
BatchSim: Parallel RTL Simulation using
Inter-cycle Batching and Task Graph Parallelism

Jie Tong
University of Wisconsin-Madison

Madison, USA

jtong36@wisc.edu

Liangliang Chang
Arizona State University

Tempe, USA

lchang21@asu.edu

Umit Yusuf Ogras
University of Wisconsin-Madison

Madison, USA

uogras@wisc.edu

Tsung-Wei Huang
University of Wisconsin-Madison

Madison, USA

tsung-wei.huang@wisc.edu

Abstract— As the design complexity continues to increase, par-
allelizing Register Transfer Level (RTL) simulation has become
crucial for verifying the design functionality with reasonable
performance and turnaround time. State-of-the-art simulators
focus on exploring parallelism within a single simulation cycle.
However, intra-cycle parallelism does not scale well because its
instruction volumes cannot offset the overhead of multithreading.
To overcome this challenge, we introduce BatchSim, a parallel
RTL simulator leveraging inter-cycle batching and task graph
parallelism. Unlike existing RTL simulators, BatchSim combines
multiple cycles into a single simulation workload, ensuring
sufficient instruction volumes for effective parallelization. Since
RTL simulation consists of many irregular patterns, BatchSim
partitions the simulation workload into a set of dependent
subgraphs and parallelizes their executions using task graph
parallelism. Compared with state-of-the-art RTL simulators,
BatchSim can achieve 11%–98% speed-up on large industrial
RTL designs.

Index Terms—RTL simulation, parallel simulation, task graph
parallelism

I. INTRODUCTION

Register Transfer Level (RTL) simulation plays a crucial

role in the overall design flow because it verifies the function-

ality of a hardware design at the early stage [1]. Hence, RTL

simulation is the cornerstone for various verification tasks,

such as functional testing, debugging, and design space explo-

ration. As the system-on-chip (SoC) complexity continues to

grow, achieving industry-quality verification sign-off demands

a substantial and growing amount of compute resources to sim-

ulate RTL for dozens of different units within an SoC across

many thousands of stimuli. Therefore, RTL simulation can be

very time-consuming throughout the verification process. For

instance, researchers have reported that RTL simulations can

take over 70% of the entire runtime when achieving coverage

closure for a custom deep learning accelerator [2, 3]. Speeding

up RTL simulation runtime is thus crucial for completing

functional verification tasks with reasonable turnaround time

and performance.

Many new algorithms have recently been proposed to ac-

celerate RTL simulation. To give a few popular examples,

ESSENT
Khronos Verilator RepCut

Intra-Cycle (Structural) Level Parallelism

In
te

r-
C

yc
le

 L
ev

el

Pa
ra

lle
lis

m

BatchSim

Fig. 1. BatchSim explores both intra- and inter-cycle parallelism to signifi-
cantly improve the performance of parallel RTL simulation.

Verilator[1], the leading open-source RTL simulator, transpiles

(source-to-source compiles) an input RTL source (verilog)

into optimized C++ simulation code through abstract syn-

tax tree (AST) traversals. ESSENT[4] enhances the simu-

lation performance by partitioning an input RTL graph to

several subgraphs with similar activities for load balancing.

RTLflow[2] simulates multiple stimuli at one time by tran-

spiling an input RTL source into optimized C++ and CUDA

code. By harnessing the power of GPU task graph comput-

ing [3, 5, 6], RTLflow significantly improves the simulation

throughput performance. RepCut[7] improves simulation effi-

ciency by replicating specific nodes within an RTL graph to

reduce synchronization overhead among threads. Through this

replication-aided partitioning, RepCut can divide an input RTL

graph into independent subgraphs that can completely run in

parallel (i.e., embarrassing parallelism). Khronos[8] optimizes

the memory access patterns during the simulation by proposing

a queue-connected operation graph that captures temporal

data dependencies, reschedules operations, and merges state

accesses across cycles.

Despite improved simulation performance, existing simula-

tors are largely limited to single-cycle simulation (see Figure

1), where the instruction volumes (e.g., simulation instruction,

arithmetic operations) are typically not enough to parallelize

most of the computing tasks. Specifically, running parallel

789

2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

2159-3477/24/$31.00 ©2024 IEEE
DOI 10.1109/ISVLSI61997.2024.00155

RTL simulation can incur certain threading overhead at each

cycle, such as scheduling tasks, synchronization, and dynamic

load balancing [9]. For a simulation workload with N cycles,

the overhead will accumulate N times. However, if we could

simulate a batch of B cycles simultaneously, we could reduce

the overhead to N/B times while allowing each thread to

remain actively engaged in processing more instructions. This

type of batch or inter-cycle simulation can bring significant yet

untapped performance advantages to parallel RTL simulation.

This paper presents BatchSim, a parallel RTL simulator

using inter-cycle batching and task graph parallelism. Un-

like existing simulators that evaluate one cycle per itera-

tion, BatchSim simulates multiple cycles simultaneously by

merging consecutive RTL graphs and leverages task graph

parallelism to parallelize the simulation workload. We evaluate

the performance of BatchSim on large industrial RTL designs.

Compared with state-of-the-art RTL simulators, BatchSim can

achieve 11%–98% speedup. We believe this late-breaking

result will inspire new simulation research by exploring inter-

cycle batch parallelism.

II. BACKGROUND AND MOTIVATION

A. Full-Cycle RTL Simulation

RTL simulation transpiles RTL design code (such as Verilog

or FIRRTL) into software code (such as C++ or LLVM IR),

allowing compilers to optimize the simulation code for im-

proved performance and efficiency. The simulation evaluates

the design on a one-cycle per iteration basis, beginning each

cycle by setting the clock and input, as shown in Listing 1. The

RTL design is structured as a directed acyclic graph, known

as an RTL computation graph. In each cycle, the simulator

processes inputs and traverses this graph to generate output

values. The code within a full-cycle simulator is relatively

straightforward, simulating the entire design in every cycle.

This approach ensures remarkably consistent execution times

for each cycle. For smaller designs, this method typically

achieves reasonably high instruction throughputs. However,

as the design and the RTL computation graph grow in size,

the demands on the host processor and memory can become

overwhelming, potentially leading to performance bottlenecks.

1 Design dut;
2 size_t cycle = 0;
3 while (cycle < max_cycle)
4 {
5 dut.set_clock();
6 dut.load_input();
7 dut.eval();
8 dut.dump(cycle);
9 ++cycle;

10 }

Listing 1. A C++ code snippet for full-cycle RTL simulation.

B. Motivation

State-of-the-art full-cycle RTL simulators have implemented

various optimization techniques to enhance performance at

the intra-cycle level, as illustrated in Figure 1. Notably,

ESSENT[4] and Khronos[8] operate on a single-threaded

InputA[0]

RegA[0]

Output[0]

RegB[0]

InputB[0] InputA[1]

RegA[1]

Output[1]

RegB[1]

InputB[1]

Iteration 0
Cycle 0 AND Cycle 1

InputA[0]

RegA[0]

Output[0]

RegB[0]

InputB[0] InputA[1]

RegA[1]

Output[1]

RegB[1]

InputB[1]

Iteration 0
Cycle 0

Iteration 1
Cycle 1

Fig. 2. BatchSim batches consecutive cycle graphs and merges them into a
multi-cycle computation graph.

model, whereas Verilator[1] and RepCut[7] employ multi-

threaded simulations by partitioning the RTL computation

graph and managing intra-cycle communications. Generally,

larger computation graphs yield more significant benefits from

parallel simulation because the relative costs of multithreading

and synchronization overhead decrease as the scale increases.

However, due to the fixed size of the computation graph

inherent to the RTL design, small and medium-sized designs

do not benefit as much from parallel simulation. Recognizing

this limitation, we propose a novel approach as shown in

Figure 2: batching consecutive cycle graphs and merging them

into a multi-cycle computation graph. This strategy allows

multiple cycles to be evaluated in a single iteration, potentially

enhancing parallel performance. By partitioning and schedul-

ing multi-threaded operations more effectively, this method

reduces the relative multithreading overhead compared to the

overall end-to-end simulation process, offering a promising

direction for improving simulation efficiency across various

design sizes.

III. BATCHSIM

Figure 3 illustrates the architecture of BatchSim, which

comprises four main components: frontends, multi-level IR,

backend, and parallel runtime. BatchSim utilizes the fron-

tends and Intermediate Representations (IRs) in CIRCT[10] to

accommodate various RTL designs and generates MLIR[11]

dialects to leverage existing code generation and optimization

passes. BatchSim incorporates the IR compilation infrastruc-

Frontends Multi-Level IR

RTL Graph Modeling

RTL Graph Batching

RTL Graph Partitioning

Backend
LLVM IR

Taskflow

Parallel Runtime

p

Fig. 3. Overview of BatchSim.

790

ture and RTL graph modeling from Khronos[8], integrates our

inter-cycle graph batching pass, and adopts the graph partition-

ing method from RepCut[7]. It also employs the code emitting

capabilities of the LLVM backend. Additionally, BatchSim

utilizes the advanced parallel runtime, Taskflow[9, 12–17], to

facilitate multithreading task scheduling and synchronization,

enhancing its efficiency and scalability.

A. Inter-Cycle Graph Batching

We utilize the internal data structure of the multi-level IR

to handle the RTL design evaluation, which in MLIR[11] is

represented as a graph. This graph comprises all operations

and operands with their dependencies, forming a data depen-

dency computation graph. In this RTL computation graph,

traditional control flows such as if-else statements are absent.

The computation graph is primarily focused on updating the

values of signals, which are allocated as global variables in

memory prior to launching the simulation. All input signals

serve as graph ingress points, while intermediate and output

signals act as egress points. The computation graph is traversed

and the signals are updated in each cycle. To implement the

inter-cycle batching method, we developed a pass that clones

input and output signals, appending suffixes like ” t0”, ” t1”

to them. Similarly, functions are cloned with suffixes ” t0”,

” t1” added. These cloned functions are then sequentially

placed within the main function according to their time order.

An example of the output from the inter-cycle graph batching

is shown in Listing 2. Subsequently, we utilize MLIR’s built-

in inline pass to inline all the sub-functions into the main

function. Thanks to MLIR’s Single Static Assignment (SSA)

properties, all registers are automatically renamed, avoiding

any naming conflicts.

1 def_queue @io_input_t0 depth 1 : i8 delay [0]
2 def_queue @io_output_t0 depth 1 : i1 delay [0]
3 def_queue @io_input_t1 depth 1 : i8 delay [0]
4 def_queue @io_output_t1 depth 1 : i1 delay [0]
5 func.func @Design_t0(){
6 // evaluate design
7 }
8 func.func @Design_t1(){
9 // evaluate design

10 }
11 func.func @Design(){
12 call @Design_t0() : () -> ()
13 call @Design_t1() : () -> ()
14 return
15 }

Listing 2. An RTL evaluation IR after the inter-cycle batching pass.

B. Parallel Runtime

After completing the inter-cycle batching and graph par-

tition passes, we build a task graph to describe the sim-

ulation workload. Figure 4 shows a simulation task graph

example. Based on this task graph, we can initiate the multi-

threaded simulation. In BatchSim, we utilize Taskflow[12, 13],

a general-purpose task-parallel programming system, to de-

scribe our simulation task graph. Taskflow is comprised solely

of C++ header files, making it straightforward to integrate with

the RTL simulator’s C++ wrapper. Given the task dependency

init

while (cnt < max_cnt)

done

eval_partition_1()

++cnt

eval_partition_0()

back

Fig. 4. A task graph for the RTL simulation, which is parallelized through
Taskflow [12, 13].

graph, we employ Taskflow’s conditional tasking method,

as depicted in Listing 3. In the provided code snippet, the

partition functions, generated by BatchSim, are organized

into independent functions. These are then compiled to LLVM

IR and subsequently to binary object code. Taskflow’s runtime

efficiently manages the scheduling and synchronization of

these partitions, launching them in parallel and minimizing

runtime overhead.

1 init.precede(cond);
2 cond.precede(body, done);
3 body.precede(task_eval_0, task_eval_1);
4 task_sync.succeed(task_eval_0, task_eval_1);
5 task_sync.precede(task_update_0, task_update_1);
6 task_print.succeed(task_update_0, task_update_1);
7 task_print.precede(increment);
8 increment.precede(back);
9 back.precede(cond);

10 executor.run(taskflow).wait();

Listing 3. Taskflow code for Figure 4.

IV. EVALUATION

A. Evaluation Setup

We evaluate BatchSim’s performance on large industrial

designs, Gemmini[18], SIGMA[19], RocketChip[20], and

BOOM[21], as listed in Table I. These designs range from

deep-learning accelerators and SoC designs to RISC-V cores.

The complexity of these designs can be assessed by counting

the number of IR nodes and edges in the table. All experiments

were conducted on an Ubuntu 22.04 x86 64 machine. The

machine was equipped with a 20-core Intel i5-13500 processor

running at 4.8 GHz, with 128 GB RAM. We compile all the

programs on clang++-17 and llc-17 with optimization flags

-O2 enabled.

B. Baseline

We consider Khronos[8] as our baseline to evaluate the

performance of BatchSim in terms of inter-cycle batching and

791

Fig. 5. Speedup improvement of BatchSim across varying thread counts and batch sizes.

TABLE I
EVALUATED BENCHMARKS

Benchmark IR Nodes IR Edges Description

Gemmini 78k 135k Gemmini Matrix Multiplication
SIGMA 17k 29k Sparse and Irregular GEMM
RocketChip 35k 79k SoC consisting of Rocket Core
BOOM-Small 118k 214k 1-wide with 32 ROB BOOM Core
BOOM-Medium 170k 315k 2-wide with 64 ROB BOOM Core
BOOM-Large 230k 460k 3-wide with 96 ROB BOOM Core

task graph parallelism. The simulation’s performance with a

single thread and a batch size of one serves as the baseline

value. We then calculate the relative speedup by varying

the thread count from one to eight and the batch size from

one to four. Each configuration is run ten times to compute

the average performance. The baseline results are depicted

under ”Batchsize 1” bars in Figure 5. Notably, for SIGMA

and RocketChip benchmarks, without inter-cycle batching,

multithreading performs worse than single-threading because

the overhead of multithreading outweighs the advantages of

parallelism.

C. Performance Comparison

Figure 5 compares BatchSim’s performance enhancement

over the baseline, exploring various thread counts from one to

eight and batch sizes from one to four. The results demonstrate

significant performance improvements with multithreading.

For example, in the SIGMA benchmark, inter-cycle batching

increases speedup from 0.57× to 1.36× with six threads,

and for the RocketChip benchmark, speedup improves from

0.90× to 1.24× with four threads. This indicates that inter-

cycle batching effectively converts multithreading’s negative

performance impacts into positive gains. Additionally, in the

Gemmini and the BOOM series (Small, Medium, and Large),

using an optimal six threads, the speedup gains increase 11%–

98%. These results underscore BatchSim’s considerable effec-

tiveness in boosting the efficiency of RTL parallel simulations.

V. CONCLUSION AND FUTURE WORK

This paper introduces BatchSim, a parallel RTL simulator

that incorporates inter-cycle batching and task graph paral-

lelism to enhance simulation efficiency. BatchSim enables

simultaneous multi-cycle simulation by merging consecutive

RTL graphs and employs task graph parallelism to parallelize

the simulation workload. We evaluated the performance of

BatchSim on several industrial designs. Compared with state-

of-the-art RTL simulators, BatchsSim can achieve a speedup

of 11%–98%. To further improve the performance, our future

work will focus on optimizing the memory layout to miti-

gate false sharing. Inspired by the recent success in GPU-

accelerated EDA workloads [22–36], we plan to also leverage

the power of GPU to accelerate BatchSim.

REFERENCES

[1] Wilson Snyder. Verilator 4.0: Open Simulation Goes Multi-
threaded. In ORConf, 2018.

[2] Dian-Lun Lin, Haoxing Ren, Yanqing Zhang, Brucek Khailany,
and Tsung-Wei Huang. From RTL to CUDA: A GPU Ac-
celeration Flow for RTL Simulation with Batch Stimulus. In
Proceedings of the 51st International Conference on Parallel
Processing, pages 1–12, 2022.

[3] Dian-Lun Lin, Tsung-Wei Huang, Joshua San Miguel, and
Umit Ogras. TaroRTL: Accelerating RTL Simulation using
Coroutine-based Heterogeneous Task Graph Scheduling. In
International European Conference on Parallel and Distributed
Computing (Euro-Par), 2024.

[4] Scott Beamer and David Donofrio. Efficiently Exploiting Low
Activity Factors to Accelerate RTL Simulation. In 2020 DAC,
pages 1–6. IEEE, 2020.

792

[5] Dian-Lun Lin and Tsung-Wei Huang. Efficient GPU Computa-
tion using Task Graph Parallelism. In European Conference on
Parallel and Distributed Computing (Euro-Par), 2021.

[6] Cheng-Hsiang Chiu, Dian-Lun Lin, and Tsung-Wei Huang.
An Experimental Study of SYCL Task Graph Parallelism for
Large-Scale Machine Learning Workloads. In International
Workshop of Asynchronous Many-Task systems for Exascale
(AMTE), 2021.

[7] Haoyuan Wang and Scott Beamer. RepCut: Superlinear Par-
allel RTL Simulation with Replication-Aided Partitioning. In
Proceedings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems, Volume 3, pages 572–585, 2023.

[8] Kexing Zhou, Yun Liang, Yibo Lin, Runsheng Wang, and
Ru Huang. Khronos: Fusing Memory Access for Improved
Hardware RTL Simulation. In Proceedings of the 56th An-
nual IEEE/ACM International Symposium on Microarchitecture,
pages 180–193, 2023.

[9] Chun-Xun Lin, Tsung-Wei Huang, and Martin Wong. An
Efficient Work-Stealing Scheduler for Task Dependency Graph.
In IEEE International Conference on Parallel and Distributed
Systems (ICPADS), 2020.

[10] CIRCT:Circuit IR Compilers and Tools. https://circt.llvm.org/.
[Online; last accessed 20-April-2024.].

[11] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen,
Andy Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman,
Nicolas Vasilache, and Oleksandr Zinenko. MLIR: Scaling
Compiler Infrastructure for Domain Specific Computation. In
2021 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pages 2–14. IEEE, 2021.

[12] Tsung-Wei Huang, Dian-Lun Lin, Chun-Xun Lin, and Yibo
Lin. Taskflow: A Lightweight Parallel and Heterogeneous Task
Graph Computing System. IEEE Transactions on Parallel and
Distributed Systems (TPDS), 2022.

[13] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin
Wong. Cpp-Taskflow: Fast Task-based Parallel Programming
using Modern C++. In IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2019.

[14] Tsung-Wei Huang, Yibo Lin, Chun-Xun Lin, Guannan Guo, and
Martin Wong. Taskflow: A General-purpose Parallel Task Pro-
gramming System at Scale. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2021.

[15] Cheng-Hsiang Chiu, Dian-Lun Lin, and Tsung-Wei Huang.
Programming Dynamic Task Parallelism for Heterogeneous
EDA Algorithms. In IEEE/ACM International Conference on
Computer-aided Design (ICCAD), 2023.

[16] Chun-Xun Lin, Tsung-Wei Huang, Guannan Guo, and Martin
Wong. An Efficient and Composable Parallel Task Programming
Library. In IEEE High-performance and Extreme Computing
Conference (HPEC), 2019.

[17] Chun-Xun Lin, Tsung-Wei Huang, Guannan Guo, and Martin
Wong. A Modern C++ Parallel Task Programming Library. In
ACM Multimedia Conference (MM), 2019.

[18] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh
Iyer, Pranav Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew,
Howard Mao, et al. Gemmini: Enabling Systematic Deep-
Learning Architecture Evaluation via Full-Stack Integration. In
2021 58th ACM/IEEE Design Automation Conference (DAC),
pages 769–774. IEEE, 2021.

[19] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella,
Sudarshan Srinivasan, Dipankar Das, Bharat Kaul, and Tushar
Krishna. SIGMA: A Sparse and Irregular GEMM Accelerator
with Flexible Interconnects for DNN Training. In 2020 IEEE
International Symposium on High Performance Computer Ar-
chitecture (HPCA), pages 58–70. IEEE, 2020.

[20] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel
Grubb, Sagar Karandikar, Harrison Liew, Albert Magyar,

Howard Mao, Albert Ou, Nathan Pemberton, et al. Chipyard:
Integrated Design, Simulation, and Implementation Framework
for Custom SoCs. IEEE Micro, 40(4):10–21, 2020.

[21] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste
Asanovic. SonicBOOM: The 3rd Generation Berkeley Out-of-
Order Machine. In Fourth Workshop on Computer Architecture
Research with RISC-V, volume 5, pages 1–7, 2020.

[22] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. A Provably
Good and Practically Efficient Algorithm for Common Path Pes-
simism Removal in Large Designs. In IEEE/ACM International
Conference on Computer-aided Design (ICCAD), 2020.

[23] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. Accelerating
Static Timing Analysis using CPU-GPU Heterogeneous Par-
allelism. IEEE Transactions on Computer-aided Design of
Integrated Circuits and Systems (TCAD), 2023.

[24] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. HeteroCPPR:
Accelerating Common Path Pessimism Removal with Hetero-
geneous CPU-GPU Parallelism. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2021.

[25] G. Guo, Tsung-Wei Huang, Y. Lin, Z. Guo, S. Yellapragada,
, and M. D. F. Wong. A gpu-accelerated framework for path-
based timing analysis. IEEE Transactions on Computer-aided
Design of Integrated Circuits and Systems (TCAD), 2023.

[26] Guannan Guo, Tsung-Wei Huang, Chun-Xun Lin, and Mar-
tin Wong. An Efficient Critical Path Generation Algorithm
Considering Extensive Path Constraints. In ACM/IEEE Design
Automation Conference (DAC), 2020.

[27] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. A Provably
Good and Practically Efficient Algorithm for Common Path
Pessimism Removal in Large Designs. In IEEE/ACM Design
Automation Conference (DAC), 2021.

[28] Guannan Guo, Tsung-Wei Huang, Yibo Lin, and Martin Wong.
GPU-accelerated Path-based Timing Analysis. In IEEE/ACM
Design Automation Conference (DAC), 2021.

[29] Guannan Guo, Tsung-Wei Huang, and Martin D. F. Wong. Fast
STA Graph Partitioning Framework for Multi-GPU Accelera-
tion. In IEEE/ACM Design, Automation and Test in Europe
Conference (DATE), 2023.

[30] Zizheng Guo, Tsung-Wei Huang, Jin Zhou, Cheng Zhuo,
Yibo Lin, Runsheng Wang, and Ru Huang. Heterogeneous
Static Timing Analysis with Advanced Delay Calculator. In
IEEE/ACM Design, Automation and Test in Europe Conference
(DATE), 2024.

[31] Guannan Guo, Tsung-Wei Huang, Yibo Lin, and Martin Wong.
GPU-accelerated Critical Path Generation with Path Constraints.
In IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2021.

[32] Tsung-Wei Huang, Guannan Guo, Chun-Xun Lin, and Martin
D. F. Wong. OpenTimer v2: A New Parallel Incremental
Timing Analysis Engine. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2021.

[33] Tsung-Wei Huang, Chun-Xun Lin, and Martin Wong. Open-
Timer v2: A Parallel Incremental Timing Analysis Engine. IEEE
Design and Test (DAT), 2021.

[34] Shiu Jiang, Tsung-Wei Huang, and Tsung-Yi Ho. SNICIT:
Accelerating Sparse Neural Network Inference via Compression
at Inference Time on GPU. In ACM International Conference
on Parallel Processing (ICPP), 2023.

[35] Dian-Lun Lin and Tsung-Wei Huang. A Novel Inference
Algorithm for Large Sparse Neural Network using Task Graph
Parallelism. In IEEE High-performance and Extreme Comput-
ing Conference (HPEC), 2020.

[36] Dian-Lun Lin and Tsung-Wei Huang. Accelerating Large
Sparse Neural Network Inference using GPU Task Graph Paral-
lelism. IEEE Transactions on Parallel and Distributed Systems
(TPDS), 2022.

793

