts as soon as a legal placement location candidate is found, as
described in the subsequent subsections.



B. Placement Location Candidate Formation

1) Window-based interval generation: We define a fixed-size rectan-
gular window with dimensions Wx x Wy . For each register combination,
we compute the average of the D pin coordinates from all constituent
register pins, and center the window around this point. The objective
is to identify an optimal placement location for the register combination
within this window that minimizes negative timing slack while satisfying
bin density constraints. If no legal placement is found within the current
window, it is iteratively shifted horizontally until a valid region is
identified.

To accomplish this, we adopt an approach similar to that of [11].
The windowed region comprises unoccupied areas and areas already
occupied by registers or blockages (e.g., combinational cells or the
window boundary). Each row in the window is divided into segments,
where a segment refers to a continuous stretch of unoccupied space
between two blockages.
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Figure 3: Extraction of segments within a local window for con-
structing a placement location candidate.
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A segment may contain registers that are entirely located within its
boundaries. We refer to these as local cells. The union of such segments
across multiple rows forms a placement region candidate. For each row,
one segment is selected, and if multiple segments exist, the one closest
to the window center is chosen. This process is illustrated in Figure 3.

Next, we derive intervals from these segments. An interval is defined
as a tuple: (left neighbouring cell, right neighbouring cell, min, Tmax),
where the left(right) neighbouring cell refers to the local cell immediately
adjacent to the interval boundary, and Zmin and xmax represent the start
and end x-coordinates of the interval, respectively. If there are no left or
right neighbouring cells, then we mark it as window boundary.

To prepare these intervals for candidate placement, we perform a right-
shift of all local cells to their rightmost legal positions by processing them
in a reverse topological (right-to-left) order. This procedure is described
in Algorithm 1 and illustrated in Figure 4.

Algorithm 1 Extreme Right Placement of Local Cells

Input: Window region W
Output: Extreme right placement L of local cells
: V < Extract local cells inside W
: topo < Reverse topological sort of V'
L+ 1[] // List to store placement states
: for each register r € topo do
Move r to the rightmost legal position
L < Current window state
end for
: return L

AN A

Next, we perform a topological sort on the local cells to preserve
their left-to-right ordering. Starting from this order, we incrementally
shift each cell to the left, one at a time, while maintaining legality.
For every valid position encountered during this process, we record the
corresponding interval. This process continues until the leftmost legal
position is reached. The complete procedure is detailed in Algorithm 2.

Extreme right placement Extreme left placement

Shift
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Figure 4: The figure on the left illustrates the extreme right valid
placement of the placement region candidate from Figure 3.

Algorithm 2 Interval generation algorithm

Input: Extreme left placement configuration P
Output: Set of intervals C'

1: C«+ 0

2: topo < topological sort of cells in P

3: while topo is not empty do

4: curr < topo.dequeue()

5: Shift curr to its leftmost legal position

6: Create new interval I based on curr’s new position
7: C+1

8: end while

9: return C

2) Generating placement location candidates: The intervals generated
in the previous step are first sorted in increasing order based on their
left endpoints. We then iterate through these intervals, and as soon as we
accumulate enough vertically aligned segments to match the height of
the register candidate, we identify a valid placement location candidate.
Figure 5 illustrates some potential placement location candidates for our
running example.
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Figure 5: Inserting register candidate (black dotted boundary)
into placement location candidates (A and B) generated from the
intervals. The candidate with the lowest cost is selected.

If no suitable placement locations are found within the initial window,
the window is shifted horizontally by Wx units in both left and right
directions, up to T times. If a valid location still cannot be found,
the algorithm falls back to the next smaller register size and repeats the
process until a feasible placement is identified.

3) Evaluating placement location candidates: We evaluate the quality
of each placement location candidate using the procedure described in
Algorithm 3. Given that we maintain grid density information in an
appropriate data structure, we first compute the additional area introduced
by the current register candidate across the bins it spans. For each bin
that exceeds its capacity threshold ¢, we increase the placement cost by
a penalty factor .

To account for timing, our aim is to minimize the distance between
each register pin and its corresponding driver (precursor) pin. Reducing
this distance inherently improves timing by lowering the TNS, as signal
propagation delays are shortened.

This cost function, which penalizes both bin overflows and poor tim-
ing, ensures that placement candidates with fewer bin density violations
and better timing characteristics are favored. Once all candidates are
evaluated, the one with the lowest overall cost is selected. The register
candidate is then placed at that location, and the grid density data
structure is updated accordingly.



Algorithm 3 Evaluating Placement Location Candidate

Algorithm 4 Legalization Algorithm

Input:
Input:
Input:
Input:

Global cost gc

Placement location candidate P

Density penalty A

TNS penalty «

Input: Displacement delay w

Input: Maximum bin utilization ratio e

Output: Updated global cost gc

s le+0

: Tmin < min(left endpoints of intervals in P)

. Tmax < min(right endpoints of intervals in P)
: for each placement site p € P such that Tmin < p < Tmax do
lc + lc 4+ X\ x No. of Bin Violations in p

: end for

: for each register pin r € Register Candidate do

lc < lc+ a X w x distance(r, precursor(r))

: end for

: gc < min(gc,lc)

: return gc

// local cost

—_
— O 0V XN U AWN —

C. Legalization

Once a register candidate is placed at its optimal location, a legal-
ization step is performed to eliminate any overlaps with previously
placed registers. This is done while preserving the original left-to-right
ordering of local cells. To achieve minimal displacement, we use queues
to propagate shifts outward from the newly placed register: local cells to
its left are pushed leftward, and those to its right are pushed rightward.

Because the placement candidate is selected within a confined window
region, we guarantee that all legalized cells remain within this win-
dow. This localized adjustment ensures overlap-free placement without
compromising bin density or timing constraints. Figure 6 illustrates
legalization in our running example. The full procedure is detailed in
Algorithm 4.

Before Legalization

| [ | |

Figure 6: Inserting register candidate into placement location candi-
date B from Figure 5. Legalization ensures minimal displacement of
the cells in the original placement in Figure 3 to ensure no overlaps
(marked in red stripes). The relative order of the local cells is also
maintained.

After Legalization

D. Time Complexity Analysis

1) Clock Group Formation: Linear scan over register pins takes O(N),
where N is the number of register pins.
2) Cell Library Sorting: Sorting m register types by weighted cost
takes O(mlogm) time. As m < N, this step is not a bottleneck.
3) Segment and Interval Generation:
o Segment formation within a window takes O(Wx x Wy ), where
Wx and Wy are the window’s dimensions.
« Topological sorting and interval generation over L local cells each
take O(L) time.
This process repeats for each unvisited register pin, resulting in a total
complexity of O(N x (WxWy + 2L)).

Input: Unlegalized placement L
Input: Current cell candidate C'
Output: Legalized placement L

Q<+ ] // Queue to store local cells
2: for lc € left neighbouring local cells of C' do
3: Q.enqueue({lc, C})
4: end for
5: while @ is not empty do
6: {new, curr} + Q.dequeue()
7: w <— width of new
8: x <— lower-left x coordinate of curr
9: x. < lower-left x coordinate of new
¥~z t+w—=x
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12: Q.enqueue({local cell to the left of new, new})
13: end while

14: for rc € right neighbouring local cells of C' do

15: Q.enqueue({rc,C})

—_
—

16: end for

17: while @ is not empty do

18: {new, curr} + Q.dequeue()

19: w < width of curr

20: x < lower-left x coordinate of curr
21: xz. < lower-left x coordinate of new
22: ¥~z +w— x,

23: Te 4— X + 2

24: Q.enqueue({local cell to the right of new, new})
25: end while

26: return L

4) Placement Evaluation: Constant-time lookups yield O(1) per can-
didate.
5) Legalization: Adjusting overlapping cells takes O(L) per window.
Since L < N, impact is minor.
Overall Time Complexity: The algorithm is dominated by the seg-
ment and interval generation phase. Therefore, the total time complexity
is given as follows:

O(N-((Wx - Wy) + 2L))

IV. EXPERIMENTAL RESULTS

We implemented TIMBER in C++17 and compiled it using g++
version 11.4.0 with the —02 optimization flag enabled. All experiments
were conducted on a Linux workstation equipped with a 13" Gen Intel®
Core™ i5-13500 CPU and 80 GB of RAM. We evaluated our solution us-
ing the benchmark suite provided by the 2024 ICCAD Contest on Power
and Timing Optimization with MBFFs [6]. This suite comprises designs
containing 100K-150K standard cells and approximately 20K registers
per design. Detailed statistics of the benchmark suite are outlined in
Table II. For brevity, we rename the benchmarks as casel-case7,
corresponding to testcasel-testcase3 and hiddencase0l-
hiddencase04, respectively.

Since there is no universally optimal value for the parameters Wx,
Wy and T (defined in Table I) for all benchmarks, we expose them
to the user as tunable parameters, allowing greater flexibility to meet the
needs of the user’s design objectives. In TIMBER, we set the window
dimension to Wx = 15 and Wy = 15, with T set to 15 for all, except
cased, where T was increased to 25 to ensure successful placement
of all register pins on the die. These values produce the best results for
our objective.



TABLE II: Benchmark Statistics. «, 8, v and )\ represent the
weights associated with timing, area, power, and BDV, respectively
(see Equation 1). € is the maximum bin utilization threshold. #C is
the number of cells, and #R is the number of registers.

Circuit | « B ¥ A € #C #R
casel 10 | 2e3 | 2e—3 | 1e8 | 9293 | 108685 | 19879
case2 10 | 4e2 | 8e—7 | 1e8 | 98.27 | 153457 | 21164
case3 10 | led | 2e—3 | 1e8 | 97.44 | 101221 | 19789
case4 10 | 2e5 | 2e—6 | 1e8 | 92.93 | 108685 | 19879
case5 10 | 4ed | 8e—T7 | 1e8 | 98.27 | 153457 | 21164
case6 10 | 4e2 | 8e—5 | 1le8 | 98.27 | 153457 | 21164
case’ 10 | led | 2e—3 | 1e8 | 97.44 | 101221 | 19789

A. Baseline and Scoring

We use the contest’s first-place solution as our baseline. Since only the
executable was provided, we cannot reason its algorithm but consider it
as a black box. To ensure fair comparison, we normalize power, timing,
and area across all testcases. Normalization is necessary due to the wide
variation in raw metric values across different circuit sizes, which can
span several orders of magnitude. While a common approach uses global
min and max values from all contest submissions (over 90 registered
teams for problem B alone), this is impractical since we don’t have access
to every team’s executable as the contest organizers. Instead, we estimate
the metric ranges individually. For power and area, we use the standard
cell library to determine the registers with the lowest and highest values.
For TNS, we assume a minimum of zero and estimate the maximum
via Monte Carlo simulation by randomly placing registers and recording
the worst-case result. This normalization allows us to quantify how far
TIMBER and the baseline deviate from the potential best and worst
values of each metric.

Since TIMBER targets the contest formulation, we focus on comparing
with the first-place solution. We do not compare with other MBFF
works (e.g., [11]-[14]) since they target a different problem formulation.
Additionally, we do not compare with industrial tools, as they are
designed to support a wide range of practical design constraints, such
as power, timing, routing, and legal placement, which often come with
nontrivial runtime and quality trade-offs.

B. Overall performance comparison

Table III presents a comparative analysis of key performance metrics
between TIMBER and the baseline (the first place). As shown in
Table III, the geometric means of the power, area, and timing metrics
for both TIMBER and the baseline are generally comparable. TIMBER
demonstrates a slight advantage in timing and power efficiency. Notably,
in case2 and case6, TIMBER achieves area reductions that are two
orders of magnitude smaller than those of the baseline. We attribute
this significant improvement to TIMBER’s balanced register selection
strategy, which prioritizes combinations that yield the greatest reduction
in the overall cost function.

Next, we compare number of BDVs. TIMBER achieves zero bin
violations across all testcases, whereas the baseline incurs several vi-
olations, with a maximum of 14 in cased. As highlighted in the
contest as a constraint, having too many violated bins can incur severe
problems, such as routing congestion, longer wirelength, and degraded
timing performance, and thus should be avoided. We attribute TIMBER’s
zero BDVs to its bin-density-aware placement strategy, which carefully
balances optimization objectives while strictly adhering to bin density
constraints.

We further compare the peak memory usage and runtime of both
solutions. On average, TIMBER consumes 3.56x less memory than the

baseline, with a peak reduction of 5.15x in case6. In terms of runtime,
TIMBER achieves an average speedup of 5.06x, with significant gains
of 14.92x and 14.8x for case2 and caseb5, respectively. These
improvements are largely due to TIMBER’s lightweight and efficient
implementation. The algorithm employs a quick neighbor selection
strategy to maximize area savings and a highly optimized legalization
subroutine that ensures overlap-free placements.

Finally, we examine the overall final scores collected by the official
checker program [6], where lower values indicate better performance.
TIMBER outperforms the baseline in all testcases, except case2,
achieving an average improvement of 13.08 X and a maximum of 41.41x
in case4. In case2, although the score is slightly worse due to an
unusually low value of v that heavily prioritizes timing over other
objectives, it is noteworthy that TIMBER is still approximately 15X
faster for this testcase. Figure 7 illustrates the outputs produced by
TIMBER and the baseline when case4 is the input.

(a) Placement solution of
TIMBER.

(b) Placement solution of the
first place.

Figure 7: Placement solutions for case4. Red regions depict non-
movable sequential logic while blue regions represent the registers.
TIMBER produces a 41.41x better solution based on the contest
score.

C. Solution Quality under different Bin Utilization Ratios (€)

As bin density is emphasized as a constraint by the contest, different
utilization ratios can significantly impact solution quality. To further
evaluate TIMBER’s robustness to BDVs, we conducted an experiment
by running both algorithms under a smaller bin density threshold (¢). In
particular, lowering € increases white space (e.g., beneficial for routing)
but also raises the risk of BDVs, making it an effective stress test
for different placement strategies. This setup enables us to assess the
resilience of both TIMBER and the baseline under tighter bin density
constraints.

Figure 8 presents the comparison for ¢ = 85 and ¢ = 80 across
all testcases. TIMBER consistently results in fewer BDVs than the
baseline across the board. For ¢ = 85, TIMBER achieves a 22.5%
reduction in BDVs (Figure 8a), while for ¢ = 80, the reduction is
16.5% (Figure 8b). Notably, under ¢ = 85, TIMBER achieves 16x and
10x fewer BDVs in case3 and case7 respectively, demonstrating its
effectiveness in maintaining legal placements even under more restrictive
density conditions. We attribute this improvement to our bin-density-
aware placement strategy in TIMBER, which actively monitors the
current bin occupation levels during candidate insertion. If a prospective
grid exceeds the bin density threshold e, TIMBER redirects placement
to less congested regions, thereby avoiding violations while maintaining
placement quality.

D. Parallel Efficiency

For our final experiment, we implemented a parallel version of
TIMBER and evaluated its runtime performance and solution quality at
different numbers of CPU threads [19], [20]. Specifically, we partitioned
the placement region into fixed-size grids, matching the dimensions
of the bin structure. This design ensures that each grid becomes an



TABLE III: Comparison between TIMBER and the first-place solution (1°") of 2024 CAD Contest and TIMBER based on normalized
power, area, and timing, as well as bin density violations (BDVs), memory, runtime, and final score values. All values are generated by

the official checker program of 2024 CAD Contest.

Circuit Power Area Timing BDV Memory(MB) Runtime(s) Final Score
15t TIMBER 15t TIMBER 15t TIMBER 15t TIMBER 15t TIMBER 15t TIMBER 15t TIMBER

casel 0.054 0.074 0.230 0.240 0.016 0.028 2 0 262.444 67.092 2.012 1.120 9.39¢8 7.43e8

case2 0.089 0.025 0.002 0.00007 0.001 0.014 0 0 728.704 126.692 25.66 1.720 7.47e5 1.43e6

case3 0.002 0.009 0.00046 0.006 0.234 0.022 1 0 234.684 65.956 2.135 1.680 8.29e8 7.33e8

case4 0.022 0.038 0.300 0.412 0.006 0.003 14 0 250.040 67.068 1.898 1.980 1.43e9 3.46e7

cased 0.021 0.025 0.00006 0.00007 0.094 0.142 6 0 649.640 126.648 26.21 1.770 6.15e8 1.59¢7

case6 0.035 0.025 0.001 0.00007 0.011 0.014 5 0 363.984 126.724 3.445 1.770 5.56e8 5.65e7

case’ 0.002 0.017 0.00049 0.003 0.190 0.054 1 0 234.952 66.016 2.133 1.960 8.28e8 7.33e8
[ Geomean | 0.017 | 0.025 | 0.00278 | 0.00255 | 0.025 | 0.022 | - | - [ 348431 | 87.689 [ 4548 | 1.690 | 3.03¢8 | 3.34e7
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Figure 8: Comparison of BDVs between TIMBER and the baseline
across all testcases under different bin density thresholds (e).
Regardless of the bin density threshold, TIMBER always achieves
fewer BDVs than the baseline.

isolated instance of the placement problem, albeit on a smaller scale, with
registers constrained to remain within their assigned grid. Consequently,
each grid can be processed independently by a separate thread executing
the core TIMBER algorithm. While this reduces the effective search
space, it allows for massive parallelism with minimal compromise in
solution quality.

Figure 9a presents the ratio of the final score of the baseline to that of
TIMBER under both sequential and parallel implementations. Here, we
focus on the three largest testcases in the benchmark, case?2, case5,
and case6. The parallel version of TIMBER exhibits comparable
performance to the sequential implementation in case2 and case6,
and still achieves a substantial improvement of 18.91x in final score
over the baseline in case5. The corresponding runtime improvements
are shown in Figure 9b. For case6, the parallel implementation with
16 threads achieves a 10.37x speedup. On the other hand, TIMBER
achieves 72.49x and 69.89x speedup for case2 and caseb5, re-
spectively, compared to the single-threaded baseline. We attribute this
significant speedup to TIMBER’s parallel design, where each thread
independently processes a distinct region of the die without expensive
synchronization. This design makes TIMBER highly scalable and well-
suited for benchmarks with larger numbers of registers and increased
placement complexity.

(b) Speedup of TIMBER for different thread counts (n).

Figure 9: Parallel efficiency of TIMBER on three largest circuits,
case2, caseb, and case6. (a) Impact on the final score, and
(b) runtime speedup over the baseline on different thread counts.
Although parallelization may slightly degrade the overall score, our
result still outperforms the baseline while achieving a significant
speedup up to 72.49x.

V. CONCLUSION

In this work, we presented TIMBER, a fast algorithm for multi-
bit flip-flop (MBFF) banking and debanking. Aimed at addressing the
limitations of current approaches, TIMBER introduces a bin-density-
aware placement strategy that jointly minimizes power, area, TNS, and
bin density violations. By incorporating a multi-threaded parallelization
scheme and a region-based partitioning strategy, TIMBER also achieves
significant runtime acceleration. Our evaluation on the official 2024
CAD Contest benchmarks highlights TIMBER’s ability to outperform
the contest’s first-place winner. Inspired by our research [23]-[38], we
plan to enhance the performance of TIMBER using GPU.
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