
Incremental Critical Path Generation for Dynamic
Graphs

Che Chang
University of Wisconsin, Madison

Madison, WI, USA

che.chang@wisc.edu

Cheng-Hsiang Chiu
University of Wisconsin, Madison

Madison, WI, USA

chenghsiang.chiu@wisc.edu

Boyang Zhang
University of Wisconsin, Madison

Madison, WI, USA

bzhang523@wisc.edu

Tsung-Wei Huang
University of Wisconsin, Madison

Madison, WI, USA

tsung-wei.huang@wisc.edu

Abstract—Incremental Critical Path Generation (CPG) is cru-
cial for static timing analysis (STA) applications to incrementally
analyze critical paths and validate timing constraints. However,
current state-of-the-art incremental CPG algorithms can only
handle static graphs where the graph topology does not change.
To solve this problem, we introduce an efficient incremental CPG
algorithm that can handle dynamic graphs. Compared to existing
methods, our algorithm can identify more scenarios to efficiently
reuse paths from the previous CPG while discarding unnecessary
ones after the graph topology is changed. Our algorithm is up
to 8.2× faster than a state-of-the-art timer when generating two
million paths on a large design.

I. INTRODUCTION

Critical Path Generation (CPG) is an important step for

static timing analysis (STA) applications to validate timing

constraints. For example, timers rely on CPG to perform

common path pessimism removal. Among various CPG al-

gorithms [1]–[21], the state-of-the-art OpenTimer [1] has in-

troduced a fast implicit path representation algorithm for CPG.

However, OpenTimer suffers from the lack of incrementality,

which is the ability to quickly update critical paths after the

circuit is incrementally modified. Incremental CPG plays an

important role in many optimization flows, such as timing-

driven placement [22] and gate sizing [23].

Recently, Chang et al. introduced the first incremental CPG

algorithm called Ink [24] atop OpenTimer. Ink partially reuses

the path results from the previous CPG query and eliminates

unnecessary path computations. However, Ink is limited to

static graph, where the graph topology does not change.

Static graph is particularly suitable for certain timing-driven

applications, such as gate sizing, that only modify vertex or

edge attributes rather than the graph topology. That is, Ink

cannot be used for generic timing-driven applications that

analyze critical paths on dynamic graphs.

To overcome this problem, we propose an efficient in-

cremental CPG algorithm that can handle dynamic graphs.

Compared to Ink, our algorithm can identify more scenarios

to efficiently reuse paths from the previous CPG while dis-

carding unnecessary ones after the graph topology is changed.

Therefore, our algorithm can be applied to various timing-

driven applications that run incremental CPG on both static

and dynamic graphs.
We evaluate the performance of our algorithm on real

circuit benchmarks generated by OpenTimer [1]. Compared

to OpenTimer’s CPG algorithm, our algorithm is up to 8.2×
faster when generating two million paths on a large design.

II. BACKGROUND

�������

�
�

�

�����

�	���

�

�����

� �

�
��	

�����

�

���
�

�

�����	

�

����	
�����

�����

����

(a) Example graph.

�������

�
�

�

�����

�	���

�

�����

� �

�
��	

�����

�

���
�

�

�����	

�

����	
�����

�����

����

��
��

(b) Found path deviated on e1.

�������

� �

�

�����

�	���

�

�����

� �

�
��	

�����

�

���
�

�

�����	

�

����	
�����

�����

����

��
��

��
���

(c) Found path deviated on e4.

�������

�
�

�

�����

�	���

�

�����

� �
�
��	

�����

�

���
�

�

�����	

����	������

�����

����

��
�

��
���

��
��

(d) Found path deviated on e9.

Fig. 1: Example prefix tree expansion for CPG.

OpenTimer’s [1] CPG algorithm has two stages: suffix tree

construction and prefix tree expansion. The suffix tree is a

shortest path tree rooted at the destination vertices, which can

be built with topological relaxations. The second stage is to

explore paths that deviate from the suffix tree by performing

prefix tree expansion. To be clear, to expand the prefix tree

means to expand the critical path search space by finding the

children nodes for a certain prefix tree node.
Figure 1 illustrates OpenTimer’s CPG algorithm on an ex-

ample graph. As shown in Figure 1(a), each edge is associated

771

2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

2159-3477/24/$31.00 ©2024 IEEE
DOI 10.1109/ISVLSI61997.2024.00150

with a weight. Black edges represent the suffix tree, which are

the edges on the shortest path to the destination vertices. Gray

edges are the edges that do not belong to the suffix tree, and

we call them the non-suffix tree edges. The numbers on the

vertices represent the shortest distance from that vertex to its

destination vertex. The prefix tree now contains an initial node

Φ, which implicitly represents the shortest path. Figure 1(b)

shows that we visit the source vertex (marked in green). We

explore one new path by deviating on the non-suffix tree edge

e1. We create a new prefix tree node (red box) associated with

e1. We also need to determine the “deviation cost” of this new

prefix tree node. The deviation cost represents the distance loss

by deviating on a given edge. For example, in Figure 1(b), the

red node has a deviation cost of 8 because by choosing e1,

the distance to the destination vertices becomes 8 (shortest

distance from tail[e1] to the destination vertices) + 3 (weight

of e1) = 11, which is 8 units more than the shortest distance.

Figure 1(c) shows that we traverse along the shortest path to

the next vertex (marked in green) and explore one new path by

deviating on the non-suffix tree edge e4. The deviation cost is

13. Figure 1(d) shows that we traverse along the shortest path

to the next vertex (marked in green) and explore one new path

by deviating on the non-suffix tree edge e9. The deviation cost

is 3. In this example, we discovered three new paths, and we

can rank them in the correct order with their deviation costs.

OpenTimer uses a priority queue to ensure we always expand

from the prefix tree node with the smallest deviation cost.

We plan to open-source the project to benefit the commu-

nity [25] and leverage task-parallel computing libraries [26]–

[40] to further improve the overall performance.

III. ALGORITHM

When a circuit topology is modified, updating the suffix

tree is equivalent to relaxing the shortest path distance values

of affected nodes, which can be done using the algorithm

proposed by Ink [24]. As a result, we focus on incrementally

updating the prefix tree between two different graphs. In

addition to the theorem proposed by Ink, we further identify

a key property of the prefix tree, that is, no matter how the
circuit graph changes, we only need to consider two scenarios
in which a prefix tree node associated with edge e will become
invalid:

• Scenario 1: e becomes a suffix tree edge.

• Scenario 2: e is removed by the user.

These two scenarios identify which nodes we need to remove,

which in turn identify the reusable nodes. Figure 2 illustrates

the two scenarios. Figure 2(a) shows an example partial graph

and its corresponding prefix tree. P represents an arbitrary

parent node. Figure 2(b) shows if e3 belongs to the suffix

tree after some graph updates, we should remove the node

associated with e3, because it will no longer appear in the

prefix tree. Since the edge connecting vertex C and D has

become a non-suffix tree edge, any nodes discovered after

e3 (e.g. e4) should also be removed because the edges that

they are associated with are no longer reachable during the

expansion. In this case, the nodes associated with e0, e1, e2

are reusable, and we can prune them from the search space

for the subsequent prefix tree expansion. We only need to

partially expand the subsequent prefix tree, which effectively

reduces runtime. Figure 2(c) shows if e3 is removed by the

user after some graph updates, we should only remove the

node associated with e3. We can keep the node associated

with e4 since the edge connecting C and D is still a suffix

tree edge. This indicates that e4 is still reachable during the

expansion. In this case, the nodes associated with e0, e1, e2,

and e4 are reusable, and we can prune them from the search

space for the subsequent prefix tree expansion.

Algorithm 1 describes the proposed incremental prefix tree

expansion algorithm for dynamic graphs. We initialize an array

R to record the nodes to re-expand (line 2). We use BFS to

traverse the prefix tree (lines 3 and 14:16) from the previous

CPG query because we need to visit the nodes in the order

in which they are discovered. We pop node from the queue

(line 4), if node belongs to the suffix tree (Scenario 1), it

disappears from the prefix tree, so we mark it and its children

as removed (line 5:6). node’s right siblings are discovered after

node and are no longer reusable, so we remove them as well

(line 6). If node.edge is removed by the user (Scenario 2),

then node’s children should also be removed (line 7:8). If

none of the above occurs, then node is reusable, we update

its deviation cost (line 10) and prune node from node.parent’s

search space to avoid generating duplicated nodes (line 11).

We record node.parent in R to incrementally expand later (line

12:13).

Algorithm 1: IncPfxt(P)

Input: prefix tree P, suffix tree S
Output: array of nodes to re-expand R

1 Q ← initialize a queue with the root of P;

2 R ← φ;

3 while Q is not empty

4 node ← Q.pop();

5 if node.edge belongs to S then
6 � Scenario 1: mark node, node.children,

node.right siblings as removed;
7 else if node.edge is removed by user then
8 � Scenario 2: mark node and node.children as

removed;
9 else

10 update node.deviation cost;

11 prune node from node.parent’s search space;

12 if node.parent /∈ R then
13 R ← R ∪ node.parent;

14 Foreach c ∈ node.children

15 if c is not marked as removed then
16 Q.push(c);

17 return R;

IV. EXPERIMENTAL RESULTS

We implemented our algorithm in C++ and compiled it

with GCC 11.4.0 on a 4.8-GHz 64-bit Linux machine of an

772

� � � �
��

��

��

��
�

�� �� �� �� ��

��
�

(a) A prefix tree.

� � � �
��

��

��

��
�

�� �� �� �� ��

��
�

(b) Scenario 1.

� � � �
��

��

��

��
�

�� �� �� �� ��

��
�

(c) Scenario 2.

Fig. 2: Scenarios that invalidate prefix tree nodes.

Intel Core i5-13500 Processor. We enable the optimization

flag -O3 and C++17 standard -std=c++17. We evaluate the

performance of our algorithm with large circuit benchmarks

generated by OpenTimer [1]. An incremental iteration is a

circuit modifier (insertion or deletion of edges and vertices)

followed by a CPG query that reports the top-k critical paths.

All data is an average of 50 incremental iterations. We do

not compare accuracy because our proposed algorithm can

generate the exact path slacks as OpenTimer.

A. Overall Performance

Table I compares the runtime of our incremental CPG

algorithm and OpenTimer [1]’s full CPG algorithm. We follow

the experimental setting of Ink [24] but change its circuit

modifiers to handle dynamic graphs through random insertion

and deletion of edges and vertices. Full CPG (denoted as

“OT”) refers to the update that re-runs the whole CPG without

incrementality, while incremental CPG (denoted as “Ours”)

refers to our proposed algorithm. As shown in Table I,

our algorithm outperforms full CPG in all benchmarks. For

example, our algorithm is 8.2× faster in netcard.

TABLE I: Overall performance comparison between full and

incremental CPG on dynamic graphs (OT: full CPG, Ours:

incremental CPG). Runtime is measured at milliseconds.

Circuit ‖V ‖ ‖E‖ #Paths OT Ours Speedup

wb dma 13K 16K 40K 6.5 2 3.2×
ac97 ctrl 42K 53K 100K 16.7 6.3 2.6×
aes core 66K 86K 180K 71.9 35 2×
des perf 303K 387K 500K 344 211 1.6×
vga lcd 397K 498K 1M 1090 230 4.8×
netcard 3.9M 4.9M 2M 4763 581 8.2×
leon2 4.3M 5.2M 2M 7102 1123 6.3×

Figure 3 plots the runtime distribution of full CPG and our

proposed algorithm across 50 incremental iterations. Regard-

less of the runtime variation, we see a consistent gap between

full CPG and our algorithm. Taking netcard for example, the

runtime gap between full CPG and our algorithms is roughly

4000 ms at the 12th iteration. This is because our proposed

algorithm partially reuses paths from the previous incremental

iteration, we only need to update the slacks of these paths

instead of recomputing them, which greatly reduces runtime.

0 10 20 30 40 50

200

400

600

800

1,000

1,200

Incremental iteration

R
u
n
ti

m
e

(m
s)

vga lcd (1M paths)

OT

Ours

0 10 20 30 40 50

1,000

2,000

3,000

4,000

5,000

Incremental iteration

R
u
n
ti

m
e

(m
s)

netcard (2M paths)

OT

Ours

Fig. 3: Runtime distribution across 50 incremental iterations

for vga lcd and netcard.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

Number of modified levels
S

p
ee

d
u
p

vga lcd (1M paths)

0 2 4 6 8 10 12 14 16 18 20

1

1.2

1.4

1.6

1.8

Number of modified levels

S
p
ee

d
u
p

des perf (500K paths)

Fig. 4: Speedup vs. number of modified levels for vga lcd and

des perf.

B. Performance at Different Incrementalities

Figure 4 plots the speedup of our proposed algorithm over

full CPG at different numbers of modified levels. In this

experiment, we perform BFS and levelize the circuit graphs

to investigate how the number of modified levels affects the

performance of our algorithm. We modify the levels in a

bottom-up fashion. For example, 20 modified levels means we

modified the last 20 levels of the graph. We do not consider

modifying the levels top-down because it may trigger our

proposed algorithm to discard all the paths from the previous

CPG query, which is equivalent to full CPG. This experiment

is important because the speedup of our proposed algorithm

over full CPG is closely tied to how much the most critical

path is impacted by the circuit modifiers. The experiments in

section IV-A may not fully capture this relationship. Modify-

ing the circuit graph in levels ensures that we always apply

the circuit modifiers to the most critical path.

The speedup drops as we increase the modified levels.

Taking des perf for example, the speedup is 1.6× at two levels

and 1.2× at 17 levels. This is because as we increase the

modified levels, we force our proposed algorithm to discard

more prefix tree nodes from the previous CPG query and fewer

reusable nodes are left. This trend is particularly evident in

vga lcd, since vga lcd’s connectivity is large. Modifying one

level causes our proposed algorithm to discard significantly

more nodes than des perf. For example, the speedup drops

to less than 1× at 17 levels in vga lcd. At this point, our

proposed algorithm has no benefit over full CPG.

773

V. CONCLUSION

We have introduced an incremental CPG algorithm for

dynamic graphs. Compared to Ink [24], our algorithm can

identify more scenarios to efficiently reuse paths from the

previous CPG while discarding unnecessary ones after the

graph topology is changed. Our algorithm is up to 8.2× faster

than a state-of-the-art timer when generating two million paths

on a large design.

ACKNOWLEDGMENT

This project is supported by NSF grants 2235276, 2349144,

2349143, 2349582, and 2349141.

REFERENCES

[1] T.-W. Huang, G. Guo, C.-X. Lin, and M. D. F. Wong, “OpenTimer v2: A
New Parallel Incremental Timing Analysis Engine,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
2021.

[2] B. Jin, G. Luo, and W. Zhang, “A fast and accurate approach for common
path pessimism removal in static timing analysis,” in IEEE ISCAS, 2016,
pp. 2623–2626.

[3] T.-W. Huang and M. Wong, “OpenTimer: A High-Performance Timing
Analysis Tool,” in IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2015.

[4] ——, “UI-Timer 1.0: An Ultra-Fast Path-Based Timing Analysis Al-
gorithm for CPPR,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 2016.

[5] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “GPU-accelerated Path-
based Timing Analysis,” in IEEE/ACM Design Automation Conference
(DAC), 2021.

[6] G. Guo, T.-W. Huang, Y. Lin, Z. Guo, S. Yellapragada, and M. D. F.
Wong, “A gpu-accelerated framework for path-based timing analysis,”
IEEE Transactions on Computer-aided Design of Integrated Circuits and
Systems (TCAD), 2023.

[7] T.-W. Huang, P.-C. Wu, and M. D. F. Wong, “Ui-timer: An ultra-fast
clock network pessimism removal algorithm,” in IEEE/ACM ICCAD,
2014.

[8] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “GPU-accelerated Critical
Path Generation with Path Constraints,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2021.

[9] Z. Guo, T.-W. Huang, and Y. Lin, “A Provably Good and Practically
Efficient Algorithm for Common Path Pessimism Removal in Large
Designs,” in IEEE/ACM International Conference on Computer-aided
Design (ICCAD), 2020.

[10] ——, “Accelerating Static Timing Analysis using CPU-GPU Hetero-
geneous Parallelism,” IEEE Transactions on Computer-aided Design of
Integrated Circuits and Systems (TCAD), 2023.

[11] ——, “HeteroCPPR: Accelerating Common Path Pessimism Removal
with Heterogeneous CPU-GPU Parallelism,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2021.

[12] G. Guo, T.-W. Huang, and M. D. F. Wong, “Fast STA Graph Parti-
tioning Framework for Multi-GPU Acceleration,” in IEEE/ACM Design,
Automation and Test in Europe Conference (DATE), 2023.

[13] Z. Guo, T.-W. Huang, J. Zhou, C. Zhuo, Y. Lin, R. Wang, and R. Huang,
“Heterogeneous Static Timing Analysis with Advanced Delay Calcula-
tor,” in IEEE/ACM Design, Automation and Test in Europe Conference
(DATE), 2024.

[14] G. Guo, T.-W. Huang, C.-X. Lin, and M. Wong, “An Efficient Critical
Path Generation Algorithm Considering Extensive Path Constraints,” in
ACM/IEEE Design Automation Conference (DAC), 2020.

[15] Z. Guo, T.-W. Huang, and Y. Lin, “A Provably Good and Practically
Efficient Algorithm for Common Path Pessimism Removal in Large
Designs,” in IEEE/ACM Design Automation Conference (DAC), 2021.

[16] T.-W. Huang, C.-X. Lin, , and M. Wong, “Distributed Timing Analysis
at Scale,” in ACM/IEEE Design Automation Conference (DAC), 2019.

[17] T.-W. Huang, M. Wong, D. Sinha, K. Kalafala, and N. Venkateswaran,
“A Distributed Timing Analysis Framework for Large Designs,” in
IEEE/ACM Design Automation Conference (DAC), 2016.

[18] T.-W. Huang, “A General-purpose Parallel and Heterogeneous Task
Programming System for VLSI CAD,” in IEEE/ACM International
Conference on Computer-aided Design (ICCAD), 2020.

[19] T.-W. Huang, P.-C. Wu, and M. Wong, “Fast Path-Based Timing
Analysis for CPPR,” in IEEE/ACM ICCAD, 2014.

[20] T.-W. Huang and L. Hwang, “Task-parallel Programming with Con-
strained Parallelism,” in IEEE High-Performance Extreme Computing
Conference (HPEC), 2022.

[21] T.-W. Huang, “Enhancing the Performance Portability of Heterogeneous
Circuit Analysis Programs,” in IEEE High-Performance Extreme Com-
puting Conference (HPEC), 2022.

[22] M.-C. Kim, J. Hu, J. Li, and N. Viswanathan, “Iccad-2015 cad con-
test in incremental timing-driven placement and benchmark suite,” in
IEEE/ACM ICCAD, 2015.

[23] D. Mangiras, D. Chinnery, and G. Dimitrakopoulos, “Task-based parallel
programming for gate sizing,” IEEE TCAD, 2023.

[24] C. Chang, T.-W. Huang, D.-L. Lin, G. Guo, and S. Lin, “Ink: Efficient
Incremental k-Critical Path Generation,” in ACM/IEEE DAC, 2024.

[25] T.-W. Huang, C.-X. Lin, G. Guo, and M. Wong, “Essential Building
Blocks for Creating an Open-source EDA Project,” in ACM/IEEE Design
Automation Conference (DAC), 2019.

[26] C.-H. Chiu, D.-L. Lin, and T.-W. Huang, “Programming Dynamic
Task Parallelism for Heterogeneous EDA Algorithms,” in IEEE/ACM
International Conference on Computer-aided Design (ICCAD), 2023.

[27] D.-L. Lin, T.-W. Huang, J. S. Miguel, and U. Ogras, “TaroRTL: Ac-
celerating RTL Simulation using Coroutine-based Heterogeneous Task
Graph Scheduling,” in International European Conference on Parallel
and Distributed Computing (Euro-Par), 2024.

[28] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, “Taskflow: A
Lightweight Parallel and Heterogeneous Task Graph Computing Sys-
tem,” IEEE Transactions on Parallel and Distributed Systems (TPDS),
2022.

[29] T.-W. Huang, C.-X. Lin, G. Guo, and M. Wong, “Cpp-Taskflow:
Fast Task-based Parallel Programming using Modern C++,” in IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2019.

[30] T.-W. Huang, Y. Lin, C.-X. Lin, G. Guo, and M. Wong, “Taskflow:
A General-purpose Parallel Task Programming System at Scale,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 2021.

[31] C.-X. Lin, T.-W. Huang, G. Guo, and M. Wong, “A Modern C++ Parallel
Task Programming Library,” in ACM Multimedia Conference (MM),
2019.

[32] ——, “An Efficient and Composable Parallel Task Programming Li-
brary,” in IEEE High-performance and Extreme Computing Conference
(HPEC), 2019.

[33] C.-X. Lin, T.-W. Huang, and M. Wong, “An Efficient Work-Stealing
Scheduler for Task Dependency Graph,” in IEEE International Confer-
ence on Parallel and Distributed Systems (ICPADS), 2020.

[34] B. Zhang, D.-L. Lin, C. Chang, C.-H. Chiu, B. Wang, W. L. Lee, C.-
C. Chang, D. Fang, and T.-W. Huang, “G-PASTA: GPU Accelerated
Partitioning Algorithm for Static Timing Analysis,” in ACM/IEEE DAC,
2024.

[35] W. L. Lee, D.-L. Lin, T.-W. Huang, S. Jiang, T.-Y. Ho, Y. Lin, and
B. Yu, “G-kway: Multilevel GPU-Accelerated k-way Graph Partitioner,”
in ACM/IEEE Design Automation Conference (DAC), 2024.

[36] T.-W. Huang, B. Zhang, D.-L. Lin, and C.-H. Chiu, “Parallel and
Heterogeneous Timing Analysis: Partition, Algorithm, and System,” in
ACM International Symposium on Physical Design (ISPD), 2024.

[37] C.-H. Chiu and T.-W. Huang, “Efficient Timing Propagation with Si-
multaneous Structural and Pipeline Parallelisms,” in ACM/IEEE Design
Automation Conference (DAC), 2022.

[38] ——, “Composing Pipeline Parallelism using Control Taskflow Graph,”
in ACM International Symposium on High-Performance Parallel and
Distributed Computing (HPDC), 2022.

[39] T.-W. Huang and Y. Lin, “Concurrent CPU-GPU Task Programming
using Modern C++,” in IEEE International Workshop on High-level
Parallel Programming Models and Supportive Environments (HIPS),
2022.

[40] D.-L. Lin and T.-W. Huang, “Efficient GPU Computation using Task
Graph Parallelism,” in European Conference on Parallel and Distributed
Computing (Euro-Par), 2021.

774

