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Abstract
Critical Path Generation (CPG) is fundamental for many static tim-
ing analysis (STA) applications. As the circuit complexity continues
to increase, CPG runtime has quickly become the bottleneck due
to its time-consuming and iterative nature. Despite many CPG
algorithms introduced by existing timers, nearly all of them are
limited to a single CPU thread, leading to long runtime for large
CPG queries. To mitigate this runtime challenge, we need a parallel
CPG algorithm. However, designing a parallel CPG algorithm is
very challenging because we need to strategically partition the path
search space into multiple groups that can run in parallel while ac-
commodating different slack priorities. To overcome this challenge,
we propose PathGen, an efficient CPU-parallel CPG algorithm. Path-
Gen introduces a multi-level queue scheduling framework that can
efficiently parallelize the search process of critical paths. Compared
to a state-of-the-art single-threaded timer, PathGen is up to 7.4×
faster with 16 threads and achieves nearly 100% accuracy when
generating one million critical paths on large designs.
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1 Introduction
Critical Path Generation (CPG) is an important step for static timing
analysis (STA) applications to analyze the timing criticality of a
circuit design [1]. As the design complexity increases, the runtime
of CPG can become a bottleneck in many STA engines [28]. To
solve this problem, the STA community has developed several CPG
algorithms that efficiently generate top-𝑘 critical paths. For example,
iTimerC [59] introduces a branch-and-bound algorithm to remove
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redundant path traversals; iitRace [75] introduces a pin coloring
strategy to conduct path reduction; OpenTimer [33] introduces a
fast implicit path representation algorithm comprising a suffix tree
and a prefix tree to speed up critical path search. Although existing
CPG algorithms have demonstrated promising performance [28],
nearly all of them are limited to a single CPU thread. For large CPG
queries, their runtime can be very slow. For example, a CPG query
of one million paths can take 2.5 seconds [33], where industrial
STA applications typically issue thousands of CPG queries during
timing-driven optimization.

To mitigate this runtime challenge, Guo et al. introduced a GPU-
accelerated CPG algorithm [18] that expands the critical path search
space in parallel. While this GPU-parallel CPG algorithm achieves
substantial speedup over existing algorithms, a CPU-parallel CPG
algorithm needs to co-exist due to the following reasons: (1) Accord-
ing to our industrial partners, supporting GPU requires significant
investment and involves non-trivial modifications to existing code-
bases compared to CPU-parallel enhancement. (2) CPG is used in
the loop of many STA applications, whereas not all of them can
benefit from GPU. For example, incremental timing may not ex-
hibit enough data parallelism to benefit from GPU acceleration [22].
Consequently, despite being an orthogonal direction to GPU, we
argue that there is a need for a CPU-parallel CPG algorithm to
co-enhance the performance of STA applications.

However, designing a CPU-parallel CPG algorithm is very chal-
lenging due to the following reasons: (1) We cannot simply use
the GPU-based approach [18] out of the box due to the difference
in parallelism models between GPUs and CPUs. For example, [18]
counts on massive parallelism (e.g., thousands of GPU threads) and
a GPU-specific path data structure to explore many critical paths
at the same time. However, CPU data structure is fundamentally
different from GPU and often does not support as many threads as
GPUs. (2) To generate paths concurrently and accurately, we need to
strategically partition generated critical paths into multiple groups
that can run in parallel while appropriately accommodating their
slack priorities. (3) As we generate more paths, we may experience
an unbalanced mix of critical paths with different slack priorities
in certain partitions, which hampers both the performance and
the accuracy. We need a dynamic strategy to re-balance the slack
priorities in each partition.

To overcome these challenges, we propose PathGen, an efficient
CPU-parallel CPG algorithm. PathGen builds upon OpenTimer [33]
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but renovates its implicit path representation algorithm to support
parallel expansion of its prefix tree data structure. We summarize
three technical contributions of PathGen as follows:
• We design a CPU-parallel CPG algorithm that efficiently catego-
rizes generated critical paths into multiple groups of different
slack priorities. Since the paths in the same group have similar
slacks, these paths share the same priority and can expand their
search spaces concurrently.
• We design a geometric slack distribution partitioning strategy
to balance the number of paths in each group. By balancing
the number of paths in each group, we can reduce the chance
of multiple threads accessing the same group simultaneously,
minimizing the contention.
• We design a redistribution strategy that dynamically transfers
paths between groups to adjust the slack priorities. This strategy
allows threads to process these paths in a more accurate order,
improving the accuracy of generated paths.
We evaluate PathGen’s performance on large circuit benchmarks

generated by a popular open-source timer, OpenTimer [33]. Com-
pared to OpenTimer’s CPG algorithm, which is inherently single-
threaded, PathGen is up to 7.4× faster and achieves nearly 100%
accuracy when generating one million critical paths on large de-
signs. We plan to make PathGen open-source to benefit the STA
community.

2 Background
2.1 Critical Path Generation
The circuit network is input as a directed-acyclic graph𝐺 = {𝑉 , 𝐸}.
𝑉 is a set of 𝑛 vertices that represent pins of circuit components
(e.g., logic gates, flip-flops, etc.). 𝐸 is a set of𝑚 edges that represent
pin-to-pin connections. Each edge 𝑒 is directed from its head vertex
𝑢 to tail vertex 𝑣 and is associated with a delay. A path is an ordered
sequence of edges ⟨𝑒1, 𝑒2, ..., 𝑒i⟩. The path delay is the summation
of delays through all edges of that path. Given a circuit graph𝐺 and
a positive integer 𝑘 , a CPG query reports the top-𝑘 critical paths in
ascending order of path slack (or path delay depending on how the
graph is formulated [33]).

2.2 Implicit Path Representation
While several CPG algorithms [33, 59, 75] exist, we adopt the im-
plicit path representation algorithm proposed by OpenTimer [33],
which outperforms other algorithms in both time and space com-
plexity. As shown in Fig. 1, OpenTimer represents critical paths
using two complementary data structures, suffix tree and prefix tree.
A suffix tree is a shortest path tree rooted at the destination, which
is constructed with topological relaxation. The suffix tree acts as a
basis for us to discover possible branches to generate critical paths.
Fig. 1(a) illustrates an example graph and its suffix tree. Black edges
denote the suffix tree, and gray edges denote the non-suffix tree
edges (edges that do not belong to the suffix tree). Numbers beside
the edges denote the edge weights. Numbers on the vertices denote
the shortest distance to their destination vertex (𝑇 ).

A prefix tree is a tree order of non-suffix tree edges. Each prefix
tree node implicitly represents a path deviated from its parent path.
The prefix tree root refers to the shortest path in the suffix tree.

Fig. 1(b) shows an example of how a prefix tree node represents
a path. The prefix tree root 𝜙 implicitly represents the shortest
path ⟨𝑒SB, 𝑒BE, 𝑒ED, 𝑒DT⟩ in the suffix tree. The prefix tree node
marked by “𝑒SC” (in gray) implicitly represents the path with prefix
⟨𝑒SC⟩ from its parent path (which is the shortest path) deviated on
𝑒SC and followed by suffix ⟨𝑒CF, 𝑒FT⟩ from the suffix tree. Fig. 1(c)
illustrates the path ⟨𝑒SC, 𝑒CF, 𝑒FT⟩ by coloring the vertices black. To
retrieve the path delay, we record the “deviation cost” of each non-
suffix tree edge e: dvi[e] = dis[tail[e]] + weight[e] − dis[head[e]],
where dis[v] denotes the shortest distance from vertex v to its
destination vertex. Intuitively, deviation cost measures the distance
loss by deviating on edge e instead of taking the shortest path to
the destination vertex. For example, in Fig. 1(b), 𝑒SC has a deviation
cost of dis[tail[𝑒SC]] + weight[𝑒SC] − dis[head[𝑒SC]] = 5 (where
tail[𝑒SC] is C and head[𝑒SC] is S), which means by deviating on 𝑒SC,
we obtain a path that is 5 units longer than the shortest path from
head[𝑒SC] to its destination vertex. Tab. 1 lists the data fields we
apply for each prefix tree node [33].
Although we use “deviation cost” and “slack” interchangeably

depending on context (e.g., explaining algorithms), these two words
are algorithmically equivalent in terms of ranking critical paths.

Constructor Members
Pfx(p, e, w) p: parent node, e: deviation edge, w: cumulative dvi[e]

Tab. 1: Data fields of a prefix tree node (Pfx).
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Fig. 1: Implicit path representation using suffix tree and prefix tree.
Prefix ⟨𝑒SC ⟩ + Suffix ⟨𝑒CF, 𝑒FT ⟩= Path ⟨𝑒SC, 𝑒CF, 𝑒FT ⟩.

3 PathGen
Inspired by OpenTimer [33], PathGen has two stages: (1) suffix
tree construction and (2) parallel prefix tree expansion. Suffix tree
construction can be done efficiently with topological relaxations.
Through analyzing OpenTimer’s runtime breakdown, we discov-
ered that prefix tree expansion takes up most of the runtime when
dealing with large path counts. For example, prefix tree expansion
takes up almost 80% of the runtime when generating 5 million
paths in netcard. Therefore, we focus on the second stage: paral-
lelizing prefix tree expansion. To be clear, to “expand” a prefix tree
node means to expand its critical path search space by generating
children nodes for this node.
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Fig. 2: Illustration of the MLQ scheduling strategy. (a) A prefix tree
with five leaf nodes. (b) The MLQ scheduler distributes the prefix
tree leaf nodes into three queues according to the deviation costs of
these nodes.

3.1 Parallel CPG with Multi-level Queue
Scheduling

To generate critical paths concurrently and accurately, the major
challenge is that we need to partition generated prefix tree nodes
into multiple groups to expand in parallel while appropriately ac-
commodating their slack priorities. To overcome this challenge, we
distribute the prefix tree nodes to multiple concurrent queues. A con-
current queue provides thread-safe access to insertion and deletion.
Each queue manages a group of nodes within a particular range
of deviation costs, ensuring that nodes with close deviation costs
are grouped together. This way, the nodes in the same queue share
the same priority, and we can expand them in parallel. Addition-
ally, we arrange the queues into multiple levels, where lower-level
queues manage ranges with smaller upper and lower bounds. Also,
lower-level queues have higher priority than higher-level queues.
This is because lower-level queues manage nodes with smaller de-
viation costs and must be expanded first, to generate paths more
accurately. We refer to this design asmulti-level queue (MLQ) sched-
uling. Fig. 2 illustrates an example. Fig. 2(a) shows a prefix tree with
five leaf nodes (five nodes to be expanded). Fig. 2(b) illustrates the
MLQ scheduler with three queues. Each queue is assigned a specific
range of deviation costs: [0, 5), [5, 10), and [10,∞), respectively. The
MLQ scheduler distributes the leaf nodes in Fig. 2(a) to the queues
according to the deviation costs of these nodes.

To facilitate the explanation of the MLQ scheduling strategy, we
assume that the ranges of deviation costs are equally sized in the
rest of Section 3.1. However, in Section 3.2, we will discuss another
strategy that organizes the ranges into different sizes to address
thread contention.

Algorithm 1: SpurMLQ(pfx, d, MLQ)
Input: prefix tree node pfx, destination vertex d, array of

concurrent queues MLQ
Global :array of suffix tree successors successor

1 u← tail[pfx.e];
2 while u ≠ d
3 Foreach e ∈ fanout(u)
4 if tail[e] == successor[u] then
5 continue;
6 pfx_new← new Pfx(pfx, e, pfx.w + dvi[e]);
7 lvl← determine level of queue;
8 MLQ[lvl].push(pfx_new);
9 u← successor[u];

Having determined the core data structure to perform parallel
prefix tree expansion, Algorithm 1 introduces the prefix tree expan-
sion algorithm of PathGen. The goal of this algorithm is to expand
the critical path search space by finding the children nodes for a
given prefix tree node, and each child node implicitly represents
a new path. Additionally, Algorithm 1 determines the appropriate
queue to which each child node should be pushed.We obtain the tail
vertex u of the edge associated with the prefix tree node pfx (line 1).
With the successor array successor from the suffix tree, we can visit
the vertices along the shortest path until we reach the destination
vertex (lines 2 and 9). For each vertex u along the shortest path,
we inspect the fanout edges of u (line 3). Because we are looking
for non-suffix tree edges to deviate on, for each fanout edge e, we
skip tail[e] if it is the successor of u, which indicates that e belongs
to the suffix tree (line 4:5). Otherwise, we create a new prefix tree
node pfx_new (line 6). We also record the cumulative deviation cost
of pfx_new (line 6). We push pfx_new to its corresponding queue
according to the cumulative deviation cost of pfx_new (line 7:8).

Algorithm 2: PathGen(k, P, MLQ)
Input: path count k, prefix tree P, destination vertex d,

array of concurrent queues MLQ
Output: array of critical paths Ψ

1 atomic_num_paths← 0;
2 Ψ← 𝜙 ;
3 MLQ[0].push(P.root);
4 while atomic_num_paths < k
5 if all queues in MLQ are empty then
6 break;
7 launch_async_task {
8 lvl← 0;
9 while MLQ[lvl] is empty
10 if lvl == MLQ.size() - 1 then
11 break;
12 lvl← lvl + 1;
13 node← MLQ[lvl].pop();
14 if node == nullptr then
15 return;
16 SpurMLQ(node, d, MLQ);
17 path← recover path from node;
18 Ψ← Ψ ∪ path;
19 atomic_num_paths← atomic_num_paths + 1;
20 };
21 sync_all_threads();
22 sort Ψ in ascending order of deviation costs;
23 return Ψ;

Algorithm 2 describes themost important component of PathGen.
The goal of this algorithm is to search through the queues and find
the non-empty lowest-level queue, then assign an idle thread to
pop a node from this queue to perform expansion. We strictly select
the lowest-level queue because this queue manages the nodes with
higher priorities than higher-level queues. We must expand these
nodes first to generate accurate path results. We initialize an atomic
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Fig. 3: Illustration of Algorithm 2. (a) A suffix tree and a MLQ scheduler that has three concurrent queues. We have already expanded the prefix
tree root and obtained Pfx(𝑒𝑆𝐴 , 1), Pfx(𝑒𝐸𝑇 , 3), and Pfx(𝑒𝑆𝐶 , 5). (b) Since the level-0 queue is non-empty and has the highest priority, thread 1
pops Pfx(𝑒𝑆𝐴 , 1) from the level-0 queue to expand. Thread 1 generates Pfx(𝑒𝐴𝐸 , 6). Pfx(𝑒𝐴𝐸 , 6) lies within the range of the level-1 queue. Thread
2 pops Pfx(𝑒𝐸𝑇 , 3) from the level-0 queue to expand. Thread 2 generates no node because 𝑒𝐸𝑇 already reaches the destination vertex𝑇 . (c) Since
the level-0 queue is empty, we move on to the next level. Thread 2 pops Pfx(𝑒𝑆𝐶 , 5) from the level-1 queue to expand. Thread 2 generates
Pfx(𝑒𝐶𝐸 , 8) and Pfx(𝑒𝐹𝐸 , 15). Pfx(𝑒𝐶𝐸 , 8) lies within the range of the level-1 queue. Pfx(𝑒𝐹𝐸 , 15) lies within the range of the level-2 queue. Thread
1 pops Pfx(𝑒𝐴𝐸 , 6) from the level-1 queue to expand. Thread 1 generates Pfx(𝑒𝐸𝑇 , 9). Pfx(𝑒𝐸𝑇 , 9) lies within the range of the level-1 queue.

counter atomic_num_paths to atomically keep track of the number
of critical paths we have discovered (line 1). We initialize a solution
set Ψ to record the critical paths (line 2). Since the prefix tree root
has a deviation cost of zero, we push it to the level-0 queue to
start the expansion (line 3). We then move on to the main path
search loop (line 4:20). If all the queues in MLQ are empty, which
indicates that we have no more nodes to expand, we terminate the
loop (line 5:6). Until we have generated enough critical paths, we
use Taskflow [38, 43, 44]’s asynchronous tasking library to launch
an asynchronous task, and an idle thread will immediately pick up
this task and execute (line 7:20). Inside this task, we initialize a level
counter lvl to record which queue we will select to pop a node (line
8). We loop through the queues to find the non-empty lowest-level
queue (line 9:12). Once we have decided lvl, we attempt to pop
a node from MLQ[lvl] (line 13). However, since multiple threads
are popping nodes from MLQ[lvl], these threads may have already
clearedMLQ[lvl]. In this case, we get an empty node and terminate
this task (line 14:15). Otherwise, we use Algorithm 1 to expand this
node and push its children to their corresponding queues (line 16).
Since this node only implicitly represents a critical path, we need
to explicitly perform path recovery (line 17) to get the path trace,
which can be done with OpenTimer [33]’s path recovery algorithm.
We record the path in the solution set Ψ (line 18) and increment the
atomic path counter (line 19). Finally, we synchronize all threads to
ensure the completion of all the running tasks (line 21). We sort the
paths in ascending order of deviation costs since multiple threads
generate them out of order (line 22).

Fig. 3 illustrates an example of Algorithm 2. We use two threads
and three queues in this example. We assign the ranges of deviation
costs [0, 5), [5, 10), and [10, ∞) to the level-0, -1, and -2 queues,
respectively. “𝑒𝑖 𝑗 ” refers to the edge pointing from vertex i to vertex
j. The numbers on the prefix tree nodes in the queues represent
the deviation costs of the nodes. For ease of reading, we refer to a
prefix tree node that is associated with edge 𝑒𝑖 𝑗 and deviation cost
𝑁 as “Pfx(𝑒𝑖 𝑗 , 𝑁 )”. Fig. 3(a) shows a suffix tree on the left. On the
right, the level-0 queue manages Pfx(𝑒𝑆𝐴, 1) and Pfx(𝑒𝐸𝑇 , 3), and
the level-1 queue manages Pfx(𝑒𝑆𝐶 , 5). Fig. 3(b) shows that since
the level-0 queue is non-empty and has the highest priority, thread

1 pops Pfx(𝑒𝑆𝐴 , 1) from the level-0 queue to expand and generates
a new node Pfx(𝑒𝐴𝐸 , 6). Pfx(𝑒𝐴𝐸 , 6) lies within the range assigned
to the level-1 queue, so we push it to the level-1 queue. Thread 2
pops Pfx(𝑒𝐸𝑇 , 3) from the level-0 queue to expand. This expansion
generates no node because 𝑒𝐸𝑇 already reaches the destination
vertex 𝑇 . Fig. 3(c) repeats the same procedure, except that since
the level-0 queue is empty, we move on to the level-1 queue. Full
description is in the caption of Fig. 3.

3.2 Partition of Slack Distribution
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Fig. 4: Top-1K path slack distribution reported by OpenTimer [33].
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Fig. 5: Two slack distribution partitioning strategies. (a) Equal parti-
tioning results in an unbalanced number of paths in each range. (b)
Geometric partitioning results in a more balanced number of paths
in each range.

With the proposed MLQ scheduling, our next step is to decide the
distribution of the prefix tree nodes across all queues. Specifically,
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we need to decide for each queue its range of deviation costs by
partitioning slack distribution. However, the design of the parti-
tioning strategy affects the balance of path counts in each queue.
When path counts become unbalanced, certain queues experience
high thread contention. We need a strategy that balances the path
counts in each queue to minimize contention.

To this end, we need to analyze the slack distribution. Fig. 4 plots
the top-1K path slack distribution for vga_lcd and tv80, reported
by OpenTimer [33]. Both circuits exhibit highly localized distribu-
tion. Taking vga_lcd for example, over 50% of the slacks lie within
the range from -1150 to -1250. Atop this analysis, Fig. 5 illustrates
two slack distribution partitioning strategies. The white triangles
represent the bounds of the partitions. The red curve in Fig. 5 ap-
proximates the path counts as a function of the path slacks. With
the distribution curve, we can use the area (in gray) under the curve
to approximate the path counts in a certain range. As shown in
Fig. 5(a), a naive strategy is to partition the slacks into equal ranges.
This strategy has a drawback: the rightmost range (assigned to the
level-0 queue) manages significantly more paths than other ranges.
This causes the level-0 queue to experience higher-frequency thread
access than other queues, leading to high thread contention. To
solve this issue, we introduce the geometric slack distribution par-
titioning strategy. As shown in Fig. 5(b), the geometric partitioning
strategy organizes ranges based on a geometric sequence, which
grows the ranges as we get further away from the most critical
slack (rightmost on the x-axis). As will be discussed in Section 4.3,
this results in a more balanced number of paths in each range (a
more balanced area under the curve within each range) than the
equal partitioning strategy, which minimizes thread contention.

3.3 Node Redistribution
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Fig. 6: Illustration of the node redistribution strategy. (a) Less accu-
rate expansion order at the highest-level queue. Pfx(𝑒𝑖 𝑗 , 237) and
Pfx(𝑒 𝑗𝑘 , 211) are expanded earlier than Pfx(𝑒𝑘𝑙 , 17). (b) Node redistri-
bution re-assigns Pfx(𝑒𝑘𝑙 , 17) to the level-1 queue, so it is expanded
earlier than Pfx(𝑒𝑖 𝑗 , 237) and Pfx(𝑒 𝑗𝑘 , 211).

By examining the experimental results, we discovered that Algo-
rithm 2 produces very inaccurate results, especially when we use
too few queues. For example, Algorithm 2 has a minimum accuracy
of less than 85% in leon2 (see Fig. 8 in Section 4) when using 40
queues. The reason for such inaccuracy is that the highest-level
queue’s assigned range has an infinite upper bound. This indicates
that the highest-level queue will manage nodes with very unbal-
anced deviation costs. In this case, if we treat all the nodes in the
highest-level queue as sharing the same priority, PathGen may ex-
pand the nodes with high deviation costs first instead of the nodes
with low deviation costs, leading to inaccurate path results. Fig. 6(a)
illustrates the mentioned situation with three queues. Pfx(𝑒𝑖 𝑗 , 237)

and Pfx(𝑒 𝑗𝑘 , 211) are in the front of the highest-level queue, so
they are expanded earlier than Pfx(𝑒𝑘𝑙 , 17). However, to get higher
accuracy, we are supposed to expand Pfx(𝑒𝑘𝑙 , 17) earlier.

To solve this issue, we introduce the node redistribution strategy.
The goal of this strategy is to update the deviation cost range
assigned to each queue, so we can re-balance the deviation costs
by distributing the nodes in the highest-level queue to lower-level
queues. In other words, we treat nodes in the highest-level queue as
not having priorities. This way, by distributing them to lower-level
queues, we re-assign priorities to these nodes. Fig. 6(b) illustrates the
node redistribution strategy. Once any thread reaches the highest-
level queue, we update the range of deviation cost assigned to each
queue. Since from this point onwards, the prefix tree expansion only
generates nodes with deviation costs larger than or equal to 10, we
update the level-0 queue’s range from [0, 5) to [10, 15). We update
the level-1 queue’s range from [5, 10) to [15, 20). We update the
range of the level-2 queue from [10,∞) to [20,∞). After updating
the ranges, we re-assign Pfx(𝑒𝑘 , 17) to the level-1 queue, so it is
expanded earlier than Pfx(𝑒𝑖 , 237) and Pfx(𝑒 𝑗 , 211). This strategy
expands the nodes in a more accurate order.

Algorithm 3: NR(lvl, MLQ)
Input: selected queue level lvl, array of concurrent queues

MLQ
Global :atomic boolean variable is_updating, is_redistr

1 if lvl == MLQ.size() - 1 then
2 if !is_updating.atomic_exchange(true) then
3 update ranges of deviation costs of MLQ;
4 is_updating← false;
5 if !is_redistr.atomic_exchange(true) then
6 tmp_q← move from MLQ[lvl];
7 while tmp_q is not empty
8 node← tmp_q.pop();
9 while is_updating == true
10 wait;
11 new_lvl← determine level of queue;
12 MLQ[new_lvl].push(node);
13 is_redistr ← false;
14 return;

Algorithm 3 describes the node redistribution strategy. We use
two global atomic boolean variables, is_updating and is_redistr, both
initialized to false. is_updating checks if any thread is updating
the ranges of deviation costs. is_redistr checks if any thread is
redistributing the nodes. To avoid data race, we disallow threads
from simultaneously updating the ranges. If any thread reaches
the highest-level queue (line 1), we perform an atomic exchange
operation on is_updating to set it to true. Note that atomic exchange
returns the value of is_updating before the operation. If the return
value is false, no threads are updating the range. is_updating is set to
true (line 2) and we can safely update the ranges of deviation costs
(line 3). After updating the ranges, we reset is_updating to false (line
4), allowing other threads to update the ranges. We disallow threads
from simultaneously performing node redistribution because this
process can be very time-consuming. We prefer that one thread
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redistributes the nodes and others continue expanding the nodes
in lower-level queues. Similarly, we perform an atomic exchange
operation on is_redistr to set it to true. If the return value is false,
that means no thread is performing node redistribution. is_redsitr
is set to true (line 5) and we can safely perform node redistribution
(line 6:12). We move all the nodes from the highest-level queue
to a temporary queue tmp_q (line 6), to prevent interference with
other threads inserting nodes to the highest-level queue. Until we
have cleared tmp_q (line 7), we continuously pop node from tmp_q
(line 8). We check if any thread is updating the ranges (line 9)
to avoid data race. If so, we wait until the update is completed
(line 10). Otherwise, we push node to the queue it belongs to (line
11:12). After node redistribution, we reset is_redistr to false (line
13), allowing other threads to perform node redistribution.

4 Experimental Results
We implemented PathGen in C++ and compiled it with GCC 11.4.0
on a 4.8-GHz 64-bit Linux machine of an Intel Core i5-13500 Pro-
cessor. We enable the optimization flag -O3 and C++17 standard
-std=c++17. We use Taskflow [? ] and the Moodycamel concurrent
queue [2] to implement the proposed algorithms. We select seven
large circuits generated by OpenTimer [33] to evaluate PathGen’s
performance. We only measure the runtime of the prefix tree expan-
sion algorithm in PathGen and OpenTimer since we use the same
suffix tree construction algorithm as OpenTimer. For large CPG
queries, prefix tree expansion takes the majority of the runtime. For
example, prefix tree expansion takes up almost 80% of the runtime
when generating 5 million paths in netcard. We implemented the
sequential CPG algorithm based on OpenTimer. OpenTimer is our
sole comparison target because it outperforms existing methods in
both time and space complexities. All data is an average of 15 runs.

We do not compare with the GPU-parallel approach [18] as it is
an orthogonal direction. Such a comparison is also not fair due to
different architecture and application needs.

4.1 Overall Performance Comparison
Tab. 2 compares the runtime, memory usage, and accuracy between
OpenTimer and PathGen. We measure the accuracy by comparing
the deviation costs generated by OpenTimer and PathGen, using
OpenTimer as the golden reference. As shown in Tab. 2, PathGen
outperforms OpenTimer in all circuits. For example, PathGen is
7.3× and 7.4× faster than OpenTimer in netcard and leon2. PathGen
is almost as accurate as OpenTimer. For example, PathGen achieves
99.9% and 100% accuracy in wb_dma and leon2. PathGen consumes
more memory as it uses multiple concurrent queues, as opposed to
OpenTimer using only one priority queue.

4.2 Performance at Different Thread Counts
Fig. 7 shows the speedup of PathGen over OpenTimer at different
thread counts. As we increase the thread count, the speedup in-
creases. Taking netcard for example, the speedup increases from
4× to over 7×. This is because the more threads we use, the faster
we clear a queue and move on to another one. However, there is a
tradeoff between thread count and thread contention. As we use
more threads, they need to wait longer for their turn to access the
queue. Therefore, using the maximum thread count does not always
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Fig. 7: Speedup of PathGen over OpenTimer at different thread count.
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101 102 103 104 105 106
0

1,000

2,000

3,000

Path count

Ru
nt
im

e
(m

s)

leon2

OpenTimer
PathGen(8)
PathGen(12)
PathGen(16)

101 102 103
0

0.2

0.4

0.6

0.8

Path count

Ru
nt
im

e
(m

s)

leon2 (zoomed in)

OpenTimer
PathGen(8)
PathGen(12)
PathGen(16)

Fig. 10: Runtime vs. path count at different thread counts.

yield the optimal speedup. Taking netcard for example, using 16
threads yields the optimal speedup (over 7×). On the other hand,
We see that the speedup at 20 threads for leon2 (over 5×) has not
yet reached the optimal.
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Tab. 2: Overall performance comparison between OpenTimer [33] (sequential CPG) and PathGen (parallel CPG).

OpenTimer [33] PathGen (16 threads)

Circuit |𝑉 | |𝐸 | Path count
(K)

Runtime
(ms)

Mem.
(MB)

Runtime
(ms)

Mem.
(MB)

Avg. accuracy
(%)

wb_dma 13124 16593 20 4.3 19.3 4.1 (1.03×) 24.5 99.9
des_perf 303690 387291 500 341.6 347.9 122.3 (2.7×) 461.3 100
vga_lcd 397816 498873 1000 1076.5 552.4 401.9 (2.6×) 954.5 100
leon3mp 3376842 4148798 1000 2243.1 3261.7 400.5 (5.6×) 4540.9 100
netcard 3999174 4903397 1000 2135.8 3574.6 292.5 (7.3×) 4199.7 100
leon2 4328285 5273106 1000 2552.8 4065.4 344.9 ( 7.4×) 5774.3 100
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Fig. 11: Accuracy vs. path count at different thread counts.

4.3 Effectiveness of Node Redistribution
Fig. 8 plots the accuracy of PathGen at different thread counts for
leon2 and leon3mp using 40 queues. We use 40 queues to investi-
gate the effectiveness of node redistribution because low accuracy
occurs especially when we use too few queues. “𝑤/𝑜 𝑁𝑅” refers
to the proposed algorithm without node redistribution. “𝑤/𝑁𝑅”
refers to the proposed algorithm with node redistribution. PathGen
with the same thread count can produce varying accuracy. This is
because threads may fail to complete all the atomic push operations
before the algorithm terminates, and these atomic push operations
may include nodes with higher priorities. If the algorithm termi-
nates before threads finish processing these higher-priority nodes,
the accuracy drops. Therefore, we measure both the minimum
and maximum accuracy to investigate the accuracy distribution.
PathGen𝑤/𝑁𝑅 is more accurate than PathGen𝑤/𝑜 𝑁𝑅 in terms of
both the minimum and maximum accuracy. Taking leon2 for exam-
ple, The red area shows that the accuracy of PathGen𝑤/𝑜 𝑁𝑅 ranges
from 82% to 95%, whereas the blue area shows that the accuracy of
PathGen𝑤/𝑁𝑅 ranges from 86% to 100%. This is because our node
redistribution strategy updates the range of deviation costs assigned
to each queue. We also redistribute the nodes from the highest-level
queue to the lower-level queues. Therefore, threads can prioritize
the higher-priority nodes, improving overall accuracy.

4.4 Performance of Different Slack Distribution
Partitioning Strategies

Fig. 9 plots the runtime of PathGen and OpenTimer at differ-
ent thread counts with different partitioning strategies for net-
card and leon2. “PathGen𝑤/𝐸𝑄 ” refers to the proposed algorithm
with each queue assigned an equal range of deviation costs.
“PathGen𝑤/𝐺𝐸𝑂 ” refers to the proposed algorithm with each queue
assigned a range of deviation costs based on a geometric sequence.
PathGen𝑤/𝐺𝐸𝑂 and PathGen𝑤/𝐸𝑄 are both slower than Open-
Timer at two and four threads. Taking netcard for example, The
runtimes of PathGen𝑤/𝐺𝐸𝑂 and PathGen𝑤/𝐸𝑄 are 10.1 and 8.9
seconds at two threads (4.6× and 4.1× slower than OpenTimer).
Similar to what we discussed in Section 4.2, this is due to PathGen
using many queues. The fewer threads we use, the slower we clear
the queues. PathGen𝑤/𝐺𝐸𝑂 and PathGen𝑤/𝐸𝑄 both outperform
OpenTimer starting from eight threads. Taking leon2 for exam-
ple, PathGen𝑤/𝐺𝐸𝑂 is 3.9×, 6.6×, and 7.1× faster than OpenTimer
at eight, 16, and 20 threads. On the other hand, PathGen𝑤/𝐸𝑄
is 2.6×, 3.2×, and 3.1× faster than OpenTimer at eight, 16, and
20 threads. This shows that the more threads we use, the faster
we clear the queues, thereby increasing PathGen’s performance.
PathGen𝑤/𝐺𝐸𝑂 outperforms PathGen𝑤/𝐸𝑄 at all thread counts.
Taking leon2 for example, PathGen𝑤/𝐺𝐸𝑂 is 1.5×, 2×, and 2.2×
faster than PathGen𝑤/𝐸𝑄 at eight threads, 12 threads, and 16
threads. This is because by observing the path slack distribution
of the circuits using OpenTimer, we see that the slack distribution
is highly localized (i.e., over 50% of the slacks belong to a certain
range). Specifically, many deviation costs fall within the range of
the lower-level queues. If we assign equal deviation cost ranges
to the queues, those at lower levels will suffer from high thread
contention due to many concurrent push operations, thereby ham-
pering performance. Conversely, by assigning deviation cost ranges
based on a geometric sequence, we can reduce thread contention
by distributing some push operations from the lower-level queues
to higher-level queues, thereby improving performance.

4.5 Performance at Different Path Counts
Fig. 10 plots the runtime of PathGen at different path counts and
thread counts for leon2. “PathGen(𝑁 )” refers to PathGen running
with 𝑁 threads. When the path count is smaller than 1K, Path-
Gen is slower than OpenTimer at all thread counts. For example,
in the zoomed-in figure (right of Fig. 10), PathGen(8) is about 3×
slower than OpenTimer when generating 100 paths. This is because
when the path count is small, the scheduling overhead of threads
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dominates the runtime, therefore PathGen has no benefit. On the
other hand, We start to see the benefit of PathGen when generating
1K paths. For example, in the zoomed-in figure (right of Fig. 10),
PathGen(12) and PathGen(16) are 1.3× and 2.5× faster than Open-
Timer. When querying 10K or more paths, PathGen outperforms
OpenTimer at all thread counts. For example, when generating one
million paths, PathGen(8), PathGen(12), PathGen(16) are 2.1×, 3.4×,
and 4.7× faster than OpenTimer, respectively.

4.6 Accuracy at Different Path Counts
Fig. 11 plots PathGen’s accuracy at different path counts and thread
counts for leon2. We plot the minimum and maximum accuracy
to investigate how path counts affect the accuracy distribution.
As we increase the thread count, we see more drops in minimum
accuracy across all path counts. This indicates that using more
threads results in a broader distribution of accuracy. For example,
we see one drop in minimum accuracy at 10K paths using 12 threads.
We see three drops in minimum accuracy at 1K, 10K, and 50K paths
using 16 threads. This is because, in Algorithm 2, as the thread
count increases, the prefix tree expansion runtime becomes smaller
while the number of pending atomic push operations we need to
perform increases. To achieve 100% accuracy, we must complete
all the pending atomic operations within the prefix tree expansion
period. Therefore, as we increase the thread count, we are more
likely to fail to complete all these pending atomic operations within
the required period, leading to accuracy drops.

5 Conclusion
In this paper, we have introduced PathGen, a parallel CPG algo-
rithm that efficiently groups generated critical paths into multi-
ple concurrent queues of slack priorities. Compared to a popular
open-source single-threaded timer, PathGen is up to 7.4× faster
and nearly 100% accurate when generating one million paths on
large designs. Inspired by the success of GPU computing in graph
processing [3–17, 19–21, 23–27, 29–32, 34–37, 39–42, 44–58, 60–
74, 76–80], we plan to enhance the performance of PathGen using
GPU computing.

Acknowledgement
This project is supported by NSF grants 2235276, 2349144, 2349143,
2349582, and 2349141. The authors would like to thank the review-
ers’ time and effort in improving this manuscript.

References
[1] Jayaram Bhasker and Rakesh Chadha. 2009. Static Timing Analysis for Nanometer

Designs: A Practical Approach. Springer.
[2] Cameron. 2014. A fast multi-producer, multi-consumer lock-free concurrent

queue for C++11. https://github.com/cameron314/concurrentqueue.
[3] Che Chang, Cheng-Hsiang Chiu, Boyang Zhang, and Tsung-Wei Huang. 2024.

Incremental Critical Path Generation for Dynamic Graphs. In IEEE Computer
Society Annual Symposium on VLSI (ISVLSI).

[4] Che Chang, Tsung-Wei Huang, Dian-Lun Lin, Guannan Guo, and Shiju Lin. 2024.
Ink: Efficient Incremental 𝑘-Critical Path Generation. In ACM/IEEE DAC.

[5] Che Chang, Boyang Zhang, Cheng-Hsiang Chiu, Dian-Lun Lin, Yi-Hua Chung,
Wan-Luan Lee, Zizheng Guo, Yibo Lin, and Tsung-Wei Huang. 2025. PathGen:
An Efficient Parallel Critical Path Generation Algorithm. In IEEE/ACM Asia and
South Pacific Design Automation Conference (ASP-DAC).

[6] Chih-Chun Chang and Tsung-Wei Huang. 2023. uSAP: An Ultra-Fast Stochastic
Graph Partitioner. In IEEE High-performance and Extreme Computing Conference
(HPEC).

[7] Chih-Chun Chang, Boyang Zhang, and Tsung-Wei Huang. 2024. GSAP: A GPU-
Accelerated Stochastic Graph Partitioner. In ACM ICPP. 565–575.

[8] Cheng-Hsiang Chiu and Tsung-Wei Huang. 2022. Composing Pipeline Par-
allelism using Control Taskflow Graph. In ACM International Symposium on
High-Performance Parallel and Distributed Computing (HPDC).

[9] Cheng-Hsiang Chiu and Tsung-Wei Huang. 2022. Efficient Timing Propagation
with Simultaneous Structural and Pipeline Parallelisms. In ACM/IEEE Design
Automation Conference (DAC).

[10] Cheng-Hsiang Chiu and Tsung-Wei Huang. 2024. An Experimental Study of
Dynamic Task Graph Parallelism for Large-Scale Circuit Analysis Workloads. In
IEEE Computer Society Annual Symposium on VLSI (ISVLSI).

[11] Cheng-Hsiang Chiu, Dian-Lun Lin, and Tsung-Wei Huang. 2021. An Experi-
mental Study of SYCL Task Graph Parallelism for Large-Scale Machine Learning
Workloads. In International Workshop of Asynchronous Many-Task systems for
Exascale (AMTE).

[12] Cheng-Hsiang Chiu, Dian-Lun Lin, and Tsung-Wei Huang. 2023. Programming
Dynamic Task Parallelism for Heterogeneous EDA Algorithms. In IEEE/ACM
International Conference on Computer-aided Design (ICCAD).

[13] Cheng-Hsiang Chiu, Chedi Morchdi, Yi Zhou, Boyang Zhang, Che Chang, and
Tsung-Wei Huang. 2024. Reinforcement Learning-generated Topological Order
for Dynamic Task Graph Scheduling. In IEEE High-performance and Extreme
Computing Conference (HPEC).

[14] Elmir Dzaka, Dian-Lun Lin, and Tsung-Wei Huang. 2023. Parallel And-Inverter
Graph Simulation Using a Task-graph Computing System. In IEEE International
Parallel and Distributed Processing Symposium Workshop (IPDPSw).

[15] Guannan Guo, Tsung-Wei Huang, Chun-Xun Lin, andMartinWong. 2020. An Effi-
cient Critical Path Generation Algorithm Considering Extensive Path Constraints.
In ACM/IEEE Design Automation Conference (DAC).

[16] Guannan Guo, Tsung-Wei Huang, Y. Lin, Z. Guo, S. Yellapragada, and Martin
Wong. 2023. A GPU-Accelerated Framework for Path-Based Timing Analysis.
IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems
(TCAD) (2023).

[17] Guannan Guo, Tsung-Wei Huang, Yibo Lin, and Martin Wong. 2021. GPU-
accelerated Critical Path Generation with Path Constraints. In IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD).

[18] Guannan Guo, Tsung-Wei Huang, Yibo Lin, and Martin Wong. 2021. GPU-
accelerated Path-based Timing Analysis. In 2021 58th ACM/IEEE Design Automa-
tion Conference (DAC) (San Francisco, CA, USA). IEEE, 721–726.

[19] Guannan Guo, Tsung-Wei Huang, Yibo Lin, and Martin Wong. 2021. GPU-
accelerated Path-based Timing Analysis. In IEEE/ACM Design Automation Con-
ference (DAC).

[20] Guannan Guo, Tsung-Wei Huang, and Martin D. F. Wong. 2023. Fast STA Graph
Partitioning Framework for Multi-GPU Acceleration. In IEEE/ACM Design, Au-
tomation and Test in Europe Conference (DATE).

[21] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2020. A Provably Good and Practi-
cally Efficient Algorithm for Common Path Pessimism Removal in Large Designs.
In IEEE/ACM International Conference on Computer-aided Design (ICCAD).

[22] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2020. GPU-Accelerated Static
Timing Analysis. In 2020 IEEE/ACM International Conference On Computer Aided
Design (ICCAD). 1–9.

[23] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2021. A Provably Good and
Practically Efficient Algorithm for Common Path Pessimism Removal in Large
Designs. In IEEE/ACM Design Automation Conference (DAC).

[24] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2021. HeteroCPPR: Accelerating
Common Path Pessimism Removal with Heterogeneous CPU-GPU Parallelism.
In IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[25] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2023. Accelerating Static Timing
Analysis using CPU-GPU Heterogeneous Parallelism. IEEE Transactions on
Computer-aided Design of Integrated Circuits and Systems (TCAD) (2023).

[26] Zizheng Guo, Tsung-Wei Huang, Jin Zhou, Cheng Zhuo, Yibo Lin, Runsheng
Wang, and RuHuang. 2024. Heterogeneous Static TimingAnalysis with Advanced
Delay Calculator. In IEEE/ACM Design, Automation and Test in Europe Conference
(DATE).

[27] Zizheng Guo, Zuodong Zhang, Wuxi Li, Tsung-Wei Huang, Xizhe Shi, Yufan Du,
Yibo Lin, Runsheng Wang, and Ru Huang. 2024. HeteroExcept: Heterogeneous
Engine for General Timing Path Exception Analysis. In IEEE/ACM International
Conference on Computer-aided Design (ICCAD).

[28] Jin Hu, Greg Schaeffer, and Vibhor Garg. 2015. TAU 2015 contest on incremental
timing analysis. In 2015 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). 882–889. https://doi.org/10.1109/ICCAD.2015.7372664

[29] Tsung-Wei Huang. 2020. A General-purpose Parallel and Heterogeneous Task
Programming System for VLSI CAD. In IEEE/ACM International Conference on
Computer-aided Design (ICCAD).

[30] Tsung-Wei Huang. 2021. TFProf: Profiling Large Taskflow Programs with Modern
D3 and C++. In IEEE International Workshop on Programming and Performance
Visualization Tools (ProTools).

[31] Tsung-Wei Huang. 2022. Enhancing the Performance Portability of Heteroge-
neous Circuit Analysis Programs. In IEEE High-Performance Extreme Computing

https://github.com/cameron314/concurrentqueue
https://doi.org/10.1109/ICCAD.2015.7372664


PathGen: An Efficient Parallel Critical Path Generation Algorithm ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

Conference (HPEC).
[32] Tsung-Wei Huang. 2023. qTask: Task-parallel Quantum Circuit Simulation with

Incrementality. In IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS).

[33] Tsung-Wei Huang, Guannan Guo, Chun-Xun Lin, and Martin D. F. Wong. 2021.
OpenTimer v2: A New Parallel Incremental Timing Analysis Engine. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 40, 4 (2021),
776–789. https://doi.org/10.1109/TCAD.2020.3007319

[34] Tsung-Wei Huang, Guannan Guo, Chun-Xun Lin, and Martin D. F. Wong. 2021.
OpenTimer v2: A New Parallel Incremental Timing Analysis Engine. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD)
(2021).

[35] Tsung-Wei Huang and Leslie Hwang. 2022. Task-parallel Programming with
Constrained Parallelism. In IEEEHigh-Performance Extreme Computing Conference
(HPEC).

[36] Tsung-Wei Huang, Chun-Xun Lin, , and Martin Wong. 2019. Distributed Timing
Analysis at Scale. In ACM/IEEE Design Automation Conference (DAC).

[37] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin Wong. 2018. A
General-purpose Distributed Programming System using Data-parallel Streams.
In ACM Multimedia Conference (MM).

[38] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin Wong. 2019. Cpp-
Taskflow: Fast Task-based Parallel Programming using Modern C++. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS).

[39] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin Wong. 2019. Es-
sential Building Blocks for Creating an Open-source EDA Project. In ACM/IEEE
Design Automation Conference (DAC).

[40] Tsung-Wei Huang, Chun-Xun Lin, andMartinWong. 2017. DtCraft: A Distributed
Execution Engine for Compute-intensive Applications. In IEEE/ACM International
Conference on Computer-aided Design (ICCAD).

[41] Tsung-Wei Huang, Chun-Xun Lin, and Martin Wong. 2019. DtCraft: A High-
performance Distributed Execution Engine at Scale. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD) (2019).

[42] Tsung-Wei Huang, Chun-Xun Lin, and Martin Wong. 2021. OpenTimer v2: A
Parallel Incremental Timing Analysis Engine. IEEE Design and Test (DAT) (2021).

[43] Tsung-Wei Huang, Dian-Lun Lin, Chun-Xun Lin, and Yibo Lin. 2022. Taskflow:
A Lightweight Parallel and Heterogeneous Task Graph Computing System. IEEE
Transactions on Parallel and Distributed Systems (TPDS) (2022).

[44] Tsung-Wei Huang, Dian-Lun Lin, Yibo Lin, and Chun-Xun Lin. 2022. Taskflow:
A General-purpose Parallel and Heterogeneous Task Programming System. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD)
(2022).

[45] Tsung-Wei Huang and Yibo Lin. 2022. Concurrent CPU-GPU Task Program-
ming using Modern C++. In IEEE International Workshop on High-level Parallel
Programming Models and Supportive Environments (HIPS).

[46] Tsung-Wei Huang and Martin Wong. 2015. OpenTimer: A High-Performance
Timing Analysis Tool. In IEEE/ACM International Conference on Computer-Aided
Design (ICCAD).

[47] Tsung-Wei Huang and Martin Wong. 2016. UI-Timer 1.0: An Ultra-Fast Path-
Based Timing Analysis Algorithm for CPPR. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD) (2016).

[48] Tsung-Wei Huang, Martin Wong, D. Sinha, K. Kalafala, and N. Venkateswaran.
2016. A Distributed Timing Analysis Framework for Large Designs. In IEEE/ACM
Design Automation Conference (DAC).

[49] Tsung-Wei Huang, P.-C. Wu, and Martin Wong. 2014. Fast Path-Based Timing
Analysis for CPPR. In IEEE/ACM ICCAD.

[50] Tsung-Wei Huang, Pei-Ci Wu, and Martin D. F. Wong. 2014. UI-Route: An Ultra-
Fast Incremental Maze Routing Algorithm. In ACM System Level Interconnect
Prediction Workshop (SLIP). 1–8.

[51] Tsung-Wei Huang, Pei-Ci Wu, and Martin D. F. Wong. 2014. UI-Timer: An
ultra-fast clock network pessimism removal algorithm. In IEEE/ACM ICCAD.

[52] Tsung-Wei Huang, Boyang Zhang, Dian-Lun Lin, and Cheng-Hsiang Chiu. 2024.
Parallel and Heterogeneous Timing Analysis: Partition, Algorithm, and System.
In ACM International Symposium on Physical Design (ISPD).

[53] Shiu Jiang, Tsung-Wei Huang, and Tsung-Yi Ho. 2023. GLARE: Accelerating
Sparse DNN Inference Kernels with Global Memory Access Reduction. In IEEE
High-performance and Extreme Computing Conference (HPEC).

[54] Shiu Jiang, Tsung-Wei Huang, and Tsung-Yi Ho. 2023. SNICIT: Accelerating
Sparse Neural Network Inference via Compression at Inference Time on GPU. In
ACM International Conference on Parallel Processing (ICPP).

[55] Jiang, Shui and Fu, Rongliang and Burgholzer, Lukas and Wille, Robert and Ho,
Tsung-Yi and Huang, Tsung-Wei. 2024. FlatDD: A High-Performance Quantum
Circuit Simulator using Decision Diagram and Flat Array. In ACM ICPP. 388–399.

[56] Kuan-Ming Lai, Tsung-Wei Huang, and Tsung-Yi Ho. 2019. A General Cache
Framework for Efficient Generation of Timing Critical Paths. In ACM/IEEE Design
Automation Conference (DAC).

[57] Kuan-Ming Lai, Tsung-Wei Huang, Pei-Yu Lee, and Tsung-Yi Ho. 2021. ATM: A
High Accuracy Extracted Timing Model for Hierarchical Timing Analysis. In
IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-DAC).

[58] T.-Y. Lai, Tsung-Wei Huang, , and Martin Wong. 2017. Libabs: An Effective
and Accurate Macro-modeling Algorithm for Large Hierarchical Designs. In
IEEE/ACM International Conference on Computer-aided Design (ICCAD).

[59] Pei-Yu Lee, Iris Hui-Ru Jiang, Cheng-Ruei Li, Wei-Lun Chiu, and Yu-Ming Yang.
2015. iTimerC 2.0: Fast incremental timing and CPPR analysis. In 2015 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). 890–894. https:
//doi.org/10.1109/ICCAD.2015.7372665

[60] Wan-Luan Lee, Dian-Lun Lin, Cheng-Hsiang Chiu, Ulf Schlichtmann, and Tsung-
Wei Huang. 2025. HyperG: Multilevel GPU-Accelerated k-way Hypergraph
Partitioner. In IEEE/ACM Asia and South Pacific Design Automation Conference
(ASP-DAC).

[61] Wan Luan Lee, Dian-Lun Lin, Tsung-Wei Huang, Shui Jiang, Tsung-Yi Ho, Yibo
Lin, and Bei Yu. 2024. G-kway: Multilevel GPU-Accelerated k-way Graph Parti-
tioner. In ACM/IEEE Design Automation Conference (DAC).

[62] Chun-Xun Lin, Tsung-Wei Huang, Guannan Guo, and Martin Wong. 2019. A
Modern C++ Parallel Task Programming Library. In ACM Multimedia Conference
(MM).

[63] Chun-Xun Lin, Tsung-Wei Huang, Guannan Guo, and Martin Wong. 2019. An
Efficient and Composable Parallel Task Programming Library. In IEEE High-
performance and Extreme Computing Conference (HPEC).

[64] Chun-Xun Lin, Tsung-Wei Huang, and Martin Wong. 2020. An Efficient Work-
Stealing Scheduler for Task Dependency Graph. In IEEE International Conference
on Parallel and Distributed Systems (ICPADS).

[65] Chun-Xun Lin, Tsung-Wei Huang, Ting Yu, andMartinWong. 2018. A Distributed
Power Grid Analysis Framework from Sequential Stream Graph. In ACM Great
Lakes Symposium on VLSI (GLSVLSI).

[66] Dian-Lun Lin and Tsung-Wei Huang. 2020. ANovel Inference Algorithm for Large
Sparse Neural Network using Task Graph Parallelism. In IEEE High-performance
and Extreme Computing Conference (HPEC).

[67] Dian-Lun Lin and Tsung-Wei Huang. 2021. Efficient GPUComputation using Task
Graph Parallelism. In European Conference on Parallel and Distributed Computing
(Euro-Par).

[68] Dian-Lun Lin and Tsung-Wei Huang. 2022. Accelerating Large Sparse Neural
Network Inference using GPU Task Graph Parallelism. IEEE Transactions on
Parallel and Distributed Systems (TPDS) (2022).

[69] Dian-Lun Lin, Tsung-Wei Huang, Joshua San Miguel, and Umit Ogras. 2024.
TaroRTL: Accelerating RTL Simulation using Coroutine-based Heterogeneous
Task Graph Scheduling. In International European Conference on Parallel and
Distributed Computing (Euro-Par).

[70] Dian-Lun Lin, Haoxing Ren, Yanqing Zhang, Brucek Khailany, and Tsung-Wei
Huang. 2022. From RTL to CUDA: A GPU Acceleration Flow for RTL Simulation
with Batch Stimulus. In ACM International Conference on Parallel Processing
(ICPP).

[71] Dian-Lun Lin, Yanqing Zhang, Haoxing Ren, Shih-Hsin Wang, Brucek Khailany,
and Tsung-Wei Huang. 2023. GenFuzz: GPU-accelerated Hardware Fuzzing
using Genetic Algorithm with Multiple Inputs. In ACM/IEEE Design Automation
Conference (DAC).

[72] Shiju Lin, Guannan Guo, Tsung-Wei Huang, Weihua Sheng, Evangeline Young,
and Martin Wong. 2024. G-PASTA: GPU Accelerated Partitioning Algorithm for
Static Timing Analysis. In ACM/IEEE DAC.

[73] Chedi Morchdi, Cheng-Hsiang Chiu, Yi Zhou, and Tsung-Wei Huang. 2024. A
Resource-efficient Task Scheduling System using Reinforcement Learning. In
IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-DAC).

[74] McKay Mower, Luke Majors, and Tsung-Wei Huang. 2021. Taskflow-San: Sanitiz-
ing Erroneous Control Flow in Taskflow Programs. In IEEE Workshop on Extreme
Scale Programming Models and Middleware (ESPM2).

[75] Chaitanya Peddawad, Aman Goel, Dheeraj B, and Nitin Chandrachoodan. 2015.
iitRACE: Amemory efficient engine for fast incremental timing analysis and clock
pessimism removal. In 2015 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). 903–909. https://doi.org/10.1109/ICCAD.2015.7372667

[76] Jie Tong, Liangliang Chang, Umit Yusuf Ogras, and Tsung-Wei Huang. 2024.
BatchSim: Parallel RTL Simulation using Inter-cycle Batching and Task Graph
Parallelism. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI).

[77] Sheng-Han Yeh, Jia-Wen Chang, Tsung-Wei Huang, Shang-Tsung Yu, and Tsung-
Yi Ho. 2014. Voltage-Aware Chip-Level Design for Reliability-Driven Pin-
Constrained EWOD Chips. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD) 33, 9 (2014), 1302–1315.

[78] Yasin Zamani and Tsung-Wei Huang. 2021. A High-Performance Heterogeneous
Critical Path Analysis Framework. In IEEE High-Performance Extreme Computing
Conference (HPEC).

[79] Boyang Zhang, Dian-Lun Lin, Che Chang, Cheng-Hsiang Chiu, Bojue Wang,
Wan Luan Lee, Chih-Chun Chang, Donghao Fang, and Tsung-Wei Huang. 2024.
G-PASTA: GPU Accelerated Partitioning Algorithm for Static Timing Analysis.
In ACM/IEEE DAC.

[80] Kexing Zhou, Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2022. Efficient
Critical Paths Search Algorithm using Mergeable Heap. In IEEE/ACM Asia and
South Pacific Design Automation Conference (ASP-DAC).

https://doi.org/10.1109/TCAD.2020.3007319
https://doi.org/10.1109/ICCAD.2015.7372665
https://doi.org/10.1109/ICCAD.2015.7372665
https://doi.org/10.1109/ICCAD.2015.7372667

	Abstract
	1 Introduction
	2 Background
	2.1 Critical Path Generation
	2.2 Implicit Path Representation

	3 PathGen
	3.1 Parallel CPG with Multi-level Queue Scheduling
	3.2 Partition of Slack Distribution
	3.3 Node Redistribution

	4 Experimental Results
	4.1 Overall Performance Comparison
	4.2 Performance at Different Thread Counts
	4.3 Effectiveness of Node Redistribution
	4.4 Performance of Different Slack Distribution Partitioning Strategies
	4.5 Performance at Different Path Counts
	4.6 Accuracy at Different Path Counts

	5 Conclusion
	References

