
An Experimental Study of Dynamic Task Graph
Parallelism for Large-Scale Circuit Analysis

Workloads

Cheng-Hsiang Chiu
University of Wisconsin-Madison, USA

chenghsiang.chiu@wisc.edu

Tsung-Wei Huang
University of Wisconsin-Madison, USA

tsung-wei.huang@wisc.edu

Abstract—Many circuit analysis workloads incorporate com-
plex execution logic under dynamic control flow, such as branch-
and-bound techniques, on-the-fly pruning and recursive decom-
position strategies. Parallelizing these kinds of workloads can
benefit from the exploitation of dynamic task graph parallelism
across arbitrary decision-making points at runtime. A recent
research paper AsyncTask has introduced a new programming
model that supports the dynamic construction of a computational
task graph. Unlike the traditional construct-and-run program-
ming models, AsyncTask offers programmers great flexibility
to parallelize large-scale circuit analysis workloads that are
extremely spare, irregular and control-flow intensive. To leverage
the power of dynamic task parallelism, AsyncTask users are
responsible for creating tasks in a valid topological order. This
paper conducts an experimental study to investigate in the
runtime difference of different topological orders of tasks on
large-scale static timing analysis workloads using AsyncTask.
Our result highlights the need for a new technique to get a valid
topological sequence that yields a better runtime performance
than heuristic-based sorting algorithms for large-scale real-world
circuit analysis applications.

Index Terms—Dynamic Task Graph Parallelism, Task Graph,
Topological Order

I. INTRODUCTION

Task graph programming (TGP) has inspired many new

parallel and heterogeneous circuit analysis algorithms [6]–[8],

[10]–[19], [22]–[25], [27], [28], [32], [36], [41], [47], [50],

[54]–[61] and large-scale machine learning problems [9], [42]–

[45], [51], [52]. Unlike traditional loop-based models that ex-

plore parallelism across parallel loops, TGP models a function

call as a task and a functional dependency as an edge in a task
graph. The left plot in Figure 1 illustrates an example task

graph with four tasks and four edges (or dependencies). TGP

models enable applications to perform top-down optimization

in irregular parallel decomposition strategies that consist of

many tasks and dependencies. Then, a TGP runtime is able to

scale these dependent tasks across a large number of proces-

sors with dynamic load balancing [49]. As a result, the parallel

computing community has introduced many successful TGP

libraries in various application domains, such as OpenMP [1],

Kokkos-DAG [3], PaRSEC [5], Taskflow [20], [21], [31], [33],

[48], and Taro [53].

Typically, TGP has two forms: static task graph program-
ming (STGP) and dynamic task graph programming (DTGP).

For the STGP users, they define the task graph in advance

and submit it to a STGP runtime for execution. The top right

plot in Figure 1 illustrates the timing diagram of STGP. Since

the graph structure is defined a priori, the STGP runtime is

capable of performing whole-graph optimization. On the other

hand, DTGP users define the task graph structure dynamically.

Tasks and dependencies are created on the fly according to the

runtime variables and control-flow results. As a result, DTGP

allows the task creation time to overlap with the task execution

time, as shown in the bottom right plot in Figure 1. Thus,

DTGP is often more flexible than STGP when dealing with

many circuit analysis algorithms that frequently incorporate

dynamic control flow to implement irregular parallel decom-

position strategies.

Fig. 1: An illustration of the execution diagram of a task

graph. The left plot denotes a task graph. The right top plot

denotes the execution diagram of STGP while the right below

denotes DTGP. White rectangles represent the task creation

and gray rectangles represent the task execution. Edges denote

the dependencies. Task are created in the order of A-B-C-D
in both STGP and DTGP. The blue area highlights the saved

time of DTGP over STGP.

Recently, a research paper has introduced a new DTGP

library called AsyncTask [10] to assist circuit analysis devel-

opers in quickly exploring dynamic task graph parallelism. As

AsyncTask has demonstrated a promising runtime performance

in large-scale timing analysis workloads, it is now integrated

into the popular Taskflow library [31] and Taskflow claims the

number of AsyncTask users is increasing. Among the special

properties of DTGP, we find one interesting topic that could

directly impact the performance of AsyncTask applications and

that is, different topological orders for creating the tasks could

766

2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

U.S. Government work not protected by U.S. copyright
DOI 10.1109/ISVLSI61997.2024.00149

lead to different runtime performance. For example, in Figure

1, the creation of tasks is illustrated in the topological order

of A-B-C-D. However, the other valid order A-C-B-D could

achieve a better runtime performance than the order A-B-C-D
in certain applications, such as multiple tasks relying on the

runtime result of task C.

Consequently, in this paper we conduct an experimental

study to investigate in the runtime performance effect using

different topological orders, and highlight the need for a new

technique to schedule tasks with valid topological orders for

better runtime performance. By conducting the study, users

can further optimize their applications when using AsyncTask

to exploit dynamic task graph parallelism. As AsyncTask is

inspired to deal with electronic design automation (EDA)

applications, this paper will focus on a large-scale circuit

analysis problem that is representative of many analysis-driven

EDA applications.

II. OVERVIEW OF ASYNCTASK

AsyncTask [10] is a new dynamic task graph programming

(DTGP) library. It enables an efficient implementation of

irregular parallel decomposition strategies through a top-down

dynamic task graph. It provides an expressive programming

model for applications to describe the task graphs easily, and

introduces a new task scheduling algorithm to support its

programming model with only atomic counters to reduce the

overhead of managing the dependencies between tasks.

A. Programming Model

To enable expressive DTGP, AsyncTask directly specifies

a task’s dependencies with its dependent tasks in a clear

graph description language, which allows programmers to

easily leverage the power of DTGP. Listing 1 demonstrates the

AsyncTask implementation for the task graph in Figure 1. The

program creates a task graph of four tasks, A, B, C, and D. The

dependency constraints state that task B and task C run after

task A, and task D runs after both task B and task C. To create

a task, AsyncTask uses the silent dependent async func-

tion. Every task defines its own lambda as the first argument

followed by a list of dependent tasks. AsyncTask users must
follow the rule that the dependent tasks must be created before
the current task. For instance, task A must be created be-

fore task B. Upon returning from silent dependent async,

AsyncTask obtains an instantiated task object. After creating

all tasks, executor.wait for all is called to wait for all tasks

to finish.

i n t main (){
E x e c u t o r e x e c u t o r ;
/ / c r e a t e 4 a s y n c h r o n o u s t a s k s
a u t o A = e x e c u t o r . s i l e n t d e p e n d e n t a s y n c ([] () {

p r i n t f (” Task A\n ”) ; }) ;
a u t o B = e x e c u t o r . s i l e n t d e p e n d e n t a s y n c ([] () {

p r i n t f (” Task B\n ”) ; } , A) ;
a u t o C = e x e c u t o r . s i l e n t d e p e n d e n t a s y n c ([] () {

p r i n t f (” Task C\n ”) ; } , A) ;
a u t o D = e x e c u t o r . s i l e n t d e p e n d e n t a s y n c ([] () {

p r i n t f (” Task D\n ”) ; } , B , C) ;
/ / w a i t f o r t h e t a s k graph t o f i n i s h
e x e c u t o r . w a i t f o r a l l () ;

}

Listing 1: AsyncTask implementation of Figure 1.

B. Task Scheduling Algorithm

AsyncTask designs a new task scheduling algorithm to

support its new programming model. There are three main

designs in AsyncTask’s scheduling algorithm. First, every task

object keeps track of its successor tasks in its own successor

list instead of in a global data structure. This design can

efficiently resolve a dependency when a task finishes the

execution. For example, in Figure 1, both task B and task C
have task A as the dependent task, and AsyncTask inserts task

B and task C in task A’s successor list. When task A finishes,

AsyncTask can quickly resolve the associated dependencies by

directly checking task A’s successor list rather than iterating

every existing task to see what dependencies to resolve.

Second, every task object has a shared ownership between

worker threads. As every task is an instantiated task object, it

will be destroyed and returned to the operating system after it

finishes the execution. To avoid inserting a new task into an

empty or wrong task’s successor list (the ABA problem [4]),

AsyncTask leverages the idea of shared ownership to keep

every task object alive throughout the whole program.

Third, every task has an atomic variable to protect its

own successor list from data race. As multiple tasks could

insert themselves into one task’s successor list simultaneously,

AsyncTask assigns every task an atomic variable and every

new task must perform atomic operations before inserting itself

into a task’s successor list.

III. EXPERIMENTAL RESULTS

We first demonstrate the impact of different topological sort-

ing sequences on the large-scale timing analysis workloads.

Then we showcase the significance of DTGP over STGP on

large-scale applications. The goal of the experiment is to 1)

point out an optimization direction for AsyncTask users, and

2) highlight the need for a technique to generate a topological

sorting sequence that yields a better runtime performance than

existing heuristic-based methods.

We compiled programs using g++11.4 with -std=c++20
and -O3 enabled. We ran all the experiments on a Ubuntu

22.04.3 machine with 16 Intel i7-11700 CPU at 2.50 GHz

and 125 GB RAM. All data is an average of ten runs.

A. Timing Analysis Workloads

We tested AsyncTask on an industrial static timing analysis

(STA) application [24], [36] that leverages task graph paral-

lelism to parallelize graph-based analysis (GBA). STA is a

critical step in the overall EDA flow because it analyzes the

timing landscape of a circuit design and reports critical paths

that do not meet the given constraints (e.g., setup time and

hold time).

We considered the state-of-the-art open-source STA engine,

OpenTimer [2], [24], as our experimental environment. Open-

Timer formulates the GBA algorithm into a task graph and

767

TABLE I: Task (‖V ‖) and edge (‖E‖) counts of 12 circuits.

Circuits ‖V ‖ ‖E‖ ‖V ‖+ ‖E‖ Size
c432 483 925 1408
c499 604 1097 1701 Small
s400 626 1125 1751

wb dma 13125 16593 29718
tv80 17038 23087 40125 Medium

ac97 ctrl 42438 53558 95996
aes core 66,751 86,446 153,197
des perf 303,690 387,291 690,981 Large
vga lcd 397,809 498,863 896,672

leon3mp iccad 3,376,832 6,277,562 9,654,394
netcard iccad 3,999,174 7,404,006 11,403,180 Giant
leon2 iccad 4,328,255 7,984,262 12,312,517

schedules dependent tasks across many heterogeneous cores

for parallel execution. The task graph represents the circuit

graph itself and can contain millions of tasks and dependencies

for large designs. Each task computes the required timing

information at its corresponding node in the circuit graph

(e.g., parasitics, slew, delay, arrival time), while each edge

represents a dependency between two tasks. Table I lists the

statistics of the 12 circuits we used. ‖V ‖ denotes the number

of the tasks in a task graph generated from the circuit and

‖E‖ denotes the number of the edges. We categorized the 12

circuits into 4 categories based on the size. For example, c432,

c499, and s400 are small-sized circuits and leon3mp iccad,

netcard iccad, and leon2 iccad are giant-sized circuits.

B. Methodology

To run the STA workload using AsyncTask, we first per-

formed a topological sorting on a task graph to get a sequence

of tasks and then created tasks in the topological order using

AsyncTask’s silent dependent async API. In the API, the

first argument is the callable function for each task (e.g., timing

operations of parasitics, slew, delay, arrival time), which is

followed by a list of dependent tasks.

To get a valid topological order of a task graph, we

chose three heuristic approaches, the BFS- and DFS-based

topological sorting algorithm, and a random approach. For

the first two algorithms, we can modify the typical BFS and

DFS algorithm to get the orders. For the random approach,

we repeated the steps to get the order: 1) push tasks whose

dependencies have been resolved into an array, 2) randomly

pop one task from that array, and 3) resolve the associated

dependencies for that task.

C. Impact of Different Topological Orders

To schedule a task graph, AsyncTask must follow a topolog-

ical order of that graph because AsyncTask can not associate a

dependency with a non-existing task. For example, in Listing

1, AsyncTask implements Figure 1 in the A-B-C-D order.

AsyncTask can not schedule the task graph in the D-A-B-C
order as we were trying to associate task D with non-existing

task B and task C. For a task graph, there are multiple valid

topological orders. For instance, both A-B-C-D and A-C-B-
D are valid in Figure 1. Different valid orders could lead to

c499
s400

c432

0.54

0.56

0.58

0.6

0.62

0.64

(a)

R
u
n
ti

m
e

(m
s)

DFS
BFS

Random

wb dma tv80
ac97 ctrl

10

15

20

(b)

R
u
n
ti

m
e

(m
s)

DFS
BFS

Random

aes core

des perf
vga lcd

50

100

150

200

(c)

R
u
n
ti

m
e

(m
s)

DFS
BFS

Random

leon3mp iccad

netcard iccad

leon2 iccad

1.5

2

2.5

3

(d)

R
u
n
ti

m
e

(s
)

DFS
BFS

Random

Fig. 2: Runtime comparison of AsyncTask scheduling tasks

in the Depth First Search (DFS)-based, Breadth First Search

(BFS)-based topological, and the random orders on 12 circuits,

respectively. (a) Runtime of small-sized circuits. (b) Runtime

of medium-sized circuits. (c) Runtime of large-sized circuits.

(d) Runtime of giant-sized circuits.

distinct runtime performance. Take a task graph with a very

deep branch as an example. It is better to schedule tasks with

DFS-based topological order than BFS-based order because

of higher data locality DFS can bring in the scenario. In this

section, we discuss the runtime performance of AsyncTask

scheduling tasks based on the DFS- and BFS-based topological

sorting algorithm, and one random approach.

Figure 2 shows the runtime comparison of AsyncTask

scheduling tasks in the DFS-based, BFS-based and a random

orders. We can see that the implementation with a BFS order

runs faster on wb dma and tv80. For example, BFS order

is 0.4% faster than DFS for tv80. The implementation with

a DFS order runs faster on another 8 circuits. For example,

DFS order is 0.9%, 2.5%, and 27% faster than BFS for

ac97 ctrl, des perf, and netcard iccad, respectively. The

runtime difference between BFS and DFS order comes from

the variation of the graph architecture. For wb dma and tv80,

their graphs have a wide diameter, meaning a task has more

neighboring tasks at the same depth level than descendant tasks

in a branch. As a result, in BFS order, AsyncTask can schedule

a bunch of tasks at the same depth level at once and assign

these tasks across all execution units for higher load balancing.

On the other hand, for graphs that are deep in a branch, such as

des perf, AsyncTask is able to take advantage of data locality,

increase the cache hit rate, and get better performance.

We also find out that for large- and giant-sized circuits,

such as aes core and netcard iccad, DFS order always gives

the better performance. We attribute the finding to the reason

below. In modern circuit designs a circuit gate does not have

768

a very high fan-out (the number of output pins connecting to

the next gates) because a high fan-out means a high current

flow required to meet the total needs of all the connected next

gates. A high current flow on a circuit gate could easily lead to

reliability issue. As a result, modern circuits are usually deep

in shape, especially for large and complex circuits, and the

benefit of taking the advantage of data locality outperforms

the benefit of load balancing. This finding gives AsyncTask

users a good optimization hint when dealing with large-scale

timing analysis applications.

In Figure 2, we also find out the random approach gives

the best performance despite the graph structure when running

c432 and s400. For example, the random approach is 3.86%
and 3.33% faster than DFS and BFS when running c432,

respectively. This finding puts AsyncTask users in a difficult

position because they can not choose DFS- or BFS-based order

simply based on the graph structure when the random approach

could finish the fastest. Moreover, for STA engineers, they

need to iterate the same analysis multiple times and the random

approach could give the best order in one iteration while the

worst in other iterations. Through this finding, we highlight

the need for a new technique that can help users to make

the decision about the sorting algorithm or generate a valid

topological order that yields a better runtime performance than

the three heuristic-based approaches.

D. Significance of DTGP on Large-Scale Workloads

We show the significance of DTGP over STGP on large-

scale timing analysis workloads. As OpenTimer adopts STGP,

we used it for the evaluation. Figure 3 shows the runtime

breakdown of OpenTimer. We can see that the task creation

time for STGP increases as the graph grows in size. For

example, the task creation time increases from 5.65% in a

small-sized circuit to 15.66% in a giant-sized circuit. That

means, as the circuit graph grows, we can not neglect the

overhead of task creations anymore. As the circuit design is

becoming larger in size and more complex in functionality in

the current technology, STGP is introducing more overhead

in task creations, which standouts the significance of using

DTGP in large-scale timing analysis applications.

IV. CONCLUSION

In this paper, we have conducted an experimental study to

investigate in the impact of different topological orders on

running large-scale timing analysis workloads using recently-

published DTGP library, AsyncTask. We have also demon-

strated the significance of DTGP over STGP. In the end, we

have highlighted the need for a new and clever technique to

generate a valid topological order that yields a better runtime

performance than heuristic-based algorithms. Future work will

focus on applying AsyncTask to other EDA applications,

such as distributed computing [26], [29], [30], [38], macro

modeling [46], and path-based analysis [34], [35], [37], [39],

[40].

5.65%
94.35%

12.82%

87.18%

14.53%

85.47%

15.66%

84.34%

(c) (d)

(b)(a)
task execution

task creation

Fig. 3: Runtime breakdown of OpenTimer’s construct-and-run

model on four selected circuits. (a) Chart of a small-sized

circuit, c432. (b) Chart of a medium-sized circuit, ac97 ctrl.
(c) Chart of a large-sized circuit, vga lcd. (d) Chart of a

giant-sized circuit, leon2 iccad.

ACKNOWLEDGMENT

We are grateful for the NSF grants 2235276, 2349144,

2349143, 2349582, and 2349141.

REFERENCES

[1] OpenMP. https://www.openmp.org/
[2] OpenTimer. https://github.com/OpenTimer/OpenTimer
[3] Kokkos: Enabling manycore performance portability through polymor-

phic memory access patterns. In: Journal of Parallel and Distributed
Computing. pp. 3202–3216 (2014)

[4] (ABA Problem), https://en.wikipedia.org/wiki/ABA problem
[5] Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Herault, T.,

Dongarra, J.J.: Parsec: Exploiting heterogeneity to enhance scalability.
In: Computing in Science Engineering. pp. 36–45 (2013)

[6] Chang, C., Huang, T.W., Lin, D.L., Guo, G., Lin, S.: Ink: Efficient
Incremental k-Critical Path Generation. In: ACM/IEEE DAC (2024)

[7] Chiu, C.H., Huang, T.W.: Composing Pipeline Parallelism Using Control
Taskflow Graph. In: ACM HPDC. p. 283–284 (2022)

[8] Chiu, C.H., Huang, T.W.: Efficient Timing Propagation with Simulta-
neous Structural and Pipeline Parallelisms: Late Breaking Results. In:
ACM/IEEE DAC. p. 1388–1389 (2022)

[9] Chiu, C.H., Lin, D.L., Huang, T.W.: An Experimental Study of SYCL
Task Graph Parallelism for Large-Scale Machine Learning Workloads.
In: Euro-Par Workshop (2022)

[10] Chiu, C.H., Lin, D.L., Huang, T.W.: Programming Dynamic Task
Parallelism for Heterogeneous EDA Algorithms. In: IEEE/ACM ICCAD
(2023)

[11] Chiu, C.H., Xiong, Z., Guo, Z., Huang, T.W., Lin, Y.: An efficient
task-parallel pipeline programming framework. In: ACM International
Conference on High-performance Computing in Asia-Pacific Region
(HPC Asia) (2024)

[12] Dzaka, E., Lin, D.L., Huang, T.W.: Parallel And-Inverter Graph Simu-
lation Using a Task-graph Computing System. In: IEEE IPDPSw. pp.
923–929 (2023)

[13] Guo, G., Huang, T.W., Lin, C.X., Wong, M.: An Efficient Critical
Path Generation Algorithm Considering Extensive Path Constraints. In:
ACM/IEEE DAC. pp. 1–6 (2020)

769

[14] Guo, G., Huang, T.W., Lin, Y., Wong, M.: GPU-accelerated Critical
Path Generation with Path Constraints. In: IEEE/ACM ICCAD. pp. 1–9
(2021)

[15] Guo, G., Huang, T.W., Wong, M.: Fast STA Graph Partitioning Frame-
work for Multi-GPU Acceleration. In: IEEE/ACM DATE. pp. 1–6 (2023)

[16] Guo, Z., Huang, T.W., Lin, Y.: GPU-Accelerated Static Timing Analysis.
In: IEEE/ACM ICCAD (2020)

[17] Guo, Z., Huang, T.W., Lin, Y.: A Provably Good and Practically Efficient
Algorithm for Common Path Pessimism Removal in Large Designs. In:
ACM/IEEE DAC. pp. 715–720 (2021)

[18] Guo, Z., Huang, T.W., Lin, Y.: HeteroCPPR: Accelerating Common
Path Pessimism Removal with Heterogeneous CPU-GPU Parallelism.
In: IEEE/ACM ICCAD. pp. 1–9 (2021)

[19] Guo, Z., Huang, T.W., Zhou, J., Zhuo, C., Lin, Y., Wang, R., Huang, R.:
Heterogeneous Static Timing Analysis with Advanced Delay Calculator.
In: IEEE/ACM Design, Automation and Test in Europe Conference
(DATE) (2024)

[20] Huang, T.W., Lin, C.X., Guo, G., Wong, M.D.F.: Cpp-Taskflow: Fast
Task-based Parallel Programming using Modern C++. pp. 974–983
(2019)

[21] Huang, T.W.: A General-Purpose Parallel and Heterogeneous Task
Programming System for VLSI CAD. In: IEEE/ACM ICCAD (2020)

[22] Huang, T.W.: Enhancing the Performance Portability of Heterogeneous
Circuit Analysis Programs. In: IEEE HPEC. pp. 1–2 (2022)

[23] Huang, T.W.: qTask: Task-parallel Quantum Circuit Simulation with
Incrementality. In: IEEE IPDPS. pp. 746–756 (2023)

[24] Huang, T.W., Guo, G., Lin, C.X., Wong, M.: OpenTimer v2: A New
Parallel Incremental Timing Analysis Engine. In: IEEE TCAD. pp. 776–
789 (2021)

[25] Huang, T.W., Hwang, L.: Task-Parallel Programming with Constrained
Parallelism. In: IEEE HPEC. pp. 1–7 (2022)

[26] Huang, T.W., Lin, C.X., Guo, G., Wong, M.D.F.: A General-Purpose
Distributed Programming System Using Data-Parallel Streams. In: ACM
MM. p. 1360–1363 (2018)

[27] Huang, T.W., Lin, C.X., Guo, G., Wong, M.D.F.: Essential Building
Blocks for Creating an Open-Source EDA Project. In: ACM/IEEE DAC
(2019)

[28] Huang, T.W., Lin, C.X., Wong, M.: OpenTimer v2: A Parallel Incre-
mental Timing Analysis Engine. IEEE Design and Test (DAT) (2021)

[29] Huang, T.W., Lin, C.X., Wong, M.D.F.: DtCraft: A distributed execution
engine for compute-intensive applications. In: IEEE/ACM ICCAD. pp.
757–765 (2017)

[30] Huang, T.W., Lin, C.X., Wong, M.D.F.: DtCraft: A High-Performance
Distributed Execution Engine at Scale. IEEE ICAD 38(6), 1070–1083
(2019)

[31] Huang, T.W., Lin, D.L., Lin, C.X., Lin, Y.: Taskflow: A Lightweight
Parallel and Heterogeneous Task Graph Computing System. In: IEEE
TPDS. pp. 1303–1320 (2022)

[32] Huang, T.W., Lin, D.L., Lin, Y., Lin, C.X.: Taskflow: A General-Purpose
Parallel and Heterogeneous Task Programming System. IEEE TCAD
41(5), 1448–1452 (2022)

[33] Huang, T.W., Lin, Y., Lin, C.X., Guo, G., Wong, M.D.F.: Cpp-Taskflow:
A General-Purpose Parallel Task Programming System at Scale. IEEE
TCAD 40(8), 1687–1700 (2021)

[34] Huang, T.W., Wong, M.D.F.: Accelerated path-based timing analysis
with mapreduce. In: ACM ISPD. p. 103–110 (2015)

[35] Huang, T.W., Wong, M.D.F.: On fast timing closure: speeding up
incremental path-based timing analysis with mapreduce. In: ACM/IEEE
SLIP. pp. 1–6 (2015)

[36] Huang, T.W., Wong, M.D.F.: OpenTimer: A High-Performance Timing
Analysis Tool. In: IEEE/ACM ICCAD. p. 895–902 (2015)

[37] Huang, T.W., Wong, M.D.F.: UI-Timer 1.0: An Ultrafast Path-Based
Timing Analysis Algorithm for CPPR. IEEE TCAD 35(11), 1862–1875
(2016)

[38] Huang, T.W., Wong, M.D.F., Sinha, D., Kalafala, K., Venkateswaran,
N.: A distributed timing analysis framework for large designs. In:
ACM/IEEE DAC. pp. 1–6 (2016)

[39] Huang, T.W., Wu, P.C., Wong, M.D.F.: Fast Path-Based Timing Analysis
for CPPR. In: IEEE/ACM ICCAD. p. 596–599 (2014)

[40] Huang, T.W., Wu, P.C., Wong, M.D.F.: UI-Timer: An Ultra-Fast Clock
Network Pessimism Removal Algorithm. In: IEEE/ACM ICCAD. p.
758–765 (2014)

[41] Huang, T.W., Zhang, B., Lin, D.L., Chiu, C.H.: Parallel and Hetero-
geneous Timing Analysis: Partition, Algorithm, and System. In: ACM
International Symposium on Physical Design (ISPD) (2024)

[42] Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, M.X., Chen, D., Lee,
H., Ngiam, J., Le, Q.V., Wu, Y., Chen, Z.: GPipe: Efficient Training
of Giant Neural Networks using Pipeline Parallelism. In: Advances in
Neural Information Processing Systems. pp. 103–112 (2019)

[43] Jia, Z., Lin, S., Qi, C.R., Aiken, A.: Exploring hidden dimensions in
accelerating convolutional neural networks. In: Proceedings of the 35th
International Conference on Machine Learning. pp. 2274–2283 (2018)

[44] Jia, Z., Zahari, M., Aiken, A.: Beyond data and model parallelism
for deep neural networks. In: Proceedings of Machine Learning and
Systems. pp. 1–13 (2019)

[45] Jiang, S., Huang, T.W., Yu, B., Ho, T.Y.: SNICIT: Accelerating Sparse
Neural Network Inference via Compression at Inference Time on GPU.
In: ACM ICPP (2023)

[46] Lai, T.Y., Huang, T.W., Wong, M.D.F.: LibAbs: An Efficient and
Accurate Timing Macro-Modeling Algorithm for Large Hierarchical
Designs. In: ACM/IEEE DAC (2017)

[47] Lee, W.L., Lin, D.L., Huang, T.W., Jiang, S., Ho, T.Y., Lin, Y., Yu,
B.: G-kway: Multilevel GPU-Accelerated k-way Graph Partitioner. In:
ACM/IEEE Design Automation Conference (DAC) (2024)

[48] Lin, C.X., Huang, T.W., Guo, G., Wong, M.D.F.: A Modern C++ Parallel
Task Programming Library. In: ACM MM. p. 2284–2287 (2019)

[49] Lin, C.X., Huang, T.W., Wong, M.D.F.: An efficient work-stealing
scheduler for task dependency graph. In: IEEE ICPADS. pp. 64–71
(2020)

[50] Lin, C.X., Huang, T.W., Yu, T., Wong, M.D.F.: A distributed power
grid analysis framework from sequential stream graph. In: GLVLSI. p.
183–188. GLSVLSI ’18 (2018)

[51] Lin, D.L., Huang, T.W.: Efficient GPU Computation Using Task Graph
Parallelism. In: Euro-Par (2021)

[52] Lin, D.L., Huang, T.W.: Accelerating Large Sparse Neural Network
Inference Using GPU Task Graph Parallelism. IEEE TPDS 33(11),
3041–3052 (2022)

[53] Lin, D.L., Huang, T.W., Miguel, J.S., Ogras, U.: TaroRTL: Accel-
erating RTL Simulation using Coroutine-based Heterogeneous Task
Graph Scheduling. In: International European Conference on Parallel
and Distributed Computing (Euro-Par) (2024)

[54] Lin, D.L., Ren, H., Zhang, Y., Khailany, B., Huang, T.W.: From rtl to
cuda: A gpu acceleration flow for rtl simulation with batch stimulus. In:
Proceedings of the 51st International Conference on Parallel Processing.
pp. 1–12 (2023)

[55] Lin, D.L., Zhang, Y., Ren, H., Wang, S.H., Khailany, B., Huang, T.W.:
GenFuzz: GPU-accelerated Hardware Fuzzing using Genetic Algorithm
with Multiple Inputs. In: ACM/IEEE DAC (2023)

[56] Lin, S., Guo, G., Huang, T.W., Sheng, W., Young, E., Wong, M.:
G-PASTA: GPU Accelerated Partitioning Algorithm for Static Timing
Analysis. In: ACM/IEEE DAC (2024)

[57] Lin, Y., Li, W., Gu, J., Ren, H., Khailany, B., Pan, D.: Abcdplace:
Accelerated batch-based concurrent detailed placement on multithreaded
cpus and gpus. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems. pp. 5083–5096 (2020)

[58] Liu, S., Liao, P., Zhang, R., Chen, Z., Lv, W., Lin, Y., Yu, B.: FastGR:
global routing on CPU-GPU with heterogeneous task graph scheduler.
In: Proceedings of the 2022 Conference and Exhibition on Design,
Automation and Test in Europe. pp. 760–765 (2022)

[59] Morchdi, C., Chiu, C.H., Zhou, Y., Huang, T.W.: A Resource-efficient
Task Scheduling System using Reinforcement Learning. In: IEEE/ACM
Asia and South Pacific Design Automation Conference (ASP-DAC)
(2024)

[60] Zamani, Y., Huang, T.W.: A High-Performance Heterogeneous Critical
Path Analysis Framework. In: IEEE HPEC. pp. 1–7 (2021)

[61] Zhang, B., Lin, D.L., Chang, C., Chiu, C.H., Wang, B., Lee, W.L.,
Chang, C.C., Fang, D., Huang, T.W.: G-PASTA: GPU Accelerated
Partitioning Algorithm for Static Timing Analysis. In: ACM/IEEE DAC
(2024)

770

