
FlatDD: A High-PerformanceQuantum Circuit Simulator using
Decision Diagram and Flat Array

Shui Jiang
The Chinese University of Hong Kong

Hong Kong
sjiang22@cse.cuhk.edu.hk

Rongliang Fu
The Chinese University of Hong Kong

Hong Kong
rlfu@cse.cuhk.edu.hk

Lukas Burgholzer
Technical University of Munich

Germany
lukas.burgholzer@tum.de

Robert Wille
Technical University of Munich

Germany
robert.wille@tum.de

Tsung-Yi Ho
The Chinese University of Hong Kong

Hong Kong
tyho@cse.cuhk.edu.hk

Tsung-Wei Huang
University of Wisconsin–Madison

USA
tsung-wei.huang@wisc.edu

ABSTRACT
Quantum circuit simulator (QCS) is essential for designing quan-
tum algorithms because it assists researchers in understanding how
quantum operations work without access to expensive quantum
computers. Traditional array-based QCSs suffer from exponential
time and memory complexities. To address this problem, Deci-
sion Diagram (DD) was introduced to compress simulation data
by exploring the circuit regularity. However, for irregular circuit
structures, DD-based simulation incurs significant runtime and
memory overhead. To overcome this challenge, we present FlatDD,
a high-performance QCS that capitalizes on the strength of both
DD- and array-based approaches. FlatDD parallelizes the simula-
tion workload at multiple levels and leverages an efficient caching
technique to reuse historical results. To further enhance the simula-
tion performance for deep circuits, FlatDD introduces a gate-fusion
algorithm to reduce the computational cost. Compared to state-of-
the-art QCSs on commonly used quantum circuits, FlatDD achieves
34.81× speed-up and 1.93× memory reduction.

CCS CONCEPTS
• Computing methodologies → Parallel algorithms; Simu-
lation tools; • Computer systems organization→ Quantum
computing.

KEYWORDS
Quantum Circuit Simulation, Decision Diagram, Exponentially
Weighted Moving Average
ACM Reference Format:
Shui Jiang, Rongliang Fu, Lukas Burgholzer, Robert Wille, Tsung-Yi Ho,
and Tsung-Wei Huang. 2024. FlatDD: A High-Performance Quantum Circuit
Simulator using Decision Diagram and Flat Array. In The 53rd International
Conference on Parallel Processing (ICPP ’24), August 12–15, 2024, Gotland,
Sweden.ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3673038.
3673073

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICPP ’24, August 12–15, 2024, Gotland, Sweden
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1793-2/24/08
https://doi.org/10.1145/3673038.3673073

1 INTRODUCTION
Quantum computing (QC) has the potential to efficiently handle cer-
tain types of problems that are classically intractable, such as quan-
tum chemistry [9], finance [35], and cryptography [20]. Powered by
two fundamental quantum phenomena, superposition and entangle-
ment, many available quantum computers have shown significant
speed-up over classical computers. For example, a recent photonic
quantum computer Jiuzhang can solve the Gaussian boson sam-
pling problem within five minutes, whereas a supercomputer needs
billions of years [95]. To enable widespread use of this quantum
advantage, researchers have been actively building software stacks
to support quantum computer designs [4, 11, 41, 81, 82, 90].

Among various QC applications, developing an efficient quan-
tum circuit simulator (QCS) on a classical computer is a crucial task
because it helps researchers understand how quantum operations
work and verify the functionality of a quantum algorithm. However,
this task is extremely challenging because it demands large space
and time complexity to compute state amplitudes of qubits. For in-
stance, state-of-the-art QCSs [1, 4, 5, 19, 63, 68, 89, 91, 94] use arrays
to represent quantum gate matrices and state vectors. An 𝑛-qubit
circuit may result in a worst case of multiplying a 2𝑛 × 2𝑛 quantum
gate matrix by a 2𝑛 ×1 state vector. To tackle this challenge, [86, 99]
have proposed decision diagram (DD) to compress simulation data
in a compact graph-based data structure by exploring regularity in
the circuit, such as state amplitude distribution and gate matrices
structures. As a result, DD can significantly reduce the space com-
plexity and largely improve the simulation time. It is widely used
by many quantum software projects [11, 21, 22, 36, 37, 97].

Despite superior performance on regular circuit structures (e.g.,
quantum arithmetic), DD-based simulators cannot efficiently han-
dle circuits that exhibit irregular distributions of state amplitudes,
such as deep neural network (DNN) [10], variational quantum eigen-
solver (VQE), and Google’s quantum supremacy circuits [7]. When
simulating these irregular circuits, DD has few advantages but suf-
fers from exponential runtime and memory overhead due to its
graph structure–which would otherwise be more efficient using 1D
arrays. Figure 1 illustrates this problem by showing the runtime
and memory results between a DD-based simulator [99] and an
array-based simulator [19] on two regular (Adder, GHZ State [88])
and two irregular (DNN, VQE) quantum circuits.

To solve this problem, we have identified an important property:
In DD-based simulation, the quantum gate matrix has a regular

https://doi.org/10.1145/3673038.3673073
https://doi.org/10.1145/3673038.3673073
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3673038.3673073

ICPP ’24, August 12–15, 2024, Gotland, Sweden Shui Jiang, Rongliang Fu, Lukas Burgholzer, Robert Wille, Tsung-Yi Ho, and Tsung-Wei Huang

DN
N VQ

E
Add

er

GH
Z s

tate
100
101
102
103
104
105
106

Ru
nt
im

e

DD-based
Array-based

1

DN
N VQ

E
Add

er

GH
Z s

tate
100

101

102

103

M
em

or
y

DD-based
Array-based

1Figure 1: Normalized runtime and memory results between a
DD-based simulator [99] and an array-based simulator [19]
on four structurally different quantum circuits.

structure as it can be recursively decomposed to unitary operators
through Kronecker product. On the other hand, quantum state
vectors exhibit a different behavior because of superposition and
amplification over the state space [21]. Typically, the vector starts
with a highly regular distribution and gradually becomes irregular
as the simulation progresses. With this property, we present a high-
performance QCS called FlatDD that capitalizes on the strength of
both DD- and array-based approaches. We summarize our technical
contributions below:
• We introduce a hybrid data structure DMAV, which uses DD-
based gate matrix and array-based state vector for matrix-vector
multiplication. DD-based gate matrix enhances indexing effi-
ciency, while array-based state vector avoids exponential over-
head from irregularity.
• We introduce a parallel DMAV algorithmwith an efficient caching
technique to reuse simulation data. Our DMAV algorithm over-
comes the limitation of DD-based simulation which is inherently
sequential, thus largely enhancing its runtime scalability on a
multicore architecture.
• We introduce a moving average-based algorithm to effectively
decide when to convert the simulation from DD to DMAV. Since
such a conversion can be time-consuming for large circuits, we
introduce a parallel algorithm to maximize the conversion effi-
ciency.
• We introduce a DMAV-aware gate-fusion algorithm to enhance
FlatDD’s efficiency in handling large quantum circuits with deep
simulation length.
We evaluated FlatDD on a set of widely-used quantum circuits

from [7, 69, 88]. FlatDD can outperform two highly optimized state-
of-the-art DD-based and array-based simulators, DDSIM [99] and
Quantum++ [19], with significant runtime improvement. For exam-
ple, FlatDD achieves an average of 34.81× and 17.31× speed-up
over DDSIM [99] and Quantum++ [19]. The source code is available
at https://github.com/IDEA-CUHK/FlatDD.

2 QUANTUM CIRCUIT SIMULATION
Given a quantum circuit, the goal of quantum circuit simulation
is to derive the final state value after applying all quantum gate
operations to an initial state. Mainstream simulation methods can
be categorized to array-based and DD-based, explained below:

1

2
0

1

2
0

0
1

2
0

1

2
1

2
0 −

1

2
0

0
1

2
0 −

1

2

1

2

1

𝒒𝟏

𝒒𝟎

−1

𝒎𝟏

𝒎𝟐
0

𝒒𝟏 𝒒𝟎𝒒𝟎

𝒒𝟏

𝒒𝟎

𝒒𝟎
0

(a) Matrix𝑀 in DD.

1/2
0
0
1/2
1/2
0
0

−1/2

𝒒𝟐

𝒒𝟏
𝒒𝟎

𝒒𝟎

𝒒𝟏
𝒒𝟎

𝒒𝟎

𝟏

1

2

1

2

1

2
1

2

1

2
−

1

2

𝒒𝟐

𝒒𝟏

𝒒𝟎

𝒗𝟏

𝒗𝟐 𝒗𝟑

𝒗𝟓𝒗𝟒

𝟎 𝟎

(b) Vector𝑉 in DD.

Figure 2: Examples of array-based data represented in deci-
sion diagrams. Edges without labels have a weight of one by
default.

2.1 Array-based Simulation
In array-based simulation [1, 4, 5, 19, 63, 68, 89, 91, 94], gate matrices
and state vectors are stored in 2D and 1D arrays. Multiplying a 2D
array with a 1D array expresses the action of exerting a quantum
gate on a state vector. For instance, when we apply a single-qubit
Hadamard gate 𝐻 to an input state |𝜓 ⟩ = |0⟩, it yields the resulting
state |𝜓 ′⟩ (Equation 1).

|𝜓 ′⟩ = 𝐻 · |𝜓 ⟩ = 1
√
2

(
1 1
1 −1

)
·
(
1
0

)
=

1
√
2

(
1
1

)
(1)

This can also extend to larger circuits with𝑛 > 2 qubits. However,
we do not have to construct an entire 2𝑛 × 2𝑛 gate matrix [89, 91].
Instead, array-based simulators can manipulate the amplitudes of
state vectors locally. For instance, if we apply a single-qubit gate
𝑈 = (𝑢𝑖 𝑗) to the 𝑘-th qubit of state vector |𝜓 ⟩ = (𝑎𝑖)𝑇 , the operation
to derive resulting state |𝜓 ′⟩ = (𝑎′

𝑖
)𝑇 can be expressed in Equation 2.(

𝑎′∗···∗0𝑘∗···∗
𝑎′∗···∗1𝑘∗···∗

)
=

(
𝑢11 𝑢12
𝑢21 𝑢22

)
·
(
𝑎∗···∗0𝑘∗···∗
𝑎∗···∗1𝑘∗···∗

)
(2)

On the other hand, if we apply a two-qubit controlled gate 𝑉 =

(𝑣𝑖 𝑗) to the state vector, where 𝑐 represents the control qubit and 𝑡
is the target qubit, the in-place manipulation of the state vector is
expressed in Equation 3.(

𝑎′∗1𝑐∗···∗0𝑡 ∗···∗
𝑎′∗1𝑐∗···∗1𝑡 ∗···∗

)
=

(
𝑣11 𝑣12
𝑣21 𝑣22

)
·
(
𝑎∗1𝑐∗···∗0𝑡 ∗···∗
𝑎∗1𝑐∗···∗1𝑡 ∗···∗

)
(3)

2.2 Decision-diagram-based Simulation
Compared with array-based methods, decision diagram (DD)-based
simulators [86, 98, 99] are particularly good at handling the regu-
larity in gate matrices and state vectors. For example, if we equally
partition the matrix in Figure 2a into four sub-matrices, we observe
that the upper-left, upper-right, and lower-left sub-matrices are
identical. The lower-right sub-matrix is exactly the opposite of the
other three sub-matrices. As a result, these four sub-matrices can
be efficiently stored as one single 2 × 2 sub-matrix with different
weights. This idea extends to all gate matrices and state vectors,
which can be recursively partitioned until they become scalar val-
ues. This process forms a graph-based data structure, DD, where
nodes represent sub-matrices or sub-vectors at various partitioning
levels connected by weighted edges. Figure 2 shows DD examples
for gate matrix𝑀 and state vector 𝑉 .

In Figure 2a, the root node𝑚1 represents the entire matrix 𝑀 ,
and the four outgoing edges represent four equally partitioned sub-
matrices in 𝑀 . The partition runs on the most significant qubit,

https://github.com/IDEA-CUHK/FlatDD

FlatDD: A High-PerformanceQuantum Circuit Simulator using Decision Diagram and Flat Array ICPP ’24, August 12–15, 2024, Gotland, Sweden

𝑞1, at the topmost level of the DD. Recursive partitions progress
level by level, from the most to the least significant qubit. Each
qubit matches a unique level in DD. The weight for𝑚1’s incoming
edge is 1√

2
, and the weights for its outgoing edges are 1, 1, 1 and

−1, corresponding to the upper-left, upper-right, lower-left, and
lower-right sub-matrices. The weights are uniquely decided by
normalization [86, 99]. After dividing𝑚1’s incoming and outgoing
weights, the four sub-matrices are identical, which can be expressed
with one single node 𝑚2. 𝑚2 represents a 2 × 2 identity matrix,
which can be further partitioned on qubit 𝑞0. In this partition, the
upper-left and lower-right elements point to terminal constant
node one, and the upper-right and lower-left elements are zero. The
matrix value of an index pair equals the product of edge weights
along the corresponding path in DD. For instance, for𝑀 [0] [2] (i.e.,
𝑀 [|00⟩] [|10⟩]), we have 𝑞1 = 𝑞0 = 0 and 𝑞1 = 1, 𝑞0 = 0 for row and
column indices, respectively. Multiplying the edge weights along
the path (thick red edges in Figure 2a) yields𝑀 [0] [2] = 1√

2
×1×1 =

1√
2
.
In Figure 2b, the root node 𝑣1 represents the entire state vector.

We equally partition the vector into two sub-vectors on the most
significant qubit 𝑞2. The two sub-vectors are neither zero vectors
nor a scalar multiple of each other. Therefore, they are represented
in two unique nodes 𝑣2 and 𝑣3. The incoming weights for 𝑣2 and
𝑣3 are 1√

2
, also uniquely determined by normalization. Thus, the

weight products along the paths to 𝑣2 and 𝑣3 are both 1√
2
. After

dividing the weight products, the two sub-vectors represented by 𝑣2
and 𝑣3 can be further partitioned into

(1√
2

0
)𝑇 , (0 1√

2
)𝑇 , (1√

2
0
)𝑇

and
(
0 − 1√

2
)𝑇 on𝑞1 level, where the first and the third are identical,

represented in node 𝑣4, and the second and the fourth are oppo-
site, represented in node 𝑣5 with opposite incoming weights. After
further dividing weight products, 𝑣4 and 𝑣5 represent

(
1 0

)𝑇 and(
0 1

)𝑇 on the𝑞0 level, respectively. Similarly, the amplitude of an in-
dex is equal to the product of edge weights along the corresponding
path in DD. For example, to determine𝑉 [3] (i.e.,𝑉 [|011⟩]), we have
𝑞2 = 0, 𝑞1 = 1 and 𝑞0 = 1. Multiplying the edge weights along the
path (thick red edges in Figure 2b) gives𝑉 [3] = 1× 1√

2
× 1√

2
×1 = 1

2 .
DD-based matrix-vector multiplication is done in a depth-first-

search (DFS) fashion, where each matrix node always finds its
corresponding vector node counterpart on the same level. Identical
matrix-vector multiplications are avoided using hash tables [86, 98,
99].

3 ALGORITHM
In this section, we discuss the technical details of our FlatDD algo-
rithm. Figure 3 gives an overview of FlatDD. As aforementioned,
the quantum state vector typically begins with a highly regular
distribution and gradually turns irregular as the simulation pro-
gresses. For example, in Figure 3, DD-based simulation has a fast
runtime until about 24 gates at which the cost to maintain an
irregular DD-based state vector outweighs its advantage. Consider-
ing this property, FlatDD begins with DD-based simulation using
DDSIM [99] and converts to parallel simulation with DD-based gate
matrix and array-based state vector multiplication (DMAV). We

Gates

Runtime (ms)

per added

gate

𝒒𝟑

𝒒𝟐

𝒒𝟏

𝒒𝟎 𝑼𝟐

+

𝑷 +

+ 𝑹𝒀

Input state

vector in DD

Converting state vector

from DD to flat array

Shift to

DMAV

Circuit

Gate matrices

in DD

Gate matrices

in DD

Figure 3: Overview of the FlatDD algorithm. The top box dis-
plays the runtime for each quantum gate, while the bottom
box shows the quantum circuit and simulation data struc-
tures used to compute state vectors.

record a window of the DD size using moving average and exam-
ine if the state vector’s regularity has experienced a significant
change. When such a change happens, we use a parallel algorithm
to convert the state vector from DD to array (Section 3.1), thereby
converting the simulation from DD-based to DMAV. In Section 3.2,
we introduce an efficient parallel DMAV algorithm with a caching
technique to maximize performance. To further enhance the perfor-
mance of FlatDD on large, deep circuits with thousands of gates,
we introduce a DMAV-aware gate-fusion algorithm (Section 3.3).
Throughout this paper, we use 𝑡 to represent the number of threads
and 𝑛 to represent the number of qubits.

3.1 Conversion from DD-based Simulation to
DMAV

When the regularity of a DD-based state vector decreases to a cer-
tain level, DD-based simulation becomes less advantageous due
to the cost of maintaining a highly irregular DD structure. To ad-
dress this problem, a potential solution is to convert the DD-based
state vector to an array representation when the DD size exceeds a
certain threshold. The challenge is thus to decide when and how
to perform this conversion. To this end, we decide the conversion
timing via moving average (Section 3.1.1) and introduce a parallel
algorithm to efficiently convert DD to array (Section 3.1.2).

3.1.1 Conversion timing. To decide the best timing for conver-
sion from DD to array, we monitor the DD size and perform con-
version when the regularity of DD experiences a drastic increase.
Specifically, we apply a widely used learning method, exponentially
weighted moving average [59] (EWMA). EWMA introduces little
computational overhead and is suitable for different quantum cir-
cuits and simulation platforms. While simulating, gate 𝑖 is assigned
an EWMA value 𝑣𝑖 based on the previous EWMA value 𝑣𝑖−1 and
the DD size 𝑠𝑖 , of the state vector at gate 𝑖 . 𝑣𝑖 is computed through
Equation 4.

𝑣𝑖 = 𝛽 · 𝑣𝑖−1 + (1 − 𝛽) · 𝑠𝑖 (4)

ICPP ’24, August 12–15, 2024, Gotland, Sweden Shui Jiang, Rongliang Fu, Lukas Burgholzer, Robert Wille, Tsung-Yi Ho, and Tsung-Wei Huang

𝑽 (DD) 𝑽 (Array)

𝒗𝟏

𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒

0

0 0

𝒗𝟐

𝒗𝟑 𝒗𝟒

𝒗𝟓 𝒗𝟔

(a) Load balancing: Avoiding idle
threads at zeros.

𝑽 (DD) 𝑽 (Array)

①

②
𝒗𝟑

𝒂 𝒃

𝒄 𝒅

×
𝒅

𝒄

×
𝒃

𝒂

×
𝒃𝒅

𝒂𝒄

𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒

𝒗𝟐

𝒗𝟏

𝒗𝟒 𝒗𝟓

(b) Scalar multiplication: Facili-
tating SIMD parallelism.

Figure 4: Parallel DD-to-array conversion algorithmwith two
optimizations. The four colors represent four threads.

In Equation 4, 𝛽 is a parameter and 𝑣0 is initialized to 0. 𝛽 captures
the learning feature of EWMA based on a weighted window of
historical data. To decide whether to convert at gate 𝑖 , we compare
𝜖 · 𝑣𝑖 with 𝑠𝑖 , where 𝜖 is a threshold parameter. (1) If 𝜖 · 𝑣𝑖 ≥ 𝑠𝑖 ,
then 𝑠𝑖 is not large enough to benefit from DMAV. (2) On the other
hand, if 𝜖 · 𝑣𝑖 < 𝑠𝑖 , we convert from DD-based simulation to DMAV
(Section 3.2) by converting state vector from DD to 1D flat array.

3.1.2 Parallel Conversion from DD to Array. Although DD-based
QCS DDSIM [99] already incorporates a conversion algorithm, it is
inherently sequential. As a result, it can consume a large portion of
the total simulation runtime. To overcome this challenge, we intro-
duce a parallel algorithm with two optimizations, load balancing
and scalar multiplication, to improve the conversion efficiency.

Figure 4 illustrates how our parallel conversion algorithm con-
verts state vector 𝑉 from DD to array using four threads (𝑡1, 𝑡2, 𝑡3,
and 𝑡4). In our algorithm, each DD node serves as a junction that
divides threads across its two outgoing edges, progressing from top
to bottom until further division of threads is not possible. Then,
each thread traverses the unvisited nodes using depth-first-search
(DFS), and computes the state amplitudes through the products of
weights along the traversal paths. In practice, however, edges may
be zero. For example, as shown in Figure 4a, the right outgoing
edges of 𝑣1 and 𝑣3, and the left outgoing edge of 𝑣4 are zero. We
address this problem with load-balancing optimization: If a DD
node’s outgoing edge is zero, threads are not divided; instead, they
all proceed along the non-zero edge. With this optimization, in
Figure 4a, all four threads follow the left outgoing edge at node 𝑣1
to node 𝑣2. Here, the threads divide: two take left to 𝑣3 and two
take right to 𝑣4. At nodes 𝑣3 and 𝑣4, the threads continue to nodes
𝑣5 and 𝑣6, respectively, and divide at 𝑣5 and 𝑣6. This optimization
prevents any threads from remaining idle.

Additionally, we optimize the conversion by identifying opportu-
nities for scalar multiplication, as it benefits from single instruction
multiple data (SIMD) parallelism. For example, in Figure 4b, we can
derive the second, third, and fourth quarters of the array from its
first quarter with scalar multiplication. This is because 𝑣1 and 𝑣2
each have identical child nodes, indicating that the four quarters of
the array are scalar multiples of one another [86]. Consequently,
we break the conversion in Figure 4b into two steps: 1○ Convert
the first quarter. With multi-threading, all four threads make two
consecutive left turns at 𝑣1 and 𝑣2, for they each have identical child

nodes, and divide at nodes 𝑣3, 𝑣4, and 𝑣5, to convert the first quarter
in parallel. 2○ SIMD-enabled scalar multiplication fills the second,
third, and fourth quarters with three threads, using the first quarter
data. For instance, the fourth quarter is calculated by multiplying
the first quarter by scalar 𝑏𝑑/𝑎𝑐 . This optimization enhances per-
formance by leveraging both SIMD and multi-threading parallelism.

3.2 Simulation with DMAV
DMAV is different from existing matrix-vector multiplications [8,
85] because a DD-based gate matrix has a specific regularity prop-
erty due to the tensor product. This regularity allows reusing com-
puted results through caching. However, caching requires addi-
tional memory to store historical data, which can introduce over-
head that, for certain gates, can outweigh its benefits. To effectively
determine which gates benefit from caching, we introduce a com-
putational cost model for DMAV (Section 3.2.3). Using this model,
we apply DMAV without caching (Section 3.2.1) when its compu-
tational cost is lower. Otherwise, we apply DMAV with caching
(Section 3.2.2).

3.2.1 DMAVwithout Caching. Wedescribe DMAVwithout caching,
using Algorithm 1 and an example in Figure 5. In Figure 5, we
multiply a three-qubit (i.e., 𝑛 = 3) gate matrix𝑀 by a state vector
𝑉 using two threads (in blue and red, 𝑡 = 2), to derive state vector
𝑊 . Algorithm 1 consists of three functions: DMAV, Assign, and Run.
The top-level function DMAV takes input variables𝑀 (the topmost
edge to DD node𝑚1 in Figure 5), as well as𝑉 and𝑊 (the input and
output state vectors in flat arrays). DMAV has two steps: assigning
multiplication tasks to be executed on 𝑡 threads via Assign (line 2),
and running them in parallel via Run (lines 3-5).

In DMAVwithout caching, each thread evaluates𝑀 in row space
by computing ℎ rows from 𝑀 and the entire vector 𝑉 , resulting
in an ℎ-sized sub-vector in𝑊 , where ℎ = 2𝑛/𝑡 . Assign decom-
poses this process for each thread into smaller multiplication tasks.
Assign divides matrix 𝑀 into ℎ × ℎ sub-matrices, and vectors 𝑉
and𝑊 into ℎ-sized sub-vectors. Each sub-matrix is paired with the
corresponding sub-vectors, forming a multiplication task. A DD
sub-matrix can be located using its incoming edge, while a sub-
vector can be located using its start index in𝑉 or𝑊 . Thus, to record
the multiplication tasks for 𝑡 threads, we use 2D vectors 𝑣𝑀 , 𝑣𝑉 , 𝑣 𝑓
(each of length 𝑡) to track the sub-matrices’ DD edges, sub-vectors’
start indices, and the weight products along the DD traversal paths.
Assign is a recursive function, where the input arguments are dy-
namically decided during the recursive call. At line 8, 𝑀𝑟 is the
input sub-matrix’s DD edge, and 𝑓𝑟 is the weight product along the
DD traversal path. If each DD edge 𝑀𝑟𝑖 has weight 𝑀𝑟𝑖 .𝑤 along
DD traversal path 𝑃 , 𝑓𝑟 is given by 𝑓𝑟 = Π𝑖∈𝑃𝑀𝑟𝑖 .𝑤 . Argument 𝑢
is the thread index for task assignment. 𝐼𝑉 is the start index for a
sub-vector in𝑉 . 𝑙 denotes the DD level of the current node, pointed
to by edge𝑀𝑟 (i.e.,𝑀𝑟 .𝑛). Assign is called from DMAV (line 2) using
DD edge𝑀 . The call initializes weight product 𝑓𝑟 , thread index 𝑢,
and start index 𝐼𝑉 to 1, 0, and 0 respectively, on the topmost level
𝑙 = 𝑛 − 1.

In Assign, if𝑀𝑟 is zero, it returns (line 9).𝑛−log2 𝑡−1 represents
the border level: Assign ends here, and Run starts from here. In
Figure 5, the border level is 𝑞1 (i.e., 𝑛− log2 𝑡 − 1 = 1). Assign spans
levels 𝑞2 and 𝑞1 (i.e., 𝑙 = 2, 1), while Run spans levels 𝑞1, 𝑞0, and

FlatDD: A High-PerformanceQuantum Circuit Simulator using Decision Diagram and Flat Array ICPP ’24, August 12–15, 2024, Gotland, Sweden

the final level where the bottom-most terminal node one resides
(i.e., 𝑙 = 1, 0,−1). Upon reaching the border level, we push the sub-
matrix’s DD edge𝑀𝑟 , the sub-vector’s start index 𝐼𝑉 , and the weight
product 𝑓𝑟 of thread 𝑢 to the corresponding vectors (lines 10-11). If
the border level is still not reached, we traverse the four outgoing
edges of𝑀𝑟 .𝑛 in row-major order (i.e.,𝑀𝑟 .𝑛.𝑒 [𝑖] [𝑗],∀𝑖, 𝑗 ∈ {0, 1}2)
and call Assign with the updated weight product𝑀𝑟 .𝑤 · 𝑓𝑟 (where
𝑀𝑟 .𝑤 is the weight of𝑀𝑟), thread index𝑢+𝑖 ·𝑡/2𝑛−𝑙 and sub-vector’s
start index, 𝐼𝑉 + 2𝑙 𝑗 , going one level lower to 𝑙 − 1 (lines 12-13).
The purposes of 𝑢 + 𝑖 · 𝑡/2𝑛−𝑙 and 𝐼𝑉 + 2𝑙 𝑗 are to split 𝑡 threads and
𝑉 into halves, quarters, and so on, at each successive level, until
all threads are allocated a multiplication task. In Figure 5, on level
𝑞2, we call Assign with 𝑢 = 0, 1 and 𝐼𝑉 = 0, 4, essentially halving 𝑡
threads and𝑉 . After Assign, the blue thread in Figure 5 is assigned
𝑎 ·𝑚2 ·𝑉 [0 : 4] and 𝑏 ·𝑚2 ·𝑉 [4 : 8], while the red thread is assigned
𝑐 ·𝑚2 ·𝑉 [0 : 4] and 𝑑 ·𝑚2 ·𝑉 [4 : 8].

Algorithm 1 DMAV without caching

Input: ℎ = 2𝑛
𝑡 , the size for a sub-matrix or a sub-vector; 𝑣𝑀 = 𝑣𝑉 =

𝑣 𝑓 = {{}, · · · , {}}︸ ︷︷ ︸
𝑡

, vectors keeping track of the sub-matrices’

DD edges, sub-vectors’ start indices, and weight products as-
signed to each thread, respectively.

1: function DMAV(𝑀 , 𝑉 ,𝑊)
2: Assign(𝑀 , 1, 0, 0, 𝑛 − 1)
3: parallel for 𝑖 ∈ [0, 𝑡)
4: for 𝑗 ∈ [0, 𝑠𝑖𝑧𝑒 (𝑣𝑀 [𝑖]))
5: Run(𝑣𝑀 [𝑖] [𝑗],𝑉 ,𝑊 , 𝑛 − log2 𝑡 − 1, 𝑣𝑉 [𝑖] [𝑗], 𝑖ℎ, 𝑣 𝑓 [𝑖] [𝑗])
6: end function
7:
8: function Assign(𝑀𝑟 , 𝑓𝑟 , 𝑢, 𝐼𝑉 , 𝑙)
9: if 𝑀𝑟 is zero edge then return
10: if 𝑙 == 𝑛 − log2 𝑡 − 1 then
11: 𝑣𝑀 [𝑢] ∪ {𝑀𝑟 }; 𝑣𝑉 [𝑢] ∪ {𝐼𝑉 }; 𝑣 𝑓 [𝑢] ∪ {𝑓𝑟 }; return
12: else for 𝑖, 𝑗 ∈ {0, 1}2
13: Assign(𝑀𝑟 .𝑛.𝑒 [𝑖] [𝑗],𝑀𝑟 .𝑤 · 𝑓𝑟 , 𝑢 + 𝑖 ·𝑡

2𝑛−𝑙 , 𝐼𝑉 + 2
𝑙 𝑗 , 𝑙 − 1)

14: end function
15:
16: function Run(𝑀𝑟 , 𝑉 ,𝑊 , 𝑙 , 𝐼𝑉 , 𝐼𝑊 , 𝑓𝑟)
17: if 𝑀𝑟 is zero edge then return
18: if 𝑀𝑟 .𝑛 is terminal node then
19: 𝑊 [𝐼𝑊] ←𝑊 [𝐼𝑊] + 𝑓𝑟 ·𝑀𝑟 .𝑤 ·𝑉 [𝐼𝑉]; return
20: for 𝑖, 𝑗 ∈ {0, 1}2
21: Run(𝑀𝑟 .𝑛.𝑒 [𝑖] [𝑗], 𝑉 ,𝑊 , 𝑙 − 1, 𝐼𝑉 + 2𝑙 𝑗 , 𝐼𝑊 + 2𝑙 𝑖 , 𝑓𝑟𝑀𝑟 .𝑤)
22: end function

Run is also a recursive function. We launch 𝑡 threads (line 3), and
iterate through the edges in 𝑣𝑀 determined by Assign (line 4). At
line 5, we calculate each multiplication task 𝑣 𝑓 [𝑖] [𝑗] · 𝑣𝑀 [𝑖] [𝑗] ·
𝑉 [𝑣𝑉 [𝑖] [𝑗] : 𝑣𝑉 [𝑖] [𝑗] + ℎ] via Run. The input parameters (line
16) for Run consist of the following:𝑀𝑟 , sub-matrix’s DD edge; 𝑉
and𝑊 , the input and output state vectors; 𝑙 , the level on which
node𝑀𝑟 .𝑛 is located; 𝐼𝑉 and 𝐼𝑊 , start indices for accessing 𝑉 and
𝑊 ; and 𝑓𝑟 , weight product. In Run, if 𝑀𝑟 is zero, then we return
directly (line 17). If𝑀𝑟 .𝑛 is a terminal node (lines 18-19), wemultiply

① 0 0 0 ⑤ 0 0 0

0 ② 0 0 0 ⑥ 0 0

0 0 ③ 0 0 0 ⑦ 0

0 0 0 ④ 0 0 0 ⑧

❶ 0 0 0 ❺ 0 0 0

0 ❷ 0 0 0 ❻ 0 0

0 0 ❸ 0 0 0 ❼ 0

0 0 0 ❹ 0 0 0 ❽

①❶

②❷

③❸

④❹

⑤❺

⑥❻

⑦❼

⑧❽

①⑤

②⑥

③⑦

④⑧

❶❺

❷❻

❸❼

❹❽

0

1

𝑴 (2D array)𝑴 (DD) 𝑽

0

0

0

𝑾

Border level

𝒎𝟏

𝒎𝟐

𝒎𝟑

Assign

Run

𝒂

𝒃
𝒄 𝒅 𝒉

𝒒𝟎

𝒒𝟏

𝒒𝟐

Figure 5: DMAV without caching on two threads, illustrated
in blue and red colors. The input matrix and vector are 𝑀
and 𝑉 , and the resulting vector is𝑊 (i.e.,𝑀 ·𝑉 →𝑊).

𝑀 [𝐼𝑊] [𝐼𝑉] by 𝑉 [𝐼𝑉], and add the result to𝑊 [𝐼𝑊]. If 𝑀𝑟 .𝑛 is not
yet terminal, we traverse the four outgoing edges of𝑀𝑟 .𝑛 and call
Run accordingly. We update the weight product with 𝑓𝑟 ·𝑀𝑟 .𝑤 , 𝐼𝑉
with 𝐼𝑉 + 2𝑙 𝑗 , and 𝐼𝑊 with 𝐼𝑊 + 2𝑙 𝑖 (lines 20-21). The purposes of
𝐼𝑉 + 2𝑙 𝑗 , 𝐼𝑊 + 2𝑙 𝑖 are to divide the ℎ-sized sub-vectors in 𝑉 and
𝑊 into halves, quarters, and so on, at each successive level, until
the sub-vectors cannot be divided further, at which point𝑀𝑟 also
reaches a terminal node.

In Figure 5, the blue thread first computes 𝑎 · 𝑚2 · 𝑉 [0 : 4]
(allocated by Assign). We make two recursive Run calls, using the
upper-left outgoing edges of 𝑚2 and 𝑚3 for the 𝑀𝑟 inputs, and
setting both 𝐼𝑉 and 𝐼𝑊 to 0, leading to𝑊 [0] ←𝑊 [0] +𝑀 [0] [0] ·
𝑉 [0] at step 1○. Then, at step 2○, we exit the outermost Run and
call another Run (𝑀𝑟 = 𝑚3’s lower-right edge, and 𝐼𝑉 = 𝐼𝑊 = 1),
leading to𝑊 [1] ←𝑊 [1] +𝑀 [1] [1] · 𝑉 [1]. This continues until
𝑎 ·𝑚2 ·𝑉 [0 : 4] is finished and we make a switch for task 𝑏 ·𝑚2 ·𝑉 [4 :
8] at step 5○. A similar process applies to the red thread.

DMAV outperforms array-based QCSs (e.g., Quantum++ [19]) due
to its efficient indexing. Unlike Quantum++, which requires 𝑂 (𝑛)
operations per state, DMAV uses a recursive Run function within
a DD structure, enhancing data locality and reducing indexing to
a constant average number of operations. This results in an 𝑛×
increase in indexing speed for DMAV compared to Quantum++.

3.2.2 DMAV with Caching. Figure 6 illustrates an example of com-
putation reduction with caching in DMAV. Executing the DMAV
in Figure 6 involves two multiplications: 1○ 𝑎𝑚2 · 𝑉 [0 : 2] and
2○ 𝑏𝑚2 · 𝑉 [0 : 2]. Without caching, both require four multiply-
accumulate (MAC) [2] operations. However, 1○ and 2○ share iden-
tical left and right operands (sub-matrix DD node and sub-vector)
and differ only in their scalar coefficients (𝑎 or 𝑏). Caching the result
of 1○ allows its reuse for 2○ by scaling it by 𝑏/𝑎, yielding only two
MAC operations, compared to four without caching.

DMAV with caching is notably different from DMAV without
caching. Specifically, to facilitate data reuse, each thread evalu-
ates the gate matrix in column space instead of row space. We
describe DMAV with caching using both Algorithm 2 and Figure 7.
In Figure 7, we multiply gate matrix𝑀 by state vector𝑉 using four
threads, each with its own cache, to obtain the resulting state vector
𝑊 . In Algorithm 2, we present two functions: top-level DMAVCache,

ICPP ’24, August 12–15, 2024, Gotland, Sweden Shui Jiang, Rongliang Fu, Lukas Burgholzer, Robert Wille, Tsung-Yi Ho, and Tsung-Wei Huang

𝑴 (DD)

𝑴 (2D array) 𝑽

① 𝒂𝒎𝟐 ⋅ 𝑽[𝟎: 𝟐]

② 𝒃𝒎𝟐 ⋅ 𝑽[𝟎: 𝟐]

Cache

Compute & save: four MACs

Fetch & × 𝒃/𝒂: two MACs

𝒎𝟏

𝒎𝟐

1

𝒂 𝒃

Figure 6: Saving the number of MAC operations by reusing
historical results in DMAV.

which conducts DMAV with caching, and AssignCache, which as-
signsmultiplication tasks to 𝑡 threads. For previously computedmul-
tiplication tasks, we can fetch the results from the cache, while other
multiplication tasks are computed using Run from Algorithm 1. We
only apply caching to the multiplication tasks directly assigned by
AssignCache to avoid frequent memory allocation and deallocation
on different threads.

In DMAV with caching, each thread computes ℎ columns in𝑀
and an ℎ-sized sub-vector in 𝑉 (ℎ = 2𝑛/𝑡), generating a partial out-
put equivalent in size to 𝑉 . These partial outputs are then summed
to obtain the output state vector𝑊 . Given the sparse nature of quan-
tum gate matrices [34], the partial outputs from different threads
often have non-overlapping segments. Thus, to save memory and
time, multiple partial outputs can share a single memory buffer, and
we sum the buffers to obtain the output state vector.

AssignCache, which is adapted from Assign in Algorithm 1,
divides matrix 𝑀 into ℎ × ℎ sub-matrices, and vector 𝑉 as well
as the partial output vectors into ℎ-sized sub-vectors. Each sub-
matrix is paired with the corresponding sub-vectors, forming a
multiplication task. To record the multiplication tasks for 𝑡 threads,
we use vectors 𝑣𝑀 , 𝑣𝑃 , and 𝑣 𝑓 to keep track of the sub-matrices’ DD
edges, start indices of sub-vectors in a partial output, and weight
products assigned to each thread. Vector 𝑣𝐵 associates each thread
with a specific buffer index, which can be used to access buffers in
𝐵, the vector of buffers. The input parameters for AssignCache are:
𝑀𝑟 , input matrix’s DD edge; 𝑓𝑟 , weight product along DD traversal
path; 𝑢, thread index; 𝐼𝑃 , start index of a sub-vector in a partial
output; and 𝑙 , DD level of the current node. AssignCache returns if
𝑀𝑟 is zero (line 17). Upon reaching the border level at 𝑛 − log2 𝑡 − 1,
we push the sub-matrix’s edge 𝑀𝑟 , the sub-vector’s start index
𝐼𝑃 , and the weight product 𝑓𝑟 of thread 𝑢 to the corresponding
vectors (lines 18-19). At lines 20-21, we traverse the four outgoing
edges of𝑀𝑟 .𝑛 in column-major order and call AssignCache with
the updated weight product, thread index, sub-vector’s start index,
and DD level, similar to Assign (line 13 in Algorithm 1). After all
threads have been assigned multiplication tasks, we assign each
thread to its buffer. Specifically, for each thread 𝑖 , we check if there
is another thread 𝑗 with a non-overlapping partial output. If such a
thread 𝑗 exists, threads 𝑖 and 𝑗 will share a buffer (line 24); otherwise,
thread 𝑖 will receive its own buffer (line 25).

In DMAVCache, each thread executes its multiplication tasks from
AssignCache (line 2). We focus on threads 𝑡1 and 𝑡2 in Figure 7 (in
black dashed boxes). 𝑡1 is assigned 𝑎 ·𝑚4 ·𝑉 [0 : ℎ] and𝑏 ·𝑚4 ·𝑉 [0 : ℎ],
while 𝑡2 is assigned 𝑐 ·𝑚5 ·𝑉 [ℎ : 2ℎ] and 𝑑 ·𝑚5 ·𝑉 [ℎ : 2ℎ], where
sub-vectors 𝑉 [0 : ℎ] and 𝑉 [ℎ : 2ℎ] are the first two quarters in
𝑉 . As these four tasks have non-overlapping outputs, they can

Algorithm 2 DMAV with caching

Input: ℎ = 2𝑛
𝑡 , the size for a sub-matrix or a sub-vector; 𝑣𝑀 = 𝑣𝑃 =

𝑣 𝑓 = {{}, · · · , {}}︸ ︷︷ ︸
𝑡

, vectors keeping track of the sub-matrices’

DD edges, start indices of sub-vectors in a partial output, and
weight products, respectively; 𝑣𝐵 , a vector of buffer indices
assigned to each thread;𝐵, a vector of buffers for partial outputs;
𝑐𝑎𝑐ℎ𝑒 , a vector where each element is a cache specific to a
thread.

1: function DMAVCache(𝑀 , 𝑉 ,𝑊)
2: AssignCache(𝑀 , 1, 0, 0, 𝑛 − 1)
3: parallel for 𝑖 ∈ [0, 𝑡)
4: for 𝑗 ∈ [0, 𝑠𝑖𝑧𝑒 (𝑣𝑀 [𝑖]))
5: 𝑟 ← 𝑐𝑎𝑐ℎ𝑒 [𝑖].lookup(𝑣𝑀 [𝑖] [𝑗] .𝑛)
6: if 𝑟 ≠ {} then
7: 𝐵 [𝑣𝐵 [𝑖]] [𝑣𝑃 [𝑖] [𝑗] : 𝑣𝑃 [𝑖] [𝑗]+ℎ] ← SIMDMul(𝑣 𝑓 [𝑖] [𝑗]/
𝑟 [0], 𝐵 [𝑣𝐵 [𝑖]] [𝑟 [1] : 𝑟 [1] + ℎ])

8: else
9: Run(𝑣𝑀 [𝑖] [𝑗], 𝑉 , 𝐵 [𝑣𝐵 [𝑖]], 𝑛 − log2 𝑡 − 1, ℎ · 𝑖 , 𝑣𝑃 [𝑖] [𝑗],
𝑣 𝑓 [𝑖] [𝑗]) /* From Algorithm 1 */

10: 𝑐𝑎𝑐ℎ𝑒 [𝑖] .insert(𝑣𝑀 [𝑖] [𝑗] .𝑛, {𝑣 𝑓 [𝑖] [𝑗], 𝑣𝑃 [𝑖] [𝑗]})
11: parallel for 𝑖 ∈ [0, 𝑡)
12: for 𝑗 ∈ [0, 𝑠𝑖𝑧𝑒 (𝐵))
13: 𝑊 [𝑖 · ℎ : (𝑖 + 1) · ℎ] ← SIMDAdd(𝑊 [𝑖 · ℎ : (𝑖 + 1) · ℎ],

𝐵 [𝑗] [𝑖 · ℎ : (𝑖 + 1) · ℎ])
14: end function
15:
16: function AssignCache(𝑀𝑟 , 𝑓𝑟 , 𝑢, 𝐼𝑃 , 𝑙)
17: if 𝑀𝑟 is zero edge then return
18: if 𝑙 == 𝑛 − log2 𝑡 − 1 then /* Border level */
19: 𝑣𝑀 [𝑢] ∪ {𝑀𝑟 }; 𝑣𝑃 [𝑢] ∪ {𝐼𝑃 }; 𝑣 𝑓 [𝑢] ∪ {𝑓𝑟 }; return
20: else for 𝑗, 𝑖 ∈ {0, 1}2
21: AssignCache(𝑀𝑟 .𝑛.𝑒 [𝑖] [𝑗],𝑓𝑟𝑀𝑟 .𝑤 ,𝑢 + 𝑗 ·𝑡

2𝑛−𝑙 ,𝐼𝑃 + 2
𝑙 𝑖 ,𝑙 − 1)

22: if 𝑙 == 𝑛 − 1 then for 𝑖 ∈ [0, 𝑠𝑖𝑧𝑒 (𝑣𝑃))
23: if not Overlap(𝑣𝑃 [𝑖], 𝑣𝑃 [𝑗]), ∃ 𝑗 ∈ [0, 𝑖) then
24: 𝑣𝐵 [𝑖] ← 𝑣𝐵 [𝑗]
25: else 𝑣𝐵 [𝑖] ← 𝑠𝑖𝑧𝑒 (𝐵); 𝐵 ∪ {{0, · · · , 0}︸ ︷︷ ︸

2𝑛

}

26: end function

share the same output buffer 𝐵 [0]. At step 1○, 𝑡1 and 𝑡2 execute
𝑎𝑚4 ·𝑉 [0 : ℎ] and 𝑐𝑚5 ·𝑉 [ℎ : 2ℎ] simultaneously. First, they search
in caches (line 5). Finding no historical results, they directly call the
Run function from Algorithm 1. Upon obtaining the result, 𝑡1 caches
𝑚4 with a pair consisting of𝑚4’s weight product and the start index
of the resulting sub-vector in 𝑡1’s partial output (i.e., {𝑎, 0}). We
only cache the left operand (sub-matrix DD node𝑚4) because the
right operand (ℎ-sized sub-vector in 𝑉) is the same for all assigned
multiplication tasks on the same thread. Similarly, 𝑡2 caches 𝑚5
and {𝑐, ℎ} (lines 8-10). At step 2○, 𝑡1 and 𝑡2 execute 𝑏𝑚4 ·𝑉 [0 : ℎ]
and 𝑑𝑚5 · 𝑉 [ℎ : 2ℎ] simultaneously. Again, they check if𝑚4 and
𝑚5 are cached, discovering historical results (lines 5-6). 𝑡1 finds an
ℎ-sized sub-vector in its partial output (stored in buffer 𝐵 [0]) at
start index 0 with weight 𝑎. It then multiplies this sub-vector by

FlatDD: A High-PerformanceQuantum Circuit Simulator using Decision Diagram and Flat Array ICPP ’24, August 12–15, 2024, Gotland, Sweden

𝒎𝟏

𝒎𝟐 𝒎𝟑

0
0

0
0

𝒎𝟒 𝒎𝟓

0 0

0 0

0 0

0 0

𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒AssignCache

Run

𝑽𝑴 (2D array) 𝑩 (Buffers) 𝑾

①

𝑴 (DD)

②

0

0

0

0

𝒂 𝒃𝒄 𝒅

𝒂𝒎𝟒

𝒄𝒎𝟓

0

0

0

0𝒃𝒎𝟒

𝒅𝒎𝟓

×
𝒅

𝒄

×
𝒃

𝒂

③

Border level

𝑽𝑴 (2D array) 𝑩[𝟎] 𝑩[𝟎]𝑽𝑴 (2D array)

𝒉 𝒂𝒎𝟒

𝒃𝒎𝟒

𝒄𝒎𝟓

𝒅𝒎𝟓

Figure 7: DMAV with caching on four threads, illustrated in
the four colors. The input matrix and vector are𝑀 and𝑉 , and
the resulting vector is𝑊 (i.e.,𝑀 ·𝑉 →𝑊). DD edges without
labels have a weight of one by default.

𝑏/𝑎 using SIMD-enabled scalar multiplication and places it in the
fourth quarter of the 𝐵 [0] (line 7). Likewise, 𝑡2 performs a similar
scalar multiplication. Finally, at step 3○, we sum the buffers to form
the final result𝑊 using multi-threading and SIMD (lines 11-14).

3.2.3 Computational Cost in DMAV. Based on our observation,
the MAC operation dominates DMAV computation. For example,
within the Run function (Algorithm 1), which accounts for 99.99%
of DMAV’s runtime, the only non-trivial computation is performed
by line 19, which executes a MAC operation. Therefore, we intro-
duce the computational cost model based on the number of MAC
operations.

First, it is necessary to determine the number of MAC operations
in a DMAV. As shown in Figure 8, we use DFS to traverse DD nodes
and a look-up table (MAC count table 𝑇) to track MAC operations
for unique nodes, given that identical DD nodes incur the same
number of MAC operations. The number of MAC operations of
each node is the sum of that of its children, and the terminal node
has one MAC operation. For each node, we traverse the outgoing
edges from top to bottom and from left to right. Following this
rule, at step 1○, we go through𝑚1,𝑚2,𝑚3, and arrive at𝑚5.𝑚5
only has one outgoing edge to a terminal node with one MAC (i.e.,
𝑇 (𝑚5) = 1). At step 2○, we proceed to𝑚3’s lower-right outgoing
edge, which also points to𝑚5. Thus,𝑚3 has two MAC operations
(i.e., 𝑇 (𝑚3) = 2𝑇 (𝑚5) = 2). Then, we return to𝑚2, and visit the
upper-right edge pointing to𝑚4. Similarly, we derive that 𝑇 (𝑚6) =
1 and 𝑇 (𝑚4) = 2, at steps 3○ and 4○. The lower outgoing edges
of𝑚2 connect to the previously visited nodes𝑚3 and𝑚4, giving
us 𝑇 (𝑚2) = 2𝑇 (𝑚3) + 2𝑇 (𝑚4) = 8 at step 5○. Finally, at step 6○,
we return to𝑚1, obtaining 𝑇 (𝑚1) = 2𝑇 (𝑚2) = 16. The total MAC
count for this DMAV is 𝑇 (𝑚1) = 16.

Then, we model the computational cost based on the number of
MAC operations. We observe that DMAV’s workload distribution
among threads, with or without caching, is always balanced. There-
fore, the computational cost model evenly divides the number of
MAC operations by 𝑡 threads. Suppose 𝐾1 is the number of MAC

0
0

0
0

0
0

0
0
0

0
0

0

1

𝒎𝟏

𝒎𝟐

𝒎𝟑 𝒎𝟒

𝒎𝟓
𝒎𝟔

⑥

⑤

④②

①
③

𝑴 (DD)

Node #MACs

𝒎𝟏 𝟐𝑻 𝒎𝟐 = 𝟏𝟔

𝒎𝟐 𝟐𝑻 𝒎𝟑 + 𝟐𝑻(𝒎𝟒) = 𝟖

𝒎𝟑 𝟐𝑻 𝒎𝟓 = 𝟐

𝒎𝟒 𝟐𝑻 𝒎𝟔 = 𝟐

𝒎𝟓 1

𝒎𝟔 1

MAC count table 𝑻

①

②

③

④

⑤

⑥

Figure 8: Counting the number of MAC operations of a
DMAV.

operations for a DMAV without caching, Equation 5 models its
computational cost 𝐶1.

𝐶1 =
𝐾1
𝑡

(5)

For DMAV with caching, we consider three costs. (1) The cost
of scalar multiplication. By identifying 𝐻 cache hits from re-
peated nodes in 𝑣𝑀 (Algorithm 2), each corresponding to a scalar
multiplication of size 2𝑛/𝑡 , we determine that the number of MAC
operations for scalar multiplication is 2𝑛𝐻/𝑡 . If SIMD computes 𝑑
data elements simultaneously, on 𝑡 threads, the cost of scalar multi-
plication is 2𝑛𝐻/(𝑑 · 𝑡2). (2) The cost of summing buffers. Sum-
ming 𝑏 buffers, each of size 2𝑛 , incurs 2𝑛𝑏 MAC operations. When
using SIMD on 𝑡 threads, the cost of summing buffers is 2𝑛𝑏/(𝑑 · 𝑡).
(3) The cost unrelated to caching.We count the MACs unrelated
to caching in DMAV, as in Figure 8, this time avoiding the addition
of the repeated nodes mentioned in (1). Suppose there are 𝐾2 MAC
operations unrelated to caching, the corresponding cost is 𝐾2/𝑡 . In
summary, we model the computational cost 𝐶2, for DMAV with
caching as the following.

𝐶2 =
𝐾2
𝑡
+ 2𝑛
𝑑 · 𝑡 (

𝐻

𝑡
+ 𝑏) (6)

To minimize the total computational cost, we choose DMAV
with caching if𝐶1 > 𝐶2, and without caching if not. To sum up, the
computational cost for a DMAV operation is min{𝐶1,𝐶2}.

3.3 DMAV-Aware Gate-Fusion Algorithm
To further boost FlatDD’s performance on large circuits, we propose
a DMAV-aware gate-fusion algorithm that greedily fuses gates to
reduce the total computational cost of DMAV.

Figure 9 shows the advantage of gate fusion. Consider two quan-
tum gates𝑀1,𝑀2 in DD, there are two approaches to applying them
consecutively to a state vector 𝑉 . (1) Sequential DMAV: Multiply
𝑀1 by 𝑉 to obtain intermediate state𝑊1, and then multiply𝑀2 by
𝑊1 to obtain the final state𝑊2, as shown in Figure 9a. (2) Gate
fusion: Apply DD-based matrix-matrix multiplication (DDMM)
to𝑀1 and𝑀2, fusing them into𝑀21, and then multiply𝑀21 by 𝑉
to obtain the final state𝑊2, as shown in Figure 9b. For simplicity,
we evaluate two options using Equation 5 to determine which one
has a lower computational cost. In sequential DMAV, the two con-
secutive DMAVs result in a total computational cost of 512/𝑡 . In
contrast, gate fusion performs one DDMM and one DMAV. The
DMAV computational cost is 256/𝑡 . The DDMM calls 12 multiplica-
tions and 4 additions, which is negligible compared to the DMAV

ICPP ’24, August 12–15, 2024, Gotland, Sweden Shui Jiang, Rongliang Fu, Lukas Burgholzer, Robert Wille, Tsung-Yi Ho, and Tsung-Wei Huang

11

)(

1

𝑉𝑀1𝑀2 () 𝑀2 𝑊1 𝑊2

(a) Sequential DMAV.

11

)(

1

𝑉𝑀1𝑀2(𝑀21 𝑉 𝑊2)

(b) Gate fusion.

Figure 9: Computation reduction from gate fusion.

11

()

1

𝑉𝑀1𝑀2 () 𝑀2𝑊1 𝑊2

(a) Sequential DMAV.

1 11

)(

𝑉𝑀1𝑀2() 𝑀21 𝑉 𝑊2

(b) Gate fusion.

Figure 10: Gate fusion can result in more computation.

computational cost since each multiplication or addition only con-
structs one DD node. Therefore, gate fusion reduces computation
compared to sequential DMAV.

However, gate fusion does not always reduce computation, as
shown in Figure 10. In Figure 10a, sequential DMAV without gate
fusion incurs a computational cost of 6144/𝑡 . Conversely, in Fig-
ure 10b, gate fusion results in a DMAV computational cost of 8192/𝑡
and 21 DDMM multiplication calls. In this case, sequential DMAV
has a lower computational cost.

To reduce the total computational cost, we fuse two gates only
when the fused gate has a smaller computational cost compared
to sequential DMAV. Accordingly, we introduce our DMAV-aware
gate fusion in Algorithm 3. Algorithm 3 operates on the group of
remaining gates, 𝐺 , after FlatDD conversion. We initialize𝑀𝑝 (the
previous gate matrix) to an identity DD matrix and set its DMAV
computational cost (Section 3.2.3) 𝐶𝑝 to 0 (line 2). Next, we iterate
through𝐺 (line 3). For the 𝑖th gate matrix𝑀𝑖 , we calculate its DMAV
computational cost, 𝐶𝑖 . Then, we multiply𝑀𝑖 by𝑀𝑝 to form𝑀𝑖𝑝 ,
and calculate its DMAV computational cost𝐶𝑖𝑝 (line 4). If𝐶𝑖 +𝐶𝑝 <

𝐶𝑖𝑝 , sequential DMAV is computationally cheaper than gate fusion.
We then add 𝑀𝑝 to the resulting gate group 𝑆 . Before the next
iteration, we assign the 𝑖th gate𝑀𝑖 and its DMAV computational
cost 𝐶𝑖 to the previous gate𝑀𝑝 and its DMAV computational cost
𝐶𝑝 (line 6). If𝐶𝑖 +𝐶𝑝 < 𝐶𝑖𝑝 fails to satisfy, we fuse the current gate
𝑀𝑖 with𝑀𝑝 . Then, we assign the fused gate𝑀𝑖𝑝 and cost𝐶𝑖𝑝 to the
previous gate𝑀𝑝 and cost 𝐶𝑝 (line 8). Finally, we return 𝑆 at line 9.

4 EXPERIMENTAL RESULTS
In this section, we evaluate the performance of FlatDD using
12 commonly used quantum circuits from QASMBench [69], MQT

Algorithm 3 DMAV-aware gate fusion
Input: 𝐺 , group of remaining gates after FlatDD conversion.
Output: 𝑆 , group of gates after gate fusion.
1: function GateFuse(𝐺)
2: 𝑀𝑝 ← 𝐼𝐷𝐷 ; 𝐶𝑝 ← 0
3: for𝑀𝑖 ∈ 𝐺
4: 𝐶𝑖 ← cost(𝑀𝑖);𝑀𝑖𝑝 ←DDMM(𝑀𝑖 , 𝑀𝑝);𝐶𝑖𝑝 ← cost(𝑀𝑖𝑝)
5: if 𝐶𝑖 +𝐶𝑝 < 𝐶𝑖𝑝 then
6: 𝑆 ∪ {𝑀𝑝 }; 𝐶𝑝 ← 𝐶𝑖 ;𝑀𝑝 ← 𝑀𝑖

7: else
8: 𝑀𝑝 ← 𝑀𝑖𝑝 ; 𝐶𝑝 ← 𝐶𝑖𝑝
9: return 𝑆
10: end function

Bench [88] and Quantum supremacy [7]. These benchmarks span
both regular and irregular structures. First of all, we compare the
runtime and memory performance of FlatDD with two state-of-
the-art QCSs (Section 4.2). Then, we demonstrate the scalability of
FlatDD over increasing numbers of threads (Section 4.3). We then
evaluate the effectiveness of our parallel DD-to-array conversion
algorithm (Section 4.4) and DMAV caching technique (Section 4.5).
Lastly, in Section 4.6, we evaluate our DMAV-aware gate-fusion
algorithm on deep circuits with thousands of gates. All the exper-
iments are conducted on a Ubuntu 22.04.2 LTS machine with 64
Intel Xeon Gold 6226R CPUs at 2.9 GHz and 256 GB memory capac-
ity. We compile all programs with optimization flag -O3 enabled.
All SIMD operations are executed using Intel’s AVX2 [60] vector
instructions. For data with exponential difference, we measure the
average in geometric mean.

4.1 Baselines
Given the large number of QCSs, it is not possible to compare
FlatDD with all of them. Instead, we consider two representative
QCSs, DDSIM [99] and Quantum++ [19], for two reasons: (1) Both
DDSIM and Quantum++ are highly optimized and have demonstrated
superior performance over existing QCSs. DDSIM introduces a DD-
based compact representation of gate matrices and state vectors,
as well as an efficient data structure for handling complex num-
bers [98]. On the other hand, Quantum++ leverages OpenMP [3] to
enable multi-threaded simulation based on Eigen [23] array and
matrix data structures. (2) Both DDSIM and Quantum++ are open-
source [6, 87] and widely used by the community, allowing us to
fairly study and reason their results.

4.2 Overall Performance Comparison
Table 1 compares the overall performance of FlatDD with DDSIM
and Quantum++. In this experiment, we do not incorporate the pro-
posed gate-fusion algorithm but focus on the full-state simulation
workload itself. We run FlatDD and Quantum++ using 16 threads
and run DDSIM using one thread as DDSIM does not support multi-
threading. For all FlatDD runs, we set 𝛽 = 0.9 and 𝜖 = 2, as these val-
ues are determined to be effective across multiple quantum circuits.
Unless otherwise specified, all runtime and memory are measured
in seconds (s) and megabytes (MB). We terminate the runs that take
longer than 24 hours. We measure memory usage by recording the
maximum resident set size (RSS) of our program using /bin/time.

FlatDD: A High-PerformanceQuantum Circuit Simulator using Decision Diagram and Flat Array ICPP ’24, August 12–15, 2024, Gotland, Sweden

On average, FlatDD is 34.81× and 17.31× faster over DDSIM and
Quantum++ on all circuits. In terms of memory usage, FlatDD is
1.70× and 1.93× less than DDSIM and Quantum++. DDSIM demon-
strates exceptional performance on regular circuits such as Adder
and GHZ state. For instance, the circuit Adder has a very reg-
ular distribution of state amplitudes throughout the simulation;
DDSIM takes less than 1 s while Quantum++ takes 1793.67 s. How-
ever, when the regularity does not appear frequently, such as DNN,
VQE, and Quantum supremacy, DDSIM becomes significantly slower
than FlatDD and Quantum++. For example, DDSIM is 13.66× and
12.64× slower than FlatDD and Quantum++ when simulating the
16-qubit DNN.

Although DDSIM and Quantum++ have their own strength in sim-
ulating certain circuits, FlatDD demonstrates a consistent perfor-
mance advantage on all. For highly regular circuits, such as Adder,
and GHZ state, where DDSIM performs extremely well, FlatDD also
achieves fast runtime (< 1 s). This is because FlatDD does not
switch from DDSIM to DMAV during the simulation. The only rea-
son that FlatDD can be slower than DDSIM, such as simulating the
23-qubit GHZ state, is the overhead of DD size calculation and con-
version timing checking (Section 3.1.1). For irregular circuits, such
as 20-qubit DNN and quantum supremacy circuit, FlatDD can still
take advantage of DD-based state vector to a certain extent before
the state vector turns irregular. After this turning point, as observed
from Figure 11a and Figure 11b, the runtime of DDSIM will signif-
icantly increase whereas FlatDD cleverly converts to DMAV and
stays stable. Additionally, after the turning point, FlatDD is faster
than Quantum++ primarily due to the efficient indexing pattern of
our DMAV (see Section 3.2).

The memory usage of FlatDD is comparable to DDSIM and
Quantum++. When the circuit is small, Quantum++ consumes the
smallest memory compared with FlatDD and DDSIM, both of which
require additional data storage for DDs. For example, when simu-
lating the 16-qubit DNN, Quantum++ needs only 8.2 MB, whereas
FlatDD and DDSIM need 32.26 MB and 69.6 MB, respectively. On
the other hand, when the circuit is large, Quantum++ consumes
significantly higher memory than FlatDD and DDSIM. For instance,
when simulating the 25-qubit KNN, Quantum++ needs 1577.2 MB,
while FlatDD and DDSIM only need 1078.78 MB and 388.1 MB, re-
spectively. If the state vector is highly regular (e.g., Adder, GHZ
state), FlatDD and DDSIM have similar memory usage, as FlatDD
does not switch from DDSIM to DMAV. However, if the state vector
contains high irregularity (e.g., DNN, VQE, Quantum supremacy),
FlatDD has smallermemory usage than DDSIM because it will switch
from DDSIM to DMAV to reduce DD overheads. Lastly, if the state
vector is irregular in large circuits, FlatDD consumes smaller mem-
ory than both DDSIM and Quantum++. For example, when simulat-
ing the 26-qubit quantum supremacy circuit, FlatDD consumes
2132.48 MB memory, while DDSIM and Quantum++ consume 16799.4
and 3156.58 MB memory.

4.3 Scalability of FlatDD
We demonstrate the scalability of FlatDD over increasing num-
bers of threads. Figure 12 illustrates the runtime of FlatDD and
Quantum++ at different numbers of threads on two circuits (Quan-
tum supremacy and KNN). When the number of threads increases,

0

10
00

20
00

30
00

40
00

50
00

60
00

Gates

10−5

10−4

10−3

10−2

10−1

100

101

R
u

nt
im

e
p

er
ga

te

FlatDD

DDSIM

Quantum++

(a) DNN 𝑛 = 20

0

10
00

20
00

30
00

40
00

Gates

10−5

10−4

10−3

10−2

10−1

100

101

R
u

nt
im

e
p

er
ga

te

FlatDD

DDSIM

Quantum++

(b) Supremacy 𝑛 = 20
Figure 11: Runtime comparison among FlatDD, DDSIM, and
Quantum++ per gate.

1 2 4 8 16
Threads (t)

0

100

200

300

400

500

R
u

nt
im

e

Supremacy n = 20

KNN n = 25

(a) FlatDD

1 2 4 8 16
Threads (t)

500

1000

1500

2000

2500

R
u

nt
im

e

Supremacy n = 20

KNN n = 25

(b) Quantum++

Figure 12: Runtime scalability of FlatDD and Quantum++ under
different numbers of threads.

FlatDD can complete the simulation faster, as illustrated in Fig-
ure 12a. For instance, at eight threads, FlatDD is 7.26× faster than
one thread on KNN. FlatDD’s performance saturates at about 16
threads. Likewise, in Figure 12b, Quantum++ shows a similar trend.
4.4 Evaluation of Parallel DD-to-Array

Conversion Algorithm
Figure 13 compares the efficiency of FlatDD’s parallel DD-to-array
conversion algorithm with DDSIM on 10 quantum circuits using
16 threads. In this experiment, we integrate DDSIM’s DD-to-array
algorithm into FlatDD. Figure 13a compares the conversion time,
and Figure 13b compares the cost of conversion in terms of its
percentage in the total simulation time.

As shown in Figure 13a, FlatDD outperforms DDSIM in convert-
ing DDs to arrays on all circuits. For instance, our DD-to-array
algorithm is 61.86× faster than DDSIM on KNN of 25 qubits; on aver-
age, FlatDD is 22.34× faster, which is attributed to multi-threading
and SIMD parallelism. In terms of conversion cost, as shown in Fig-
ure 13b, FlatDD’s DD-to-array algorithm takes only about 0.01–7%
of the total runtime, while DDSIM can take up to 83.2% (Swap test
of 25 qubits). This result highlights the efficiency of our parallel
DD-to-array conversion algorithm.
4.5 Evaluation of DMAV Caching Technique
Figure 14 demonstrates the efficiency of the proposed DMAV
caching technique in terms of reduced computational cost and
speed-up gain at different numbers of threads. We plot the results
in a region (marked in blue) across the six largest quantum circuits,

ICPP ’24, August 12–15, 2024, Gotland, Sweden Shui Jiang, Rongliang Fu, Lukas Burgholzer, Robert Wille, Tsung-Yi Ho, and Tsung-Wei Huang

Table 1: Comparison of simulation runtime and memory among FlatDD, DDSIM, and Quantum++ on 12 widely used circuits that
exhibit different regularity structures.

Circuits FlatDD (ours) DDSIM [99] Quantum++ [19]
Name Qubits (𝑛) Gates Runtime Memory Runtime Speed-up Memory Runtime Speed-up Memory

DNN
16 2032 4.12 32.26 56.27 13.66× 69.6 4.45 1.08× 8.2
20 6214 73.06 75.26 21847.81 299.02× 504.832 249.62 3.42× 61.34
25 9644 2283.02 1089.54 > 24 h > 37.84× ≥ 4249.6 17527.8 7.68× 1586.54

Adder 28 117 0.037 30.21 0.00167 0.045× 28.2 1793.67 48477.57× 12584.0
GHZ state 23 46 0.028 30.21 0.004 0.14× 29.7 12.388 442.43× 397.93

VQE 16 95 0.178 31.232 79.24 445.92× 50.2 0.20 1.12× 7.8

KNN 25 39 4.75 1078.78 480.72 101.20× 388.1 135.669 28.56× 1577.2
31 48 500.22 67136.51 > 24 h > 172.72× ≥ 2518.0 13123.5 26.23× 100657.37

Swap test 25 39 4.84 1077.76 1649.81 340.94× 649.7 136.995 28.31× 1577.6

Quantum
supremacy

20 4500 101.38 65.54 67814.99 668.92× 700.928 185.207 1.83× 61.2
24 5560 1050.07 558.59 > 24 h > 82.28× ≥ 5794.77 5034.7 4.80× 799.23
26 5990 3980.07 2132.48 > 24 h > 21.71× ≥ 16799.4 22632.7 5.69× 3156.58

Geometric mean 17.08 296.38 > 594.53 > 34.81× ≥ 504.52 295.62 17.31× 571.16

Table 2: Comparison of simulation runtime and computational cost among FlatDD with DMAV-aware gate fusion (ours),
FlatDD without gate fusion, and FlatDD with k-operations [100] on six deep circuits (> 1000 gates). Red. is the reduction in
computational cost.

Circuits
FlatDD with

DMAV-aware gate
fusion (ours)

FlatDD without
gate fusion

FlatDD with
k-operations [100]

Name 𝑛 Gates Runtime Cost Runtime Speed-up Cost Red. Runtime Speed-up Cost Red.

DNN
16 2032 0.32 5.4 × 105 4.12 12.81× 8.2 × 106 15.4× 1.27 3.96× 3.7 × 106 6.85×
20 6214 5.09 2.7 × 107 73.06 14.36× 2.4 × 108 8.56× 25.858 5.1× 1.1 × 108 3.89×
25 9644 126.48 1.2 × 109 2283.02 18.0× 1.7 × 1010 13.4× 688.396 5.44× 5.3 × 109 4.32×

Quantum
supremacy

20 4500 7.68 4.7 × 107 101.38 13.2× 3.8 × 108 8.04× 36.99 4.82× 2.9 × 108 6.19×
24 5560 90.90 9.0 × 108 1050.07 11.55× 7.4 × 109 8.26× 581.64 6.40× 5.7 × 109 6.37×
26 5990 405.04 3.9 × 109 3980.07 9.83× 3.2 × 1010 8.21× 2568.12 6.34× 2.6 × 1010 6.73×

Geometric mean 19.70 1.2 × 108 257.45 13.1× 1.2 × 109 9.94× 103.83 5.27× 6.7 × 108 5.59×

DNN (𝑛 = 16, 20, 25) and quantum supremacy (𝑛 = 20, 24, 26), with
a line showing the average. As shown in Figure 14a and Figure 14b,
our caching technique can reduce the computational cost as the
number of threads increases. For instance, with 16 threads, we can
achieve 13.53% reduction. A similar trend can be observed in the
speed-up plot (Figure 14b). For example, our caching technique
contributes to an average of 16.47% speed-up at 16 threads where
the performance saturates (see Figure 12). This result highlights
the effectiveness of our caching technique under different numbers
of threads.
4.6 Evaluation of DMAV-Aware Gate Fusion
In this experiment, we evaluate the performance advantage of our
gate-fusion algorithm by running FlatDD on the six deepest circuits
(DNN and supremacy) with and without gate fusion. We compare
the result with k-operations [100], a particularly effective gate-
fusion algorithm designed for DD-based simulators. As shown in
Table 2, our gate-fusion algorithm achieves 13.1× and 5.27× speed-
up in terms of geometric mean when compared with FlatDD with-
out gate fusion and k-operations, respectively. Our gate-fusion
algorithm also reduces computational cost by 9.94× and 5.59×when
compared with FlatDD without gate fusion and k-operations, re-
spectively. This is because our gate-fusion algorithm always fuses
a quantum gate that reduces the computational cost. The result in

Table 2 shows the effectiveness of our DMAV-aware gate-fusion
algorithm.
5 CONCLUSION
In this paper, we have introduced FlatDD, a parallel quantum circuit
simulator that combines the strengths of DD-based and array-based
simulators. Evaluated on commonly used quantum circuits, FlatDD
has demonstrated 34.81× speed-up and 1.93× memory reduction
compared to state-of-the-art simulators. Inspired by our success of
GPU-accelerated computing [12–18, 24–33, 38–58, 61, 62, 64–67, 70–
80, 83, 84, 92, 93, 96], our future work will enhance the simulation
performance using GPU.

ACKNOWLEDGMENTS
This research was supported by ACCESS – AI Chip Center for
Emerging Smart Systems (sponsored by InnoHK funding), the JC
STEM Lab of Intelligent Design Automation (funded by the Hong
Kong Jockey Club Charities Trust), Hong Kong SAR, and US NSF
under awards 2235276, 2349144, 2349143, 2349582, and 2349141.
We also acknowledge funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and
innovation program (grant agreement No. 101001318) and the Mu-
nich Quantum Valley, which is supported by the Bavarian state
government with funds from the Hightech Agenda Bayern Plus.

FlatDD: A High-PerformanceQuantum Circuit Simulator using Decision Diagram and Flat Array ICPP ’24, August 12–15, 2024, Gotland, Sweden

D
N

N
n

=
16

D
N

N
n

=
20

D
N

N
n

=
25

V
Q

E
n

=
16

K
N

N
n

=
25

K
N

N
n

=
31

Sw
ap

Te
st
n

=
25

Su
pr

em
ac

y
n

=
20

Su
pr

em
ac

y
n

=
24

Su
pr

em
ac

y
n

=
26

G
eo

m
et

ric
m

ea
n

Circuits

10−2

10−1

100

101

102

103

C
on

ve
rs

io
n

ti
m

e

FlatDD’s conversion

DDSIM’s conversion

(a) Conversion time comparison.

D
N

N
n

=
16

D
N

N
n

=
20

D
N

N
n

=
25

V
Q

E
n

=
16

K
N

N
n

=
25

K
N

N
n

=
31

Sw
ap

Te
st
n

=
25

Su
pr

em
ac

y
n

=
20

Su
pr

em
ac

y
n

=
24

Su
pr

em
ac

y
n

=
26

A
ve

ra
ge

Circuits

0.0%

0.1%

1.0%

10.0%

100.0%

C
on

ve
rs

io
n

ti
m

e
p

er
ce

n
ta

ge FlatDD’s conversion

DDSIM’s conversion

(b) Conversion percentage in total runtime comparison.

Figure 13: Comparison between FlatDD’s parallel DD-to-array
algorithm and DDSIM’s DD-to-array algorithm.

1 2 4 8 16
Threads (t)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

C
om

p
.

C
os

t
R

ed
u

ct
io

n

(a) Computational cost

1 2 4 8 16
Threads (t)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

S
p

ee
d

-u
p

(b) Speed-up

Figure 14: Performance comparison between DMAV with
caching and DMAV without caching over different numbers
of threads on various quantum circuits.

REFERENCES
[1] [n. d.]. Cirq. https://quantumai.google/cirq
[2] [n. d.]. Multiply–accumulate operation. https://en.wikipedia.org/wiki/

Multiply%E2%80%93accumulate_operation
[3] [n. d.]. OpenMP. https://www.openmp.org/
[4] [n. d.]. Qiskit. https://qiskit.org/
[5] 2020. qsim. https://doi.org/10.5281/zenodo.4023103
[6] 2024. mqt-ddsim. https://github.com/cda-tum/mqt-ddsim
[7] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami

Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell,
et al. 2019. Quantum supremacy using a programmable superconducting pro-
cessor. Nature 574, 7779 (2019), 505–510.

[8] Daehyeon Baek, Soojin Hwang, Taekyung Heo, Daehoon Kim, and Jaehyuk
Huh. 2021. InnerSP: A memory efficient sparse matrix multiplication accelerator
with locality-aware inner product processing. In PACT. IEEE, 116–128.

[9] Bela Bauer, Sergey Bravyi, Mario Motta, and Garnet Kin-Lic Chan. 2020. Quan-
tum algorithms for quantum chemistry and quantummaterials science. Chemical
Reviews 120, 22 (2020), 12685–12717.

[10] Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J Osborne, Robert
Salzmann, Daniel Scheiermann, and RamonaWolf. 2020. Training deep quantum

neural networks. Nature communications 11, 1 (2020), 808.
[11] Lukas Burgholzer and Robert Wille. 2020. Advanced equivalence checking for

quantum circuits. IEEE TCAD 40, 9 (2020), 1810–1824.
[12] Che Chang, Tsung-Wei Huang, Dian-Lun Lin, Guannan Guo, and Shiju Lin.

2024. Ink: Efficient Incremental 𝑘-Critical Path Generation. In ACM/IEEE DAC.
[13] Chih-Chun Chang and Tsung-Wei Huang. 2023. uSAP: An Ultra-Fast Stochastic

Graph Partitioner. In IEEE HPEC.
[14] Cheng-Hsiang Chiu and Tsung-Wei Huang. 2022. Composing Pipeline Paral-

lelism using Control Taskflow Graph. In ACM HPDC.
[15] Cheng-Hsiang Chiu and Tsung-Wei Huang. 2022. Efficient Timing Propagation

with Simultaneous Structural and Pipeline Parallelisms. In ACM/IEEE DAC.
[16] Cheng-Hsiang Chiu, Dian-Lun Lin, and Tsung-Wei Huang. 2021. An Experimen-

tal Study of SYCL Task Graph Parallelism for Large-Scale Machine Learning
Workloads. In AMTE.

[17] Cheng-Hsiang Chiu, Dian-Lun Lin, and Tsung-Wei Huang. 2023. Programming
Dynamic Task Parallelism for Heterogeneous EDA Algorithms. In IEEE/ACM
ICCAD.

[18] Elmir Dzaka, Dian-Lun Lin, and Tsung-Wei Huang. 2023. Parallel And-Inverter
Graph Simulation Using a Task-graph Computing System. In IEEE IPDPS Work-
shop.

[19] Vlad Gheorghiu. 2018. Quantum++: A modern C++ quantum computing library.
PloS one 13, 12 (2018), e0208073.

[20] Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel, and Hugo Zbinden. 2002.
Quantum cryptography. Reviews of modern physics 74, 1 (2002), 145.

[21] Thomas Grurl, Jürgen Fuß, Stefan Hillmich, Lukas Burgholzer, and Robert Wille.
2020. Arrays vs. decision diagrams: A case study on quantum circuit simulators.
In IEEE ISMVL. 176–181.

[22] Thomas Grurl, Jürgen Fuß, and Robert Wille. 2022. Noise-aware quantum circuit
simulation with decision diagrams. TCAD 42, 3 (2022), 860–873.

[23] Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen. http://eigen.tuxfamily.org.
[24] Guannan Guo, Tsung-Wei Huang, Chun-Xun Lin, and Martin Wong. 2020. An

Efficient Critical Path Generation Algorithm Considering Extensive Path Con-
straints. In ACM/IEEE DAC.

[25] Guannan Guo, Tsung-Wei Huang, Y. Lin, Z. Guo, S. Yellapragada, and Martin
Wong. 2023. A GPU-Accelerated Framework for Path-Based Timing Analysis.
IEEE TCAD (2023).

[26] Guannan Guo, Tsung-Wei Huang, Yibo Lin, and Martin Wong. 2021. GPU-
accelerated Critical Path Generation with Path Constraints. In IEEE/ACM IC-
CAD.

[27] Guannan Guo, Tsung-Wei Huang, Yibo Lin, and Martin Wong. 2021. GPU-
accelerated Path-based Timing Analysis. In IEEE/ACM DAC.

[28] Guannan Guo, Tsung-Wei Huang, and Martin D. F. Wong. 2023. Fast STA Graph
Partitioning Framework for Multi-GPU Acceleration. In IEEE/ACM DATE.

[29] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2020. A Provably Good and
Practically Efficient Algorithm for Common Path Pessimism Removal in Large
Designs. In IEEE/ACM ICCAD.

[30] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2021. A Provably Good and
Practically Efficient Algorithm for Common Path Pessimism Removal in Large
Designs. In IEEE/ACM DAC.

[31] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2021. HeteroCPPR: Accelerating
Common Path Pessimism Removal with Heterogeneous CPU-GPU Parallelism.
In IEEE/ACM ICCAD.

[32] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2023. Accelerating Static Timing
Analysis using CPU-GPU Heterogeneous Parallelism. IEEE TCAD (2023).

[33] Zizheng Guo, Tsung-Wei Huang, Jin Zhou, Cheng Zhuo, Yibo Lin, Runsheng
Wang, and Ru Huang. 2024. Heterogeneous Static Timing Analysis with Ad-
vanced Delay Calculator. In IEEE/ACM DATE.

[34] Thomas Häner, Damian S Steiger, Mikhail Smelyanskiy, and Matthias Troyer.
2016. High performance emulation of quantum circuits. In SC. IEEE, 866–874.

[35] Dylan Herman, Cody Googin, Xiaoyuan Liu, Yue Sun, Alexey Galda, Ilya Safro,
Marco Pistoia, and Yuri Alexeev. 2023. Quantum computing for finance. Nature
Reviews Physics 5, 8 (2023), 450–465.

[36] Stefan Hillmich, Igor L. Markov, and Robert Wille. 2020. Just Like the Real
Thing: Fast Weak Simulation of Quantum Computation. In DAC. 1–6.

[37] Stefan Hillmich, Alwin Zulehner, and Robert Wille. 2020. Concurrency in
DD-based quantum circuit simulation. In IEEE ASP-DAC. 115–120.

[38] Tsung-Wei Huang. 2020. A General-purpose Parallel and Heterogeneous Task
Programming System for VLSI CAD. In IEEE/ACM ICCAD.

[39] Tsung-Wei Huang. 2021. TFProf: Profiling Large Taskflow Programs with
Modern D3 and C++. In IEEE ProTools.

[40] Tsung-Wei Huang. 2022. Enhancing the Performance Portability of Heteroge-
neous Circuit Analysis Programs. In IEEE HPEC.

[41] Tsung-Wei Huang. 2023. qTask: Task-parallel Quantum Circuit Simulation with
Incrementality. In IEEE IPDPS.

[42] Tsung-Wei Huang, Guannan Guo, Chun-Xun Lin, and Martin D. F. Wong. 2021.
OpenTimer v2: A New Parallel Incremental Timing Analysis Engine. IEEE TCAD
(2021).

https://quantumai.google/cirq
https://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate_operation
https://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate_operation
https://www.openmp.org/
https://qiskit.org/
https://doi.org/10.5281/zenodo.4023103
https://github.com/cda-tum/mqt-ddsim

ICPP ’24, August 12–15, 2024, Gotland, Sweden Shui Jiang, Rongliang Fu, Lukas Burgholzer, Robert Wille, Tsung-Yi Ho, and Tsung-Wei Huang

[43] Tsung-Wei Huang and Leslie Hwang. 2022. Task-parallel Programming with
Constrained Parallelism. In IEEE HPEC.

[44] Tsung-Wei Huang, Chun-Xun Lin, , and Martin Wong. 2019. Distributed Timing
Analysis at Scale. In ACM/IEEE DAC.

[45] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin Wong. 2018. A
General-purpose Distributed Programming System using Data-parallel Streams.
In ACM Multimedia Conference (MM).

[46] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin Wong. 2019. Cpp-
Taskflow: Fast Task-based Parallel Programming using Modern C++. In IEEE
IPDPS.

[47] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin Wong. 2019. Es-
sential Building Blocks for Creating an Open-source EDA Project. In ACM/IEEE
DAC.

[48] Tsung-Wei Huang, Chun-Xun Lin, and Martin Wong. 2017. DtCraft: A Dis-
tributed Execution Engine for Compute-intensive Applications. In IEEE/ACM
ICCAD.

[49] Tsung-Wei Huang, Chun-Xun Lin, and Martin Wong. 2019. DtCraft: A High-
performance Distributed Execution Engine at Scale. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD) (2019).

[50] Tsung-Wei Huang, Chun-Xun Lin, and Martin Wong. 2021. OpenTimer v2:
A Parallel Incremental Timing Analysis Engine. IEEE Design and Test (DAT)
(2021).

[51] Tsung-Wei Huang, Dian-Lun Lin, Chun-Xun Lin, and Yibo Lin. 2022. Taskflow:
A Lightweight Parallel and Heterogeneous Task Graph Computing System. IEEE
TPDS (2022).

[52] Tsung-Wei Huang and Yibo Lin. 2022. Concurrent CPU-GPU Task Programming
using Modern C++. In IEEE HIPS.

[53] Tsung-Wei Huang and Martin Wong. 2015. OpenTimer: A High-Performance
Timing Analysis Tool. In IEEE/ACM ICCAD.

[54] Tsung-Wei Huang and Martin Wong. 2016. UI-Timer 1.0: An Ultra-Fast Path-
Based Timing Analysis Algorithm for CPPR. IEEE TCAD (2016).

[55] Tsung-Wei Huang, Martin Wong, D. Sinha, K. Kalafala, and N. Venkateswaran.
2016. ADistributed Timing Analysis Framework for Large Designs. In IEEE/ACM
DAC.

[56] Tsung-Wei Huang, P.-C. Wu, and Martin Wong. 2014. Fast Path-Based Timing
Analysis for CPPR. In IEEE/ACM ICCAD.

[57] Tsung-Wei Huang, Pei-Ci Wu, and Martin D. F. Wong. 2014. UI-Timer: An
ultra-fast clock network pessimism removal algorithm. In IEEE/ACM ICCAD.

[58] Tsung-Wei Huang, Boyang Zhang, Dian-Lun Lin, and Cheng-Hsiang Chiu. 2024.
Parallel and Heterogeneous Timing Analysis: Partition, Algorithm, and System.
In ACM ISPD.

[59] J Stuart Hunter. 1986. The exponentially weighted moving average. Journal of
quality technology 18, 4 (1986), 203–210.

[60] Intel. [n. d.]. AVX2. https://www.intel.com/content/www/us/en/docs/cpp-
compiler/developer-guide-reference/2021-8/intrinsics-for-avx2.html

[61] Shui Jiang, Tsung-Wei Huang, and Tsung-Yi Ho. 2023. GLARE: Accelerating
Sparse DNN Inference Kernels with Global Memory Access Reduction. In IEEE
HPEC.

[62] Shui Jiang, Tsung-Wei Huang, and Tsung-Yi Ho. 2023. SNICIT: Accelerating
Sparse Neural Network Inference via Compression at Inference Time on GPU.
In ACM ICPP.

[63] Chenyang Jiao, Weihua Zhang, and Li Shen. 2023. Communication Optimiza-
tions for State-vector Quantum Simulator on CPU+ GPU Clusters. In ICPP.
203–212.

[64] Kuan-Ming Lai, Tsung-Wei Huang, and Tsung-Yi Ho. 2019. A General Cache
Framework for Efficient Generation of Timing Critical Paths. InACM/IEEE DAC.

[65] Kuan-Ming Lai, Tsung-Wei Huang, Pei-Yu Lee, and Tsung-Yi Ho. 2021. ATM: A
High Accuracy Extracted Timing Model for Hierarchical Timing Analysis. In
IEEE/ACM ASPDAC.

[66] T.-Y. Lai, Tsung-Wei Huang, , and Martin Wong. 2017. Libabs: An Effective
and Accurate Macro-modeling Algorithm for Large Hierarchical Designs. In
IEEE/ACM ICCAD.

[67] Wan Luan Lee, Dian-Lun Lin, Tsung-Wei Huang, Shui Jiang, Tsung-Yi Ho, Yibo
Lin, and Bei Yu. 2024. G-kway: Multilevel GPU-Accelerated k-way Graph
Partitioner. In ACM/IEEE DAC.

[68] Ang Li, Bo Fang, Christopher Granade, Guen Prawiroatmodjo, Bettina Heim,
Martin Roetteler, and Sriram Krishnamoorthy. 2021. SV-Sim: scalable PGAS-
based state vector simulation of quantum circuits. In SC. 1–14.

[69] Ang Li, Samuel Stein, SriramKrishnamoorthy, and James Ang. 2023. Qasmbench:
A low-level quantum benchmark suite for nisq evaluation and simulation. ACM
TQC 4, 2 (2023), 1–26.

[70] Chun-Xun Lin, Tsung-Wei Huang, Guannan Guo, and Martin Wong. 2019. A
Modern C++ Parallel Task Programming Library. InACMMultimedia Conference
(MM).

[71] Chun-Xun Lin, Tsung-Wei Huang, Guannan Guo, and Martin Wong. 2019. An
Efficient and Composable Parallel Task Programming Library. In IEEE HPEC.

[72] Chun-Xun Lin, Tsung-Wei Huang, and Martin Wong. 2020. An Efficient Work-
Stealing Scheduler for Task Dependency Graph. In IEEE ICPADS.

[73] Chun-Xun Lin, Tsung-Wei Huang, Ting Yu, and Martin Wong. 2018. A Dis-
tributed Power Grid Analysis Framework from Sequential Stream Graph. In
ACM GLSVLSI.

[74] Dian-Lun Lin and Tsung-Wei Huang. 2020. A Novel Inference Algorithm for
Large Sparse Neural Network using Task Graph Parallelism. In IEEE HPEC. 1–7.

[75] Dian-Lun Lin and Tsung-Wei Huang. 2021. Efficient GPU Computation using
Task Graph Parallelism. In Euro-Par.

[76] Dian-Lun Lin and Tsung-Wei Huang. 2022. Accelerating Large Sparse Neural
Network Inference using GPU Task Graph Parallelism. IEEE TPDS (2022).

[77] Dian-Lun Lin, Tsung-Wei Huang, Joshua San Miguel, and Umit Ogras. 2024.
TaroRTL: Accelerating RTL Simulation using Coroutine-based Heterogeneous
Task Graph Scheduling. In Euro-Par.

[78] Dian-Lun Lin, Haoxing Ren, Yanqing Zhang, Brucek Khailany, and Tsung-Wei
Huang. 2022. From RTL to CUDA: A GPU Acceleration Flow for RTL Simulation
with Batch Stimulus. In ACM ICPP.

[79] Dian-Lun Lin, Yanqing Zhang, Haoxing Ren, Shih-Hsin Wang, Brucek Khailany,
and Tsung-Wei Huang. 2023. GenFuzz: GPU-accelerated Hardware Fuzzing
using Genetic Algorithm with Multiple Inputs. In ACM/IEEE DAC.

[80] Shiju Lin, Guannan Guo, Tsung-Wei Huang, Weihua Sheng, Evangeline Young,
and Martin Wong. 2024. G-PASTA: GPU Accelerated Partitioning Algorithm
for Static Timing Analysis. In ACM/IEEE DAC.

[81] Ji Liu, Luciano Bello, and Huiyang Zhou. 2021. Relaxed Peephole Optimization:
A Novel Compiler Optimization for Quantum Circuits. In CGO. 301–314.

[82] Abtin Molavi, Amanda Xu, Martin Diges, Lauren Pick, Swamit Tannu, and Aws
Albarghouthi. 2022. Qubit mapping and routing via MaxSAT. In MICRO. IEEE,
1078–1091.

[83] Chedi Morchdi, Cheng-Hsiang Chiu, Yi Zhou, and Tsung-Wei Huang. 2024. A
Resource-efficient Task Scheduling System using Reinforcement Learning. In
IEEE/ACM ASPDAC.

[84] McKay Mower, Luke Majors, and Tsung-Wei Huang. 2021. Taskflow-San: Sani-
tizing Erroneous Control Flow in Taskflow Programs. In IEEE ESPM2.

[85] Francisco Muñoz-Martínez, Raveesh Garg, Michael Pellauer, José L Abellán,
Manuel E Acacio, and Tushar Krishna. 2023. Flexagon: A multi-dataflow sparse-
sparse matrix multiplication accelerator for efficient dnn processing. In ASPLOS.
252–265.

[86] Philipp Niemann, Robert Wille, David Michael Miller, Mitchell A Thornton, and
Rolf Drechsler. 2015. QMDDs: Efficient quantum function representation and
manipulation. IEEE TCAD 35, 1 (2015), 86–99.

[87] qpp. 2024. https://github.com/softwareQinc/qpp
[88] Nils Quetschlich, Lukas Burgholzer, and Robert Wille. 2023. MQT Bench: Bench-

marking software and design automation tools for quantum computing. Quan-
tum 7 (2023), 1062.

[89] Mikhail Smelyanskiy, Nicolas PD Sawaya, and Alán Aspuru-Guzik. 2016. qHiP-
STER: The quantum high performance software testing environment. arXiv
preprint arXiv:1601.07195 (2016).

[90] Jiyuan Wang, Qian Zhang, Guoqing Harry Xu, and Miryung Kim. 2021. QDiff:
Differential Testing of Quantum Software Stacks. In ASE. 692–704.

[91] Xin-Chuan Wu, Sheng Di, Emma Maitreyee Dasgupta, Franck Cappello, Hal
Finkel, Yuri Alexeev, and Frederic T Chong. 2019. Full-state quantum circuit
simulation by using data compression. In SC. 1–24.

[92] Yasin Zamani and Tsung-Wei Huang. 2021. A High-Performance Heterogeneous
Critical Path Analysis Framework. In IEEE HPEC.

[93] Boyang Zhang, Dian-Lun Lin, Che Chang, Cheng-Hsiang Chiu, Bojue Wang,
Wan Luan Lee, Chih-Chun Chang, Donghao Fang, and Tsung-Wei Huang. 2024.
G-PASTA: GPU Accelerated Partitioning Algorithm for Static Timing Analysis.
In ACM/IEEE DAC.

[94] Chen Zhang, Zeyu Song, Haojie Wang, Kaiyuan Rong, and Jidong Zhai. 2021.
HyQuas: hybrid partitioner based quantum circuit simulation system on GPU.
In ICS. 443–454.

[95] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng,
Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, et al. 2020. Quantum compu-
tational advantage using photons. Science 370, 6523 (2020), 1460–1463.

[96] Kexing Zhou, Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. 2022. Efficient
Critical Paths Search Algorithm using Mergeable Heap. In IEEE/ACM ASPDAC.

[97] Alwin Zulehner, Stefan Hillmich, Igor L Markov, and Robert Wille. 2020. Ap-
proximation of quantum states using decision diagrams. In ASP-DAC. IEEE,
121–126.

[98] Alwin Zulehner, Stefan Hillmich, and Robert Wille. 2019. How to efficiently han-
dle complex values? Implementing decision diagrams for quantum computing.
In IEEE ICCAD. 1–7.

[99] Alwin Zulehner and Robert Wille. 2018. Advanced simulation of quantum
computations. IEEE TCAD 38, 5 (2018), 848–859.

[100] Alwin Zulehner and Robert Wille. 2019. Matrix-vector vs. matrix-matrix multi-
plication: Potential in DD-based simulation of quantum computations. In IEEE
DATE. 90–95.

https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/intrinsics-for-avx2.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/intrinsics-for-avx2.html
https://github.com/softwareQinc/qpp

	Abstract
	1 Introduction
	2 Quantum Circuit Simulation
	2.1 Array-based Simulation
	2.2 Decision-diagram-based Simulation

	3 Algorithm
	3.1 Conversion from DD-based Simulation to DMAV
	3.2 Simulation with DMAV
	3.3 DMAV-Aware Gate-Fusion Algorithm

	4 Experimental Results
	4.1 Baselines
	4.2 Overall Performance Comparison
	4.3 Scalability of FlatDD
	4.4 Evaluation of Parallel DD-to-Array Conversion Algorithm
	4.5 Evaluation of DMAV Caching Technique
	4.6 Evaluation of DMAV-Aware Gate Fusion

	5 Conclusion
	Acknowledgments
	References

