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Abstract
Hypergraph partitioning plays a critical role in computer-aided de-
sign (CAD) because it allows us to break down a large circuit into
several manageable pieces that facilitate efficient CAD algorithm
designs. However, as circuit designs continue to grow in size, hy-
pergraph partitioning becomes increasingly time-consuming. Re-
cent research has introduced parallel hypergraph partitioners using
multi-core CPUs to reduce the long runtime. However, the speedup
of existing CPU parallel hypergraph partitioners is typically limited
to a few cores. To overcome these challenges, we propose HyperG,
a GPU-accelerated multilevel k-way hypergraph partitioning algo-
rithm. HyperG introduces an innovative balanced group coarsening
and a sequence-based refinement algorithm to accelerate both the
coarsening and uncoarsening stages. Experimental results show that
HyperG outperforms both the state-of-the-art sequential and CPU-
based parallel partitioners with an average speedup of 133× and 4.1×
while achieving comparable partitioning quality.
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1 Introduction
Hypergraph partitioning plays a critical role in various stages of
circuit design, including placement, routing, timing analysis, and
logic simulation. For instance, hypergraph partitioning helps opti-
mize component placement on a chip by dividing the circuit into
smaller, more manageable blocks while minimizing interconnec-
tions among them [70]. Given that hypergraph partitioning is NP-
hard [5, 24], many heuristics have been developed [3, 6, 71]. Among
these heuristics, multilevel partitioning stands out as the most popu-
lar for large-scale circuit graphs due to its high-quality partitioning
results and fast runtime [5, 19, 24, 64, 83]. A typical multilevel hy-
pergraph partitioner iteratively coarsens the original hypergraph
into a smaller representation. When the hypergraph becomes small
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enough, the partitioner uses a fast algorithm to generate an initial
balanced partition. Finally, the partitioner iteratively restores the
graph to the previous level, followed by a refinement algorithm to
improve the partition solution. Among all stages, coarsening and
refinement stages are the most time-consuming and account for 90%
of the total runtime [23].

As the circuit size continues to grow, multilevel hypergraph par-
titioning becomes increasingly time-consuming. For example, the
sequential hypergraph partitioner hmetis can take four minutes to
partition a five million-gate circuit [64]. Since hypergraph parti-
tioning can be performed multiple times during a CAD algorithm
(e.g., incremental timing [40], RTL simulation [80]), the cumulative
partitioning time can extend to several hours. To reduce the long
runtime, existing partitioners [24, 83] have utilized multi-core CPUs
to parallelize the partitioning. Among many parallel graph parti-
tioners, Mt-KaHyPar [24] is the state-of-the-art CPU-based parallel
hypergraph partitioner designed to parallelize the sequential k-way
Fiduccia-Mattheyses algorithm [22]. Despite some runtime improve-
ments, the speedup typically plateaus at 8–16 CPU threads [24]. On
the other hand, modern GPUs provide massive amount of paral-
lelism and higher memory bandwidth than CPUs, offering a new
opportunity to accelerate hypergraph partitioning.

However, existing CPU parallel hypergraph partitioning algo-
rithms cannot be directly applied to GPU. The distinct performance
characteristics between CPU and GPU require very different designs
of data layouts to make the most of GPU computing. Furthermore,
applying CPU-parallel algorithms to GPU can result in underutilized
GPU threads, load imbalance, and expensive synchronization over-
head. For example, Mt-KaHyPar’s coarsening algorithm requires
frequent synchronization, which is costly on GPU and becomes a
large performance bottleneck.

Recent research, such as G-kway [69] and GKSG [23], has inves-
tigated the use of GPU to accelerate non-hypergraph partitioning
(i.e., exactly two vertices per edge). To apply G-kway or GKSG to
hypergraph partitioning, one potential solution is to transform a
hypergraph into a non-hypergraph [21]. However, this transforma-
tion often results in poor partitioning quality, as the transformed
non-hypergraph fails to accurately represent the original hyper-
graph [60, 64]. Another possible solution is to extend G-kway’s
non-hypergraph partitioning algorithm to hypergraphs. However,
due to the inherent differences between nonhypergraphs and hyper-
graphs, this approach can result in extremely low parallelism. For
example, G-kway identifies an independent set of vertices to refine
in parallel. Since a hyperedge can easily link to many vertices, the
size of an independent set in a hypergraph is typically small. This
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situation becomes even more challenging with modern circuits, as a
net typically connects to numerous pins. Given these challenges and
the importance of a fast hypergraph partitioner, there is a need for a
new GPU-accelerated hypergraph partitoning algorithm.

Consequently, we present HyperG, a GPU-accelerated hypergraph
partitioning algorithm. While the previous work [12] has attempted
to accelerate the uncoarsening stage using GPUs, to the best of our
knowledge, HyperG is among the earliest attempts to parallelize
both coarsening and uncoarsening stages on a GPU. The three key
contributions of HyperG are summarized below:

• We introduce a balanced group coarsening algorithm that
groups many vertices into balanced subgroups to ensure high
partitioning quality at later initial partitioning stage.
• We introduce a sequence-based refinement algorithm that
simultaneously identifies and moves the best subsequence of
vertices to largely improve the partition solution.
• We develop our GPU kernel using modern CUDA warp-level
primitives to achieve fine-grained synchronization and effi-
cient communication during both the coarsening and refine-
ment stages.

We evaluate the performance of HyperG on industrial circuit
graphs and compared our results with two state-of-the-art hyper-
graph partitioners, sequentialy partitioner hmetis [64] and CPU-
based parallel partitioner Mt-KaHyPar [24]. On average, experimen-
tal results show that HyperG outperforms hmetis and 16-threaded
Mt-KaHyPar by 133× and 4.1× faster, respectively, with comparable
cut sizes.

2 Problem Definition and Notation
Given a hypergraph 𝐻 = (𝑉 , 𝐸), where 𝑉 is a set of vertices and 𝐸 is
a set of hyperedges, each element 𝑒 in 𝐸 is a subset of the vertex set
𝑉 representing multi-vertex relationships. The vertices that belong
to a hyperedge are referred to that hyperedge’s pins. We donate the
size of 𝑒 as |𝑒 |, which is equal to the number of pins belonging to
𝑒 . For a vertex 𝑣 , we donate the weight of 𝑣 ∈ 𝑉 by𝑊𝑣 , while for a
hyperedge 𝑒 ∈ 𝐸, we donate the weight of 𝑒 by𝑊𝑒 . Vertices 𝑢 and 𝑣
are neighbors, if there exists a hyperedge 𝑒 ∈ 𝐸 such that 𝑢 ∈ 𝑒 and
𝑣 ∈ 𝑒 .

Given an integer 𝑘 , the goal of the hypergraph partitioning prob-
lem is to partition 𝑉 into 𝑘 disjoint subsets 𝑃1, 𝑃2, . . . , 𝑃𝑘 of approx-
imately equal sizes, while minimizing the cut size. The cut size is
a commonly used metric to measure the interconnection among
partitions and is defined as the sum of the weights of all cut hyper-
edges. A cut hyperedge is a hyperedge that contains pins belonging
to more than one partition. For a vertex 𝑢, we define 𝑃 (𝑢) = 𝑖 if
𝑣 ∈ 𝑃𝑖 . The weight of partition 𝑃𝑖 is define as𝑊𝑃𝑖 =

∑
𝑣∈𝑃𝑖 𝑊𝑣 . To

ensure that each partition has roughly equal sizes, a balance con-
straint is imposed, limiting the maximum size of each partition 𝑃𝑖

as𝑊𝑃𝑖 ≤ (1 + 𝜖)
∑
𝑣∈𝑉 𝑊𝑣

𝑘
, where 0 < 𝜖 ≪ 1 and 𝜖 is the imbalance

ratio given by applications.

3 GPU Multilevel Hypergraph Partitioner
Following the multilevel heuristic, HyperG consists of three main
stages: coarsening, initial partitioning, and uncoarsening. Figure 1
shows an overview of HyperG.

Figure 1: Overview of HyperG that consists of three main
stages: coarsening, initial partitioning, and uncoarsening.

• Coarsening. The goal is to coarsen the hypergraph into a smaller
representation level by level while preserving the original hy-
pergraph’s structure. The coarsening process continues until the
hypergraph has fewer than 160 × 𝑘 vertices or until less than
95% of the vertices can be coarsened in the previous level. We
develop a balanced group coarsening algorithm that can coarsen
many vertices simultaneously while ensuring that the coarsened
vertices are balanced in size. This balance in vertex sizes is crucial
for achieving a balanced initial partition in the initial partitioning
stage.
• Initial partitioning. The goal is to create an initial partition from
the coarsest hypergraph. We utilize the CPU-based parallel hy-
pergraph partitioner Mt-KaHyPar [24] for the initial partitioning.
Since the coarsest hypergraph is much smaller than the original
hypergraph, the initial partitioning stage is very fast and does
not benefit much from GPU parallelism.
• Uncoarsening. The goal is to iteratively restore the coarsened
hypergraph back to the previous level and refine the partitioning
result by moving vertices among partitions (i.e., refinement). The
uncoarsening process continues until the hypergraph size is the
same as the original hypergraph.We develop an efficient sequence-
based refinement algorithm that finds the best subsequence of
vertices to move in parallel, significantly improving the cut size
while reducing the refinement time.

In terms of graph storage, HyperG maintains two arrays in the
commonly used compressed sparse row (CSR) data structure to store
vertices and their connected edges, as well as hyperedges and their
connected vertices, for efficient GPU computing.

3.1 Balanced Group Coarsening
State-of-the-art CPU-parallel coarsening methods adopt rating func-
tion coarsening [1, 4, 24]. Each vertex initially starts in its own
group. Each thread then visits a vertex, finds the neighbor with the
highest score, and joins the vertex to that neighbor’s group. Finally,
all vertices in the same group will coarsen into a coarsened vertex.
To prevent a group from becoming too large and causing an im-
balanced initial partition at a later stage, Mt-KaHyPar imposes a
maximum size on each group and prevents vertices from joining
a group that exceeds the maximum size. Consequently, frequent
checks (i.e., synchronization) are required to ensure that vertices
do not join oversized groups. Such synchronization can introduce
significant overhead for GPU, as each GPU thread involves frequent
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waiting for another GPU thread to update the correct group size,
which reduces the parallel efficiency of GPU.

Furthermore, Mt-KaHyPar assigns each vertex an atomic variable
to track each vertex’s status. To ensure correct group sizes and group
assignments, Mt-KaHyPar uses compare-and-swap (CAS) instruc-
tions to prevent any thread from joining a group that is currently
being updated by another thread. If a thread decides to assign a
vertex to a neighbor’s group that is currently being joined by an-
other thread, it enters a busy-waiting loop until the other thread
finishes updating its status. Such a busy-waiting loop mechanism
can significantly hamper GPU performance due to two reasons:
First, busy-waiting loops reduce the number of active GPU threads
performing useful computations. This can significantly hurt GPU
performance since GPU relies on massive parallelism to achieve
high performance. Furthermore, GPU executes threads in groups
called warps. If some threads in a warp are busy-waiting while others
are not, it can lead to some threads in a warp are stalled, further
degrading performance.

To overcome these challenges, we propose balanced group coars-
ening. Each vertex selects the neighbor with the highest score to
group. Each GPU thread then groups vertices together simultane-
ously. Our algorithm does not limit the group size while joining
vertices; Instead, we break down all groups into subgroups of similar
sizes in parallel after all vertices have joined groups. Furthermore,
each GPU thread updates a vertex’s group using a single atomicMax
operation, without requiring threads to wait. Our coarsening algo-
rithm consists of three steps: Neighbor selection , Vertex grouping ,
and Balanced subgroup breakdown.

3.1.1 Neighbor selection. We develop an efficient GPU kernel using
a highly optimized CUDA warp-level primitive, __reduce_max_sync,
to find the neighbor with the highest score. Inspired by [24], we
define the rating function for each vertex 𝑢 and its neighbor 𝑣 as
follows:

𝑠𝑐𝑜𝑟𝑒 (𝑢, 𝑣) = 𝐶 ×
∑︁

𝑒∈𝐸:𝑣∈𝑒∩𝑢∈𝑒

𝑊𝑒

|𝑒 | .

To find the neighbor with the highest score, we assign each vertex to
a GPU warp (i.e. a group of 32 consecutive threads), with each thread
in the warp fetching one of the vertex’s neighbors and calculating its
score. We then employ __reduce_max_sync to perform a reduction
operation across all threads in a warp to find the neighbor with the
highest score. Since the built-in __reduce_max_sync only supports
integer types, we multiply the rating function by a large constant
𝐶 (i.e. 1,000). This strategy converts a float to an integer by scaling
it up to a significant value, preserving the relative magnitude and
precision of the original floating-point number.

3.1.2 Vertex grouping. After selecting the neighbor with the highest
score for each vertex, we perform the vertex grouping algorithm
to join vertices into groups in parallel and coarsen all vertices in
the same group together. Our vertex grouping algorithm is inspired
by [88], where each vertex’s group ID is iteratively updated to a
larger value until all vertices with connected selected neighbors
share the same group ID. However, after grouping, some groups
are significantly larger than others, making it difficult to achieve a
balanced partition at the later initial partitioning stage. One solu-
tion is to randomly divide each large group into smaller subgroups.

However, this approach can lead to poor partition quality because
vertices that are far apart may end up in the same subgroup. Coars-
ening these distant vertices together can distort the original graph
structure. Figure 2 (a) shows an example of breaking down a large
group into subgroups of size two randomly. This method places
two nonadjacent vertices, 𝑣1 and 𝑣2, into the same subgroup, which
distorts the original graph structure by coarsening them together.

To address these issues, we create a group combination for each
vertex, ensuring that vertices closer to each other have closer group
combinations. We then divide vertices with closer group combina-
tions into the same subgroups. In our algorithm, each vertex’s group
combination is an eight-byte data type, where the first four bytes
store the vertex’s group ID, and the last four bytes indicate the itera-
tion during which this vertex joins the group. This setup allows us
to update the group combination with a single atomicMax operation.
Specifically, vertices closer to the group leader (i.e., the vertex with
the largest vertex ID in the group) will join the group leader’s group
faster and adopt the smaller group combinations, while more distant
vertices will join the group later and have larger group combinations.
Figure 2 (b) shows an example of breaking down a large group into
subgroups of size two by group combinations. This method places
adjacent vertices into the same subgroups, which better preserves
the original graph structure than method (a).

Figure 2: Examples of two methods to break down a large
group into subgroups of size two. Vertices in the same box are
placed into the same subgroup. 𝑉𝑖 → 𝑉𝑗 indicates 𝑉𝑖 selects
to join 𝑉𝑗 ’s group. In (b), (𝑛1, 𝑛2) represents a vertex’s group
combination, where 𝑛1 indicates the group ID and 𝑛2 is the
iteration number.

Algorithm 1 presents our vertex grouping algorithm. We use an
array𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑚𝑏 to store each vertex’s group combination. Initially,
each vertex is in its own group, and we initialize its corresponding
value in 𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑚𝑏 such that the first four bytes equal this vertex’s
vertex ID and the last four bytes are set to 0. We utilize a boolean
variable joining to track if there are any vertices still joining other
groups. While joining is true, we assign each vertex to a GPU thread.
Each thread is responsible for updating the group combinations of
its assigned vertex and its selected neighbor by first comparing their
group IDs and finding the larger one (lines 10 or 14). The thread
then creates a new group combination using the larger group ID and
the iteration number (lines 11 or 15) and uses atomicMax to update
the group combination of either its vertex or its selected neighbor,
whichever is smaller (lines 12 or 16). Since multiple threads may
attempt to update the same vertex’s group combination concurrently,
we use atomicMax to ensure these updates are performed atomically.
Finally, threads that update the group combination sets joining to
true (lines 13 or 17), indicating that there are still vertices joining
other groups and that threads need to continue updating group
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Algorithm 1: Vertex grouping
1 it← 1
2 joining← true
3 while (joining)
4 joining← false
5 parallel for each GPU thread
6 gid ← GPU thread’s global ID
7 nbr ← selected_neighbor[gid]
8 nbr_group_ID← get_group_ID(group_comb[nbr])
9 cur_group_ID← get_group_ID(group_comb[gid])

10 if cur_group_ID > nbr_group_ID then
11 max_group_comb← get_group_comb(cur_group_ID,

it)
12 atomicMax(&group_comb[nbr], max_group_comb)
13 joining← true
14 else if cur_group_ID < nbr_group_ID then
15 max_group_comb← get_group_comb(nbr_group_ID,

it)
16 atomicMax(&group_comb[gid], max_group_comb)
17 joining← true
18 it++

combinations. Once all vertices have finished joining groups and
group combinations no longer change, all vertices in the same group
will have group IDs equal to the vertex ID of their group leader.

Algorithm 2: Balanced subgroup breakdown
1 parallel for each group
2 gid ← GPU thread’s global ID
3 𝑖𝑡ℎ ← the 𝑖𝑡ℎ vertex in the group ⊲ position within the group
4 sub_group_start← floor(𝑖𝑡ℎ / s)
5 sub_group_id ← v_id[sub_group_start × s]
6 group_id[gid]← sub_group_id

3.1.3 Balanced subgroup breakdown. After computing the group
combinations, we sort the vertices in ascending order based on their
group combinations, so that vertices belonging to the same group are
placed together. Within each group, vertices are ordered according
to their distance from the group leader (i.e., vertices farther from
the group leader have larger group IDs). We then divide vertices
into subgroups based on their position within the group, with each
subgroup having a maximum size of 𝑠 . We maintain an array 𝑣_𝑖𝑑 to
record each vertex’s vertex ID in the same order as they appear in
𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑚𝑏. Algorithm 2 shows our balanced subgroup breakdown
algorithm. For each group, we assign each vertex in the group to a
GPU thread. The thread first identifies the index of its vertex within
the group (line 3). The thread then computes the subgroup for the
vertex by dividing the index by 𝑠 (lines 4). To assign the subgroup
a new group ID and ensure that no two subgroups share the same
ID, the thread locates the first vertex within its subgroup and uses
this vertex’s vertex ID as the subgroup ID (line 5). Finally, the thread
updates the group ID accordingly (line 6).

3.2 Sequence-based Refinement
The goal of a refinement algorithm is to minimize the number of cut
hyperedges by reducing the number of hyperedges that span multi-
ple partitions. This is achieved by moving vertices among different
partitions. We define a vertex_move as 𝑚𝑃𝑐𝑢𝑟 ,𝑃𝑑𝑠𝑡

𝑢 that represents
moving the vertex 𝑢 from the current partition 𝑃𝑐𝑢𝑟 to the destina-
tion partition 𝑃𝑑𝑠𝑡 . We then define the gain, 𝑔𝑎𝑖𝑛(𝑢, 𝑃𝑑𝑠𝑡 ), of a vertex
move𝑚𝑃𝑐𝑢𝑟 ,𝑃𝑑𝑠𝑡

𝑢 as follows:∑︁
𝑒∈𝐸:𝑢∈𝑒

𝑊𝑒×{𝛿 (𝑛𝑢𝑚_𝑝𝑖𝑛𝑠 (𝑒, 𝑃𝑐𝑢𝑟 ) = 1)−𝛿 (𝑛𝑢𝑚_𝑝𝑖𝑛𝑠 (𝑒, 𝑃𝑑𝑠𝑡 ) = 0)},

where 𝛿 (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) is an indicator function that returns 1 if the
condition is true and 0 otherwise. The function 𝑛𝑢𝑚_𝑝𝑖𝑛𝑠 (𝑒, 𝑃𝑖 )
returns the number of pins of edge 𝑒 that are located in partition 𝑃𝑖 .
The gain is computed by summing all hyperedges 𝑒 incident to 𝑢.
For each 𝑒:
• The first term 𝛿 (𝑛𝑢𝑚_𝑝𝑖𝑛𝑠 (𝑒, 𝑃𝑐𝑢𝑟 ) = 1) checks if 𝑒 has only
one pin left in 𝑃𝑐𝑢𝑟 . If the condition is true, then moving 𝑢
from 𝑃𝑐𝑢𝑟 will result in a positive contribution to the gain, as
it reduces the number of partitions 𝑒 spans.
• The second term 𝛿 (𝑛𝑢𝑚_𝑝𝑖𝑛𝑠 (𝑒, 𝑃𝑑𝑠𝑡 ) = 0) checks if 𝑒 has no
pins in 𝑃𝑑𝑠𝑡 . If the condition is true, then moving𝑢 to 𝑃𝑑𝑠𝑡 will
result in a negative contribution to the gain, as it increases
the number of partitions 𝑒 spans.

Parallel refinement can make each vertex’s gain inconsistent due
to the concurrent movement of adjacent vertices [69]. To ensure
correct gains, G-kway [69] identifies an independent set of vertices
to move in parallel. However, such a strategy largely reduces the
available parallelism for hypergraphs. Since a hyperedge can connect
to many vertices, the size of an independent set in a hypergraph is
often small. To address this problem, we propose a sequence-based
refinement algorithm. We first finds a sequence of vertex moves
with positive gain in the descending order. Next, we update the gain
of each vertex move in the sequence by assuming previous vertex
moves are already applied. This strategy allows us to update the gain
of a vertex move based on its neighbors’ latest partition locations,
eliminating the need for an independent set. Since a vertex move
may have negative gains after updating, we accumulate the gains to
identify the best subsequence of vertex moves that yields the largest
gain while maintaining balanced partitions. Our sequence-based
refinement algorithm consists of two steps: Sequence of vertex moves
finding and Best subsequence selection.

3.2.1 Sequence of vertex moves finding. In this step, our goal is to
find vertices with positive gains and store them in a sequence of ver-
tex moves seq_vertex_moves. To avoid redundant gain computations,
we record the adjacent partitions of each vertex 𝑢 (i.e., partitions
where 𝑢 has neighbors) using a 64-bit data type 𝑎𝑑 𝑗_𝑝𝑎𝑟 . In adj_par,
each bit represents a partition and its value is either 1 or 0. Specifi-
cally, if 𝑃𝑖 is adjacent to 𝑢, the value of the 𝑖𝑡ℎ bit in 𝑢’s adj_par is
1; otherwise, it is set to 0. This information is updated as vertices
are moved. We only calculate gains for the adjacent partitions of
𝑢 since moving a vertex to a non-adjacent partition will not result
in a positive gain. This strategy largely reduces unnecessary gain
calculations.
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Algorithm 3: Sequence of vertex moves finding
1 parallel for each GPU warp
2 warp_id ← GPU warp’s global ID
3 lane_id ← GPU thread’s ID within a warp
4 v_start← warp_id * 32
5 v_end ← v_start + 32
6 for each 𝑣 ∈ {v_start . . . v_end}
7 𝑃𝑐𝑢𝑟 ← 𝑢’s current partition
8 max_gain← 0
9 max_gain_P ← ∅

10 for each P ∈ 𝑣’s adj_par
11 e_id ← lane_id𝑡ℎ e ∈ 𝑢
12 e_gain←𝑊𝑒 × {𝛿(num_pins(e, 𝑃𝑐𝑢𝑟 ) = 1) -

𝛿(num_pins(e, P) = 0) }
13 sum_gain← __reduce_add_sync(0xffffffff, e_gain)
14 if lane_id == 0 && sum_gain > max_gain then
15 max_gain← sum_gain
16 max_gain_P ← P
17 __syncwarp()
18 if lane_id == 0 && max_gain > 0 then
19 pos← atomicAdd(seq_size, 1)
20 seq_vertex_moves[pos]←𝑚

𝑃𝑐𝑢𝑟 ,𝑚𝑎𝑥_𝑔𝑎𝑖𝑛_𝑃
𝑣

21 __syncwarp()

To find vertices with positive gains, we assign each GPU warp 32
consecutive vertices. All threads in a warp calculate the gain of a
vertex 𝑢 for one of its adjacent partitions at a time. Since each vertex
can have a different number of adjacent partitions and hyperedges,
the time for computing a vertex’s gain is different. In our kernel, if a
warp finishes processing a vertex quickly, it can immediately proceed
to the next one. This approach increases warp occupancy, ensuring
enough active warps to keep the GPU cores busy. Algorithm 3 shows
our sequence of vertex moves finding algorithm. In each warp, all
threads first fetch 32 consecutive vertices (lines 4-5), and they cal-
culate the gain of a vertex 𝑣 to one of its adjacent partitions 𝑃 at a
time. Specifically, each thread fetches one of 𝑢’s hyperedge 𝑒 and
calculates the gain for 𝑒 (lines 11-12). We use __reduce_add_sync to
efficiently sum up the gain of each 𝑒 computed by each thread (line
13). After obtaining the total gain, the first thread in the warp (i.e.,
lane ID equals 0) checks if the total gain is greater than the current
maximal gain (line 14). If it is true, the thread updates the current
maximal gain and the associated partition (lines 15-16). Then, all
threads continue processing 𝑣 ’s next adjacent partition. Once threads
have processed all of 𝑣 ’s adjacent partitions, the first thread checks if
𝑣 has a maximal gain greater than zero (lines 18). If it does, the thread
atomically increments a variable indicating the current sequence
size 𝑠𝑒𝑞_𝑠𝑖𝑧𝑒 to get a position in seq_vertex_moves and inserts the
vertex move into the sequence (lines 19-20).

After finalizing the sequence of vertex moves, we need to select a
subsequence of them such that applying those vertex moves yields
the largest gain while still satisfying the balance constraint. How-
ever, finding the optimal subsequence encounters the problem of
exponential enumeration, as each vertex move must be considered
for selection or not. Specifically, identifying a subsequence of size 𝑘
requires evaluating 2𝑘 possible combinations. To address this prob-
lem, we sort each vertex move by gain and select vertex moves in

descending order. This selection allows us to move vertices with
larger gains first, thus maximize the improvement in cut size.

Algorithm 4: Gain updating

1 assign a𝑚𝑃𝑐𝑢𝑟 ,𝑃𝑑𝑠𝑡
𝑢 to a GPU warp

2 parallel for each GPU warp
3 lane_id ← GPU thread’s ID within a warp
4 u_move_order ← move_order[𝑢]
5 gain← 0
6 foreach u’s hyperedge 𝑒
7 pin_id ← lane_id𝑡ℎ pin in e
8 pin_move_order ← move_order[pin_id]
9 pin_par← pin_move_order < u_move_order ?

seq_vertex_moves [pin_move_order].𝑑𝑠𝑡 : seq_vertex_moves
[pin_move_order].𝑐𝑢𝑟

10 num_pins_cur ← number of pin_pars are𝑚𝑃𝑐𝑢𝑟 ,𝑃𝑑𝑠𝑡
𝑢 .𝑐𝑢𝑟

11 num_pins_dst← number of pin_pars are𝑚𝑃𝑐𝑢𝑟 ,𝑃𝑑𝑠𝑡
𝑢 .𝑑𝑠𝑡

12 if lane_id == 0 && num_pins_dst == 0 then
13 gain − =𝑊𝑒

14 if lane_id == 0 && num_pins_cur == 1 then
15 gain + =𝑊𝑒

16 __syncwarp()
17 if lane_id == 0 then
18 seq_vertex_moves[u_move_order] .gain← gain

3.2.2 Best subsequence selection. The goal of this step is to select
the best subsequence of vertex moves to move. We first update the
gain of each vertex moves by assuming previous vertex moves are
all applied. The gain of a vertex move is updated by computing its
neighbors’ current partitions based on their order in the sequence
of vertex moves. To allow each thread to quickly access a vertex
move’s order without searching the entire sequence, we maintain a
move_order array of length |𝑉 |, where the index of vertex 𝑢 records
𝑢’s order in the sequence. Algorithm 4 presents our parallel gain
updating algorithm. We assign each vertex move𝑚𝑃𝑐𝑢𝑟 ,𝑃𝑑𝑠𝑡

𝑢 to a GPU
warp, where all threads in the warp update the gain of 𝑔𝑎𝑖𝑛(𝑢, 𝑃𝑑𝑠𝑡 ),
by computing the gain of each hyperedge 𝑒 of 𝑢 at a time. Each
thread first fetches one of 𝑒’s pin 𝑝𝑖𝑛 and its order pin_move_order
from move_order to a thread-local variable (lines 7-8). Each thread
then finds 𝑝𝑖𝑛’s current partition pin_par by comparing the order of
𝑝𝑖𝑛 and 𝑢 (lines 9). If 𝑝𝑖𝑛’s order is less than 𝑢’s, meaning 𝑝𝑖𝑛 moves
before 𝑢, then by the time we are moving 𝑢, 𝑝𝑖𝑛 should already be in
its destination partition. Conversely, if 𝑝𝑖𝑛’s order is greater than𝑢’s,
meaning 𝑝𝑖𝑛 moves after 𝑢, then by the time we are moving 𝑢, 𝑝𝑖𝑛
should still be in its current partition. Based on the order of 𝑝𝑖𝑛, each
thread determines its 𝑝𝑖𝑛’s current partition and counts the number
of pins in𝑚𝑃𝑐𝑢𝑟 ,𝑃𝑑𝑠𝑡

𝑢 ’s current partition 𝑃𝑐𝑢𝑟 (lines 10). To efficiently
calculate the number of pins in the 𝑃𝑐𝑢𝑟 , we use __ballot_sync to
identify threads whose 𝑝𝑖𝑛_𝑝𝑎𝑟 matches 𝑃𝑐𝑢𝑟 and __popc to count
those threads. The number of pins in the destination partition is
computed similarly (lines 11). Finally, the first thread in the warp
checks if 𝑒 has no pins in 𝑃𝑑𝑠𝑡 . If this condition is met, 𝑒 results in
a negative gain, and the thread decrements the gain by𝑊𝑒 (lines
12-13). Additionally, the thread checks if 𝑒 has only one pin left in
𝑃𝑐𝑢𝑟 . If this condition is met, 𝑒 results in a positive gain, and the
thread increments the gain by𝑊𝑒 (lines 14-15).



ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Wan-Luan Lee, Dian-Lun Lin, Cheng-Hsiang Chiu, Ulf Schlichtmann, and Tsung-Wei Huang

After updating the gain of each vertex move, some vertex moves
may have negative gains. To find a subsequence with the largest total
gain, we employ a GPU scan algorithm to accumulate the gains of the
sequence of vertex moves and store them in the array accum_gains.
This allows us to calculate the total gains that we can obtain if we
apply all the vertex moves in the subsequence. For example, the 𝑗𝑡ℎ

element in accum_gains stores the total gain obtained by applying
the vertex moves from the first to the 𝑗𝑡ℎ (i.e., a subsequence from
the first to the 𝑗𝑡ℎ vertex move). We can then find the subsequence
with the largest gain.

Next, we use the same strategy to compute the partition balance
result. We maintain 𝑘 different 𝑑𝑒𝑙_𝑤𝑔𝑡𝑖 arrays for 𝑘 partitions, each
with a size equal to the number of vertex moves in the sequence. Each
element in 𝑑𝑒𝑙_𝑤𝑔𝑡𝑖 records the weight change of the 𝑖𝑡ℎ partition
after applying a vertex move. Specifically, the value in 𝑑𝑒𝑙_𝑤𝑔𝑡1 [0]
records the first partition’s weight change after applying the first
vertex move. We then use a GPU scan on each 𝑑𝑒𝑙_𝑤𝑔𝑡𝑖 to get the
total partition weight change for each partition. After scans, the
𝑗𝑡ℎ element in 𝑑𝑒𝑙_𝑤𝑔𝑡𝑖 stores the total partition weight change for
partition 𝑖 from applying the first to the 𝑗𝑡ℎ vertex moves. Based on
the total partition weight changes, we can compute if the partition
will be balanced after applying vertex moves in the subsequence.
Using the accumulated gains accum_gains and the result of each
𝑑𝑒𝑙_𝑤𝑔𝑡𝑖 , we can find the longest subsequence where the total gain
is maximized and the resulting partition remains balanced. We then
apply all vertex moves in this subsequence in parallel.

4 Experimental Evaluation
We evaluated the performance of HyperG on 18 industrial circuit
graphs derived from the ISPD98 VLSI Circuit Benchmark Suite [2].
Since the original graphs are small (a few thousand vertices), we
expanded the circuit graphs 100–1000 times larger with random
vertex and edge insertions to demonstrate the advantage of GPU
parallelism. We implemented HyperG using C++17 and CUDA 12.0
and compiled it with nvcc on a host compiler of GCC-8 with -O3
enabled. We ran experiments on a 64-bit Linux machine with 16 Intel
i7-11700 CPU cores at 2.50 GHz and 128 GB RAM. Our GPU is A6000
with 48 GB global memory.

4.1 Baselines
We consider two state-of-the-art hypergraph partitioners as our
baseline, hmetis v1.5 [64] (sequential) and Mt-KaHyPar [24] (mul-
tithreaded). For all experiments, we set the imbalance ratio to 3%.
In the coarsening stage, we set the maximum size of each subgroup
to four and terminate the coarsening algorithm when the number
of vertices drops below 160 × 𝑘 or less than 95% of the vertices can
be coarsened in the previous coarsening level. We use the default
settings for both hmetis and Mt-KaHyPar.

4.2 Overall Performance Comparison
Table 1 compares the overall runtime and cut size results among
hmetis, Mt-KaHyPar, and HyperG at 𝑘 = 2. On our machine, Mt-
KaHyPar saturates at about 10–16 threads. Hence, we report its
results under 16 threads. In terms of runtime, HyperG outperforms
hmetis and Mt-KaHyPar across nearly all circuit graphs, with an
average speedup of 133× and 4.1×, respectively. The largest speedups
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Figure 3: The speedup of HyperG over Mt-KaHyPar (top) and
hmetis (bottom) at different 𝑘 . In cases where hmetis fails to
partition the circuit graph, the results are left blank.

we observe are 177× over hmetis and 6× over Mt-KaHyPar. For the
smallest graph (circuit08), the runtime of HyperG is slightly slower
than Mt-KaHyPar (0.9×), which is due to the limited data parallelism
exhibited by this graph. For the largest graph (circuit17), hmetis failed
to finish due to memory error. Regarding cut size, HyperG always
achieves comparable values with both hmetis and My-KaHyPar.

We attribute this promising performance to our efficient balanced
group coarsening algorithm, which groups vertices into subgroups
of similar sizes and coarsens all vertices within these subgroups.
This algorithm largely reduces the number of coarsening levels by
efficiently coarsening many vertices at each level while ensuring that
the resulting coarsened vertices have similar sizes. This balance in
vertex weights helps the initial partitioning stage find a good initial
solution. Additionally, our sequence-based refinement algorithm
correctly computes the gains for a sequence of vertex moves. This
strategy allows us to identify the best subsequence of vertex moves
to apply in parallel, reducing the number of refinement steps while
ensuring high partitioning quality.

4.3 Runtime Analysis
Figure 3 shows the speedup of HyperG over Mt-KaHypar (16 threads)
and hmetis at 𝑘 = {2, 4, 8, 16, 32, 64} on four circuit graphs, circuit01,
circuit02, circuit06, and circuit09. We chose these four circuit graphs
because hmetis can finish the partitioning in most 𝑘 during our
settings.

Regardless of 𝑘 , HyperG is always faster than hmetis and Mt-
KaHyPar. For example, with 𝑘 = 2, HyperG achieves up to 5.5×
and 380× speedup over Mt-KaHyPar and hmetis, respectively; with
𝑘 = 64, HyperG is up to 4× faster than My-KaHyPar whereas hmetis
fails to finish due to memory error. We attribute this to our balanced
group coarsening where we largely reduce the number of vertices
at each coarsening level. Moreover, our sequence-based refinement
algorithm can move many vertices in parallel, thus significantly
reducing the time spent in the refinement stage.

We also observe the impact of 𝑘 on the performance of HyperG
compared with hmetis and Mt-KaHyPar. As 𝑘 increases, the run-
time of all partitioners increases. However, the runtime of hmetis
increases much faster than HyperG and Mt-KaHyPar. For example,
on circuit09, when 𝑘 goes from 2 to 4, HyperG and My-KaHyPar
become 8.92% and 3.64% slower, respectively, while hmetis becomes
128.5% slower.
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Hypergraph benchmark hmetis (Sequential) Mt-KaHyPar (16 threads) HyperG Speedup vs
Name # Vertices # Edges Time (s) Cut size Time (s) Cut size Time (s) Cut size hmetis Mt-KaHyPar

circuit01 2,639,664 2,920,977 83.359 1,480 2.415 1,513 0.770 1,498 108.3× 3.1×
circuit02 5,076,659 5,072,256 246.654 1,570 5.784 1,597 1.692 1,572 145.8× 3.4×
circuit03 3,215,904 3,808,739 116.118 1,666 3.368 1,666 0.908 1,665 127.9× 3.7×
circuit04 3,273,333 3,804,430 114.703 1,686 3.440 1,693 1.567 1,699 73.2× 2.2×
circuit05 5,898,747 5,717,646 243.087 815 6.608 828 2.134 814 113.9× 3.1×
circuit06 5,817,142 6,233,854 235.252 1,708 7.179 1,692 1.351 1,691 174.1× 5.3×
circuit07 5,648,898 5,918,391 208.098 1,744 6.717 1,744 1.318 1,745 157.9× 5.1×
circuit08 2,001,051 1,970,007 67.163 853 1.734 854 1.896 853 35.4× 0.9×
circuit09 4,965,735 5,663,886 175.453 1,784 5.652 1,794 1.031 1,794 170.2× 5.5×
circuit10 6,179,181 6,692,444 251.446 1,804 7.855 1,807 1.526 1,808 164.8× 5.1×
circuit11 5,856,314 6,760,682 210.619 1,802 7.155 1,802 1.197 1,802 176.0× 6.0×
circuit12 3,767,028 4,093,720 141.953 1,801 4.237 1,806 1.956 1,811 72.6× 2.2×
circuit13 3,620,557 4,285,638 122.969 1,836 4.322 1,835 0.998 1,835 123.2× 4.3×
circuit14 4,163,763 12,487,976 176.301 1,848 6.194 1,848 1.197 1,802 147.3× 5.2×
circuit15 5,166,175 5,347,020 264.711 1,859 8.505 1,862 2.136 1,859 123.9× 4.0×
circuit16 7,889,812 8,172,064 338.495 1,868 10.840 1,866 2.005 1,866 168.8× 5.4×
circuit17 11,686,185 11,943,603 N/A N/A 18.168 1,857 3.225 1,861 N/A 5.6×
circuit18 7,371,455 7,067,200 122.969 1,852 9.899 1,853 2.191 1,852 177.1× 4.3×
Average 133.0× 4.1×

Table 1: Overall comparison of runtime (second) and cut size among hmetis (sequential), Mt-KaHyPar (16 threads), and HyperG
at 𝑘 = 2. The last two columns show the speedup of HyperG over hmetis and Mt-KaHyPar. Best cut sizes are in bold.
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Figure 4: The cut size ratio of HyperG over Mt-KaHyPar (top)
and hmetis (bottom) at different 𝑘 . In cases where hmetis fails
to partition the circuit graph, the results are left blank.

4.4 Cut Size Analysis
Figure 4 shows the cut size improvement ratio of HyperG over Mt-
KaHyPar (16 threads) and hmetis at 𝑘 = {2, 4, 8, 16, 32, 64} on four
circuit graphs, circuit01, circuit02, circuit06, and circuit09. For most
circuit graphs, HyperG can produce partitions with comparable qual-
ity to hmetis and Mt-KaHyPar. Compared to mt-KaHyPar, HyperG
can partition all graphs with ≤ 5% cut size differences. We attribute
this to our balanced group coarsening algorithm which leads to a
good initial partition. Additionally, our sequence-based refinement
algorithm can correctly compute the improvement in cut size for a
sequence of vertex moves and select the best subsequence of them to
move. However, this selection can sometimes trap us in local minima.
Therefore, in sequential partitioning, hmetis, which iteratively finds
the best vertex to move, can result in a more refined and optimized
partition. Yet, HyperG can still find partitions with less than 5%
difference in quality from hmetis for 60% of the instances.

In terms of the impact of 𝑘 on partition quality, regardless of 𝑘 , Hy-
perG always finds a very similar cut size as Mt-KaHyPar. Compared
to hmetis, when 𝑘 is small (e.g., 2 and 4), HyperG can achieve similar
cut size quality in nearly all graphs. However, as 𝑘 increases, hmetis

can sometimes find a better cut size. Yet, for larger 𝑘 values (e.g.,
32 and 64), hmetis fails to partition circuit graphs due to memory
issues.

4.5 Scalability Analysis
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Figure 5: The speedup of HyperG over Mt-KaHyPar (top) and
hmetis (bottom) for varying circuit graph sizes modified from
ibm01 at 𝑘 = 2 and 𝑘 = 4. hmetis fails to partition the circuit
graph with size larger than 18M.

Figure 5 shows the speedup of HyperG over Mt-KaHyPar and
hmetis when partitioning circuit graphs of varying sizes at 𝑘 = 2
and 𝑘 = 4. We choose only these two 𝑘 values because hmetis fails to
partition the graphs at larger 𝑘 values. We generate different circuit
graph sizes (|𝑉 | + |𝐸 |) by randomly inserting vertices and edges to
enlarge ibm01 [2] from 27K to 34M. When the graph size is small,
the speedup is subtle. For example, at 27K, the speedup of HyperG
over Mt-KaHyPar and hmetis is only 1.2× and 10×, respectively.
However, as the graph size goes beyond 3M vertices, HyperG shows
a significant performance advantage over the CPU-based parallel
Mt-KaHyPar and sequential hmetis. Moreover, hmetis fails to parti-
tion graphs beyond 18M. For example, for the largest graph (34M),
HyperG achieves an 11× speedup over Mt-KaHyPar, while hmetis
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fails to partition the graph. The speedup of HyperG continues to
increase as the graph turns larger, showing the advantage of GPU
acceleration for large-scale graph partitioning.

Benchmark HyperG G-kway
Cut size Part. time (s) Cut size Trans. time (s) Part. time (s)

circuit01 1,498 0.770 3,533 7.152 0.125
circuit02 1,572 1.692 3,493 20.310 0.372
circuit03 1,665 0.908 3,549 8.180 0.165
circuit04 1,699 1.567 3,038 7.63 0.145

Table 2: Comparison between two GPU-accelerated partition-
ers, HyperG (hypergraph) and G-kway (non-hypergraph) at
𝑘 = 2. G-kway requires an extra transformation step.

4.6 Comparison with Graph Partitioners
Table 2 compares the cut size and runtime results between two
GPU-accelerated partitioners, HyperG (hypergraph) and G-kway
(non-hypergraph) [69] at 𝑘 = 2. Since G-kway is a non-hypergraph
partitioner, it requires an extra transformation of hypergraphs into
non-hypergraphs. To transform a hypergraph to a non-hypergraph,
we use a classical clique-expansion method where each hyperedge
is replaced with a clique [21, 64]. In all benchmarks, HyperG con-
sistently produces better cut sizes than G-kway. This is because
HyperG can work directly on the hypergraph, preserving the origi-
nal multi-vertex relationships and effectively minimizing the cut size.
However, G-kway introduces many more edges by transforming the
hypergraph to a non-hypergraph, which leads to an increased edge
count and a loss of the original hypergraph structure.

5 Conclusion
In this paper, we have introduced HyperG, a GPU-accelerated hyper-
graph partitioner to achieve significant runtime improvement that
was previously out of reach with CPU. HyperG introduces an inno-
vative balanced group coarsening and a sequence-based refinement
algorithm to accelerate both the coarsening and uncoarsening stages.
Experimental results have shown promising performance of HyperG
over state-of-the-art CPU-parallel hypergraph partitioners on large
industrial circuits. Inspired by the success of GPU computing in
graph processing [7–11, 13–18, 20, 25–59, 61–63, 65–69, 72–82, 84–
87, 89–91], we plan to enhance HyperG using CUDA Task Graph
parallelism.
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