
TaroRTL: Accelerating RTL Simulation
Using Coroutine-Based Heterogeneous

Task Graph Scheduling

Dian-Lun Lin(B), Umit Ogras, Joshua San Miguel, and Tsung-Wei Huang

University of Wisconsin-Madison, Madison, WI, USA

dianlun.lin@wisc.edu

Abstract. RTL simulation is critical for validating hardware designs.
However, RTL simulation can be time-consuming for large designs. Exist-
ing RTL simulators have leveraged task graph parallelism to accelerate
simulation on a CPU- and/or GPU-parallel architecture. Despite the
improved performance, they all assume atomic execution per task and do
not anticipate multitasking that can bring significant performance advan-
tages. As a result, we introduce TaroRTL, a coroutine-based task graph
scheduler for efficient RTL simulation. TaroRTL enables non-blocking
GPU and I/O tasks within a task graph, ensuring that threads are
not blocked waiting for GPU or I/O tasks to finish. It also designs a
coroutine-aware work-stealing algorithm to avoid unnecessary context
switches. Compared to a state-of-the-art GPU-accelerated RTL simula-
tor, TaroRTL can further achieve 40–80% speed-up while using fewer
CPU resources to simulate large industrial designs.

Keywords: RTL simulation · Heterogeneous task graph · Scheduling

1 Introduction

The time-consuming nature of Register-transfer level (RTL) simulation poses
a significant challenge for verifying today’s highly complex SoCs, processors,
and accelerators [11,13,16]. As SoC complexity continues to grow, achieving
industry-quality functional verification signoff typically demands a significant
and growing amount of simulation tests on the same Design-Under-Test (DUT)
with different input stimuli, all in preparation for tapeout. For a comprehensive
analysis of the design’s behavior, SoC designers even require a Value-Change-
Dump (VCD) file, resulting in substantial long runtime associated with input
and output (I/O) operations to capture and process traces [2]. Speeding up RTL
simulation is crucial for coping with the rapidly increasing design complexity
and the shorter time-to-market demands.

State-of-the-art RTL simulators have leveraged task graph parallelism to
accelerate simulation on a CPU- and/or GPU-parallel architecture [11–13]. This
task graph consists of various tasks performed per simulation cycle, such as eval-
uating logic elements, setting inputs, or I/O VCD dump. Through task graph
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Carretero et al. (Eds.): Euro-Par 2024, LNCS 14803, pp. 151–166, 2024.
https://doi.org/10.1007/978-3-031-69583-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-69583-4_11&domain=pdf
https://doi.org/10.1007/978-3-031-69583-4_11

152 D.-L. Lin et al.

scheduling, multiple tasks can be scheduled and executed concurrently once the
dependency constraints are met. While all these approaches have shown runtime
or throughput improvements, the performance is far from optimal. Specifically,
existing task graph scheduling solutions for RTL simulation all assume atomic
execution per task (i.e., a thread runs or blocks until its assigned task is com-
plete) and do not anticipate multitasking that can reduce CPU waiting time on
awaiting GPU and I/O tasks to finish. For instance, Fig. 1 shows an RTL task
graph with different task types [11]. Without multitasking as shown in (b), when
a CPU thread invokes a GPU task (task B) or an I/O task (task C), it will block
until the task finishes.

Fig. 1. Performance comparison with and
without multitasking using one CPU and
one GPU. The patterned rectangle repre-
sents the kernel call overhead (GPU and
I/O).

Recently, the new C++20/23
standard has introduced Coroutine [1].
Coroutine offers a new mechanism for
programming multitasking by allow-
ing suspension and resumption of a
function from its running thread. This
mechanism has inspired us to design
a new coroutine-based task graph
scheduling solution with significantly
improved performance. As shown in
Fig. 1(c), after invoking task B and
task C, the CPU thread suspends
those tasks and multitask to task D
without being blocked. Compared to
(b), using Coroutine enables better
utilization of computing resources and
reduces the total runtime.

However, designing a coroutine-based task graph scheduler is very challenging
for three reasons. First, coroutines present a different execution mechanism com-
pared to traditional function calls, primarily due to their ability to suspend and
resume execution at certain points rather than executing to completion like tra-
ditional functions. This difference poses challenges for existing task graph sched-
ulers [6,9–13], as they are typically designed with the assumption of traditional
function calls and lack support for coroutine-specific features. Second, Corou-
tine’s suspension and resumption ability requires a specially designed scheduling
algorithm to minimize the cost of context switches. Furthermore, a coroutine
does not automatically resume after suspension; instead, it requires a scheduler
to track and control its execution. Managing and tracking the execution status
of each coroutine becomes complicated when dealing with complex workloads.

To overcome these challenges, we introduce TaroRTL, an efficient coroutine-
based task graph scheduler for RTL simulation. We summarize three key contri-
butions as follows:

– We design a coroutine-based task graph scheduling model to enable non-
blocking GPU and I/O tasks within a task graph.

TaroRTL 153

– We design a coroutine-aware work-stealing algorithm to avoid unnecessary
context switches and cache misses.

– We design an execution control strategy to track and control the execution
of each invoked GPU and I/O task.

We have evaluated TaroRTL on industrial designs and demonstrated its
promising performance compared to the state-of-the-art RTLflow (CPU- and
GPU-based) [11] and Verilator (CPU-based) [12]. As an example, TaroRTL can
speed up RTLflow by 40–80% while using fewer CPU resources to simulate large
industrial designs. We will make TaroRTL open-source to benefit RTL simulation
research.

2 The Motivation of Using Coroutine in RTL Simulation

Existing task graph scheduling solutions for RTL simulation all assume atomic
execution, resulting in significant CPU waiting time on awaiting GPU and I/O
tasks to finish. This problem prevents us from fully unleashing the power of
heterogeneous simulation. Figure 2 gives an example of CPU waiting and active
time growth over increasing input stimuli in RTLflow [11] (CPU- and GPU-
based). The CPU waiting time inevitably reduces the overall efficiency of an RTL
simulator, especially when simulating a design with numerous input stimuli. The
increasing CPU waiting time over increasing number of input stimuli indicates
untapped performance potential within the RTL simulation. Furthermore, CPUs
need to keep spinning until GPU completes its task, wasting a lot of unnecessary
CPU resources.

Fig. 2. CPU waiting and active time growth over increasing numbers of input stimuli
in RTLflow [11]. The relative ratio of waiting time gets smaller as the number of input
stimuli increases because a large number of input stimuli induce a significant amount
of CPU computation for setting inputs.

Unlike a traditional function that runs to completion and returns a value,
a coroutine can be suspended and resumed at specific points without losing its
state. Specifically, modern C++ Coroutine allows a CPU thread to suspend its
current task and resume other tasks (i.e., multitasking) while awaiting GPU or
I/O operations to finish. This property makes coroutines particularly useful for
parallel RTL simulation. Listing 1.1 gives a CPU-GPU simulation example for

154 D.-L. Lin et al.

simulating a design with two input stimuli using Coroutine. The code simulate
an input design dut cycle by cycle with a scheduler s. At each cycle iteration, we
first set the inputs of dut using the given input stimulus (Line 5). When a CPU
thread offloads eval to GPU (Line 7 and 9), it can multitask to another input
stimulus for set inputs. Without Coroutine, existing RTL simulators such as
RTLflow [11] require a CPU thread to wait for eval on GPU to finish.

1 void sim (Stimulus& stim) {
2 Design dut ;
3 s i z e t c {0} ;
4 whi l e (! dut . stop and c <= NUM CYCLES) {
5 dut . s e t i n pu t s (stim , c) ;
6 dut . s e t c l o c k (0) ;
7 co await dut . eva l () ; // o f f l o a d to GPU and mult i ta sk
8 dut . s e t c l o c k (1) ;
9 co await dut . eva l () ; // o f f l o a d to GPU and mult i ta sk

10 c += 1 ;
11 }
12 }
13 i n t main () {
14 Scheduler s ;
15 St imu l i st im = g e t s t imu l i () ; // get input s t imu l i
16 s . emplace (sim , stim [0]) ; // emplace a sim task f o r st im 0
17 s . emplace (sim , stim [1]) ; // emplace a sim task f o r st im 1
18 s . s chedu le () ; // schedu le the two sim task s
19 re turn 0 ;
20 }
Listing 1.1. An example of RTL simulation using Coroutine. When co await, a CPU
thread multitasks to another input stimulus. The scheduler needs to track and control
the execution of each invoked task.

3 TaroRTL

At a high level, TaroRTL enables multitasking within a task graph through
Coroutine. We allow CPU threads to multitask without being blocked by GPU
or I/O tasks. We introduce a coroutine-aware work stealing to minimize con-
text switches. Our execution control strategy effectively tracks and controls the
execution of each GPU and I/O task.

3.1 Overview

Figure 3 shows an example of TaroRTL scheduling a task graph using two CPU
threads (workers), one GPU stream, and one I/O buffer. Each worker maintains
a high-priority queue (HPQ) and a low-priority queue (LPQ). HPQ stores sus-
pended tasks that have been lately executed by the worker, while LPQ stores
new tasks that have met task dependency constraints. During scheduling, each

TaroRTL 155

worker extracts tasks from its HPQ to LPQ, ensuring that a suspended task is
prioritized over a new task. Such prioritization allows efficient caching by ensur-
ing that suspended tasks, which have been recently executed, take precedence
over new tasks in the scheduling process. We leverage work-stealing queues [7] to
support our scheduling architecture. Only the queue owner [7] can pop/push a
task from/into one end of the queue, while multiple workers can steal a task from
the other end at the same time. When both of a worker’s queues are empty, that
worker tries to steal a task from another worker’s LPQ to HPQ. This strategy
not only balances the workload among the workers, but also reduces the chances
of different threads stealing (i.e., resuming) the suspended task. As shown in
Fig. 3, the algorithm follows these steps:

Fig. 3. TaroRTL schedules a task graph using two CPU workers, one GPU stream, and
one I/O buffer. Each worker owns a high-priority task queue (HPQ) and a low-priority
task queue (LPQ) to prioritize resuming a suspended task over a new task.

(b) Enqueue A: TaroRTL enqueues A into Worker 1’s LPQ.
(c) Offload A and register a CUDA callback: Worker 1 executes and

offloads A into the CUDA stream. Worker 1 then registers a CUDA call-
back for A.

(d) Invoke the CUDA callback for A: After A finishes, CUDA runtime
invokes the callback that enqueues A back into Worker 1’s HPQ and notifies
Worker 1. This strategy ensures Worker 1 resumes A rather than Worker 2,
avoiding unnecessary context switches.

(e) Enqueue B, C, and D: Worker 1 resumes A for cleanup and resolving
task dependencies, and enqueues B, C, and D into its LPQ.

(f) Steal task from Worker 1: Worker 2’s queues are empty. Worker 2 steals
D from Worker 1’s LPQ. Since D has not yet started, this steal does not
induce context switches.

(g) Offload B and D: Worker 1 and 2 offload B and D into CUDA stream and
I/O buffer, respectively. Worker 1 registers a CUDA callback for B.

156 D.-L. Lin et al.

(g) Poll the status of D: Worker 2 creates a query task and enqueues the task
into its LPQ to poll the execution status of D.

(g) Multitask to C: Worker 1 multitasks to C.
(h) Invoke the CUDA callback for B: After B finishes, CUDA runtime

invokes the callback that enqueues B back into Worker 1’s HPQ and notifies
Worker 1.

(i) Resume D: Worker 2 resumes D for cleanup after verifying that D has
finished.

(i) Continue until complete: The scheduling process continues until each
worker completes its assigned task.

3.2 Coroutine-Aware Work Stealing

Conventional work-stealing algorithms cannot be used out of the box due to
the distinct performance characteristics between atomic and suspendable execu-
tions. For instance, when a suspended task is ready, conventional work-stealing
algorithms notify any available CPU threads to resume that task. This strategy
may resume a task using different CPU threads, resulting in frequent context
switches and cache misses.

Recently, C++20 released a new synchronization primitive of atomic wait and
notify, which allows a thread to wait on an atomic variable until other threads
change its value and notify that thread. This new feature has inspired us to tackle
this challenge by assigning each worker an atomic variable to communicate with
a specific worker while tracking each worker’s state. This approach aligns with
the goal of reducing context switches and cache misses by ensuring that a task
is mostly resumed by the same worker. Furthermore, the new atomic features
have shown improved performance compared to condition variables, which are
commonly used by existing schedulers for synchronization purposes.

Algorithm 1 presents the pseudocode of our work-stealing algorithm for each
worker. Each worker has an atomic variable, state, with three possible states:
BUSY, SIGNALED, and SLEEP. BUSY indicates a worker is actively processing
tasks. SIGNALED signifies a worker has been notified by other workers. SLEEP
represents a worker who is inactive and waiting for other workers to notify.
Initially, each worker waits on the SLEEP (line 2), ensuring its inactivity until
scheduled by the scheduler. When the schedule function is called, the scheduler
evenly distributes the source tasks to each worker’s LPQ. It then changes each
worker’s state to SIGNALED and notifies them, indicating they are ready to
execute tasks.

Once a worker wakes up, it changes its state to BUSY and starts popping
tasks from its own HPQ to LPQ (lines 4–9). The worker first attempts to pop
a task from its HPQ. Since CUDA runtime or other workers can simultaneously
enqueue suspended tasks into HPQ (e.g., Fig. 3(d) and (h)), we use steal to
extract a task from the HPQ that avoids data races. If the HPQ is empty,
the worker proceeds to pop a task from its LPQ. The LPQ is managed by the
worker, and enqueuing/popping a LPQ by other workers requires a lock [7].
In the event that both of the worker’s queues are empty, the worker randomly

TaroRTL 157

selects another worker and steals a task from its LPQ to HPQ (lines 10–22).
The iteration continues until we successfully steal a task or fail to steal a task
after MAX STEAL times. To keep track of the overall progress, we maintain
an atomic variable, pending tasks, that represents the total number of tasks
ready to be invoked. If no tasks are available at a given point, resulting in
pending tasks becoming zero, the worker changes its state to SLEEP and checks
if its original state has been changed by another worker (lines 35–37). If the
worker’s state has changed, indicating at least one other worker has changed the
state to SIGNALED, the worker continues to work. Otherwise, the worker waits
until other workers change its state and notify it.

After a worker invokes a task, there are two situations: 1) The task is com-
plete (Fig. 3(e)). 2) The task is suspended (Fig. 3(g)). If the task is complete,
the worker checks the task’s successors and enqueues them into its LPQ if the
dependency constraints are met (lines 26–32). On the other hand, if the task is
suspended, indicating the worker has invoked GPU or I/O tasks, the worker con-
tinues without blocking. Once invoked GPU or I/O tasks are complete, CUDA
runtime or a worker will enqueue the suspended task back into the worker’s HPQ
and notify the worker.

Algorithm 2 outlines how CUDA runtime or a worker enqueues a task and
notifies the worker. If worker is NULL, it means we want to enqueue a new
successor task. The current worker enqueues the task into its LPQ and notifies
one available worker (lines 1–14). This strategy allows an available worker to
steal a new task from the worker to avoid under-utilization. We iterate through
each worker and check if its state is SLEEP using the Compare and Swap (CAS)
operation. If a worker’s state is SLEEP and its state is successfully changed
to SIGNALED (i.e., the CAS operation returns true), it is notified. Otherwise,
we iterate to the next worker. The process continues until either a worker is
successfully notified or all workers have been checked. If no worker is in SLEEP,
we exit the loop without notifying any worker. If worker is not NULL, it means
we want to enqueue the task into a specific worker’s HPQ and notify that worker
(lines 15–21). We require a lock since HPQ may be simultaneously enqueued
by other workers. After the task is enqueued, we update the worker’s state
to SIGNALED, indicating this task is ready to resume. If the original state
of the worker was SLEEP, it implies that the worker is inactive and waiting
to be notified. We notify the worker using its state. However, if the worker’s
state was not SLEEP, implying that the worker is already active, we skip the
notification. This organization minimizes unnecessary notification overhead and
helps improve overall performance.

3.3 Execution Control Strategy

After a GPU or an I/O task finishes, we need to resume the task for cleanup,
such as freeing up GPU or I/O resources, releasing memory, and resolving task
dependencies. While Coroutine allows for the suspension of a task, it does not
automatically resume a suspended task. We need an execution control strategy
to track the execution status of a suspended task and trigger its resumption.

158 D.-L. Lin et al.

Algorithm 1: Coroutine-aware work-stealing algorithm
1 worker ← this worker();/* current worker */

2 worker.state.wait(SLEEP);
3 do
4 worker.state.store(BUSY);
5 do

/* get from worker’s own HPQ to LPQ */

6 task ← worker.HPQ.steal();
7 if task == NULL then
8 task ← worker.LPQ.pop();
9 end

/* steal from another worker’s LPQ to HPQ */

10 if task == NULL then
11 cnt ← 0;
12 while cnt++ < MAX STEAL do
13 aworker ← random select();
14 task ← aworker.LPQ.steal();
15 if task == NULL then
16 task ← aworker.HPQ.steal();
17 end
18 if task ! = NULL then
19 break;
20 end

21 end

22 end
/* invoke the task and enqueue successors */

23 if task ! = NULL then
24 pending tasks.fetch sub();
25 invoke(task);
26 if task.is done() then
27 for succ : task.successors do
28 if succ.dependency.is met() then
29 enqueue notify(succ, NULL);
30 end

31 end

32 end

33 end

34 while pending tasks.load() > 0 ;
35 if worker.state.exchange(SLEEP) == BUSY then

/* wait to be notified */

36 worker.state.wait(SLEEP);

37 end

38 while !stop;

Non-blocking I/O Tasks. We leverage io uring [3], a new asynchronous I/O
framework in Linux that provides efficient and scalable support for asynchronous

TaroRTL 159

Algorithm 2: enqueue notify(task, worker)
Input: task: a suspended task to be enqueued
Input: worker: a worker to be notified

1 if worker == NULL then
/* enqueue to current worker’s own LPQ */

2 worker ← this worker();
3 worker.LPQ.push(task);
4 pending tasks.fetch add();

/* notify one SLEEP worker */

5 cnt ← 1;
6 do
7 idx ← (worker.idx + cnt)%NUM WORKERS;
8 tmp ← SLEEP;
9 if workers[idx].state.CAS(tmp, SIGNALED) then

10 workers[idx].state.notify one();
11 return;

12 end

13 while ++cnt < NUM WORKERS;

14 end
15 else

/* enqueue and notify a specific worker */

16 lock{worker.HPQ.push(task)};
17 pending tasks.fetch add();
18 if worker.state.exchange(SIGNALED) == SLEEP then
19 worker.state.notify one();
20 end

21 end

Fig. 4. A flowchart of our execution control strategy for (a) I/O and (b) GPU tasks.
Gray (Black) blocks represent actions performed by io uring (CUDA runtime).

I/O operations. io uring implements a ring buffer structure to manage I/O
requests. This ring buffer allows for the efficient submission and retrieval of I/O
requests without the need for blocking system calls or copies. By incorporating

160 D.-L. Lin et al.

C++ coroutine with io uring, we are able to submit non-blocking I/O tasks to
the ring buffer and seamlessly multitask to a different task.

Figure 4(a) illustrates our strategy for an I/O task. After invoking and sus-
pending an I/O task, the worker creates a polling task and multitasks to another
task. The polling task is also a coroutine and can be stolen by other workers to
repeatedly check the I/O status. It is a lightweight task that incurs little CPU
migration overhead when stolen. Once the status becomes done, the worker that
executes this polling task enqueues the suspended task back into the invoked
worker’s HPQ and notifies that worker.

Non-blocking GPU Tasks. Figure 4(b) illustrates our strategy for a GPU
task. To probe the execution status of an offloaded GPU task, we utilize
CUDA’s API, cudaLaunchHostFunc, which allows us to register a callback for
the offloaded GPU task. The worker then multitasks to other tasks without being
blocked. Once the offloaded GPU task is complete, CUDA runtime invokes the
callback to enqueue the suspended task back into the worker’s HPQ and notify
the worker. CUDA callback has a certain cost. In cases where the cost of a GPU
task is negligible (e.g., simulate a small design) or CUDA callback is not appli-
cable, we utilize a CUDA event to record the execution status of an offloaded
GPU task and poll the status, similar to non-blocking I/O tasks.

3.4 Performance Improvement Analysis

In this section, we analyze the time complexity of TaroRTL. As different designs
have different task graph structures and task runtimes, it is not practical to analyze
the time complexity in a universal manner. Instead, we focus on a more constrained
scenario where TaroRTL can achieve the best efficiency over non-coroutine-based
approaches. Assuming on a CPU-GPU simulation workload at timeframe P :

– There are nc CPU threads and ng GPU streams available.
– There are N identical tasks ready to be executed, where N is larger than nc

and ng.
– Each task consists of a CPU subtask sc with a cost of tc, followed by a GPU

subtask sg with a cost of tg.

By these assumptions, we can compute a lower bound on the time difference
between TaroRTL (TTaroRTL) and a scheduler without multitasking (T) at a
specific timeframe. In the beginning, all nc CPU threads simultaneously execute
the CPU subtask sc within nc tasks, incurring a cost of tc. Subsequently, all ng

GPU streams execute the GPU subtask sg within these nc tasks, resulting in
tg ·�nc/ng�. In TaroRTL, CPUs can multitask to the next nc CPU subtasks while
simultaneously waiting for the GPU to complete the current nc GPU subtasks.
As shown in Fig. 5, the overlapped time of sc and sg is min{tc, tg · �nc/ng�} per
nc tasks. Specifically, TaroRTL saves at least min{tc, tg · �nc/ng�} per nc tasks.
With �N/nc� − 1 times,

T − TTaroRTL ≥ (
⌈
N

nc

⌉
− 1) · min{tc, tg ·

⌈
nc

ng

⌉
}.

TaroRTL 161

The time difference expands as the number of tasks increases or the CPU and
GPU subtasks’ cost becomes larger.

Fig. 5. The time difference between (a) a scheduler without coroutine and (b) TaroRTL

at a specific timeframe. In this example, nc is 2, ng is 1, and tc > tg ·
⌈

nc
ng

⌉
.

4 Experimental Results

We evaluate the performance of TaroRTL on three industrial designs: Spinal,
riscv-mini, and NVDLA. We conducted our experiments on a 3.2 GHz 64-bit
Linux machine with one NVIDIA RTX 3080 ti GPU and ten Intel i9-12900KF
CPU cores. We compiled our programs with CUDA NVCC 12.1 on a GCC 12.1
host compiler and enabled optimization flag -O2 and -std=c++20. We use an
equal number of CUDA streams and CPU threads. All data is an average of ten
runs. TaroRTL adopts heap allocation by default to store the stack of a C++
coroutine.

4.1 CPU-GPU RTL Simulation

Fig. 6. The heterogeneous RTL task graph in RTLflow. Each task contains two CPU
and GPU subtasks.

In this section, we analyze the performance benefits of TaroRTL with
non-blocking GPU tasks. We consider RTLflow as our baseline. RTLflow [11]

162 D.-L. Lin et al.

improves the throughput performance by running multiple input stimuli simul-
taneously using both CPU and GPU parallelisms. As shown in Fig. 6, RTLflow
describes the RTL simulation workload as a heterogeneous task graph, where
each task consists of four dependent CPU/GPU subtasks. The size of the task
graph is determined by the number of inputs, the number of simulation cycles,
and the chosen batch size. RTLflow splits inputs into batches to allow more
parallelism (i.e., more parallel lines). For our experiments, we fixed the default
batch size of 1024. However, RTLflow lacks support for multitasking, resulting in
a CPU thread waiting for GPU tasks to finish. By scheduling RTLflow’s hetero-
geneous task graph using TaroRTL, we are able to improve total runtime while
using fewer CPU resources.

Table 1. Comparison between RTLflow and TaroRTL on Spinal, riscv-mini, and
NVDLA designs using different numbers of threads for completing 32768 input stimuli.
ELOC and SLOC represent lines of code for evaluation and lines of code for setting
inputs, respectively. Bold texts represent the best results. All simulation results match
the golden reference provided by RTLflow.

Design ELOC SLOC #Threads RTLflow TaroRTL Speed-up

Spinal 9654 6 2 36 s 35 s 2.9%

4 20 s 21 s -

6 16 s 17 s -

riscv-mini 10935 340 2 79 s 44 s 79.5%

4 61 s 34 s 79.4%

6 55 s 35 s 57.1%

8 49 s 35 s 40.0%

10 50 s 36 s 38.9%

NVDLA 560412 860 2 1082 s 598 s 80.9%

4 600 s 337 s 78.0%

6 482 s 284 s 69.7%

8 376 s 242 s 55.4%

10 379 s 236 s 60.6%

Table 1 compares overall runtime between RTLflow and TaroRTL on riscv-
mini and NVDLA designs using different numbers of threads. TaroRTL outper-
forms RTLflow in almost all scenarios. TaroRTL achieves at least 1.4× speed-up
and 1.6× speed-up on riscv-mini and NVDLA designs. We can clearly see the
proposed coroutine-based task graph scheduling brings significant performance
benefits to the CPU-GPU RTL simulation workload. Compared to RTLflow,
TaroRTL achieves 1.8× speed-up on NVDLA. In the case of the Spinal design,
RTLflow and TaroRTL exhibit similar runtimes, and the advantage of corou-
tines is less pronounced compared to other designs. When SLOC (lines of setting
inputs) is small, where the CPU overhead is extremely small, TaroRTL does not

TaroRTL 163

benefit much from multitasking. However, modern designs typically have many
thousands of ELOC and hundreds of SLOC [16] where TaroRTL can stand out.

Fig. 7. Runtime growth over increasing numbers of cycles for TaroRTL and RTLflow
using four and eight threads.

Fig. 8. Average CPU utilization rate reported by /usr/bin/time and runtime decrease
over increasing numbers of CPU threads for TaroRTL and RTLflow on the riscv-mini
design.

Figure 7 shows the runtime growth over increasing numbers of cycles for
TaroRTL and RTLflow on different designs using four and eight threads.
TaroRTL outperforms RTLflow in all scenarios. Compared to RTLflow, TaroRTL
using four threads achieves 1.8× speed-up for riscv-mini design at 20K cycles.
The significant improvement on runtime demonstrates the promise of our mul-
titasking techniques. We can also clearly see the results are aligned with the
speedup analysis. For example, the performance gap between TaroRTL and
RTLflow continues to enlarge as we increase the number of cycles (i.e., the num-
ber of tasks N). Figure 8 shows the CPU utilization rate and runtime decrease
over increasing numbers of threads on the riscv-mini design. TaroRTL using
362% CPU achieves 1.4× faster than RTLflow using 910% CPU. riscv-mini is a
midsize design that does not induce large CPU computation. However, RTLflow
requires CPUs to keep spinning until GPU finishes its operations, resulting in
an unnecessarily high CPU utilization rate.

164 D.-L. Lin et al.

4.2 RTL Simulation with I/O

In this section, we study the performance benefits of RTL simulation with non-
blocking I/O tasks. We consider Verilator, which supports VCD file dumping,
as our baseline. Verilator is a single-stimulus simulator. For multi-stimulus sim-
ulation, the de facto way is to create multiple instances of Verilator and run
independent input stimulus in parallel [11]. After an evaluation of the design,
each Verilator stores traces in a buffer and dumps the buffer to a file once it
is full. Since Verilator does not support multitasking, it requires a CPU thread
to wait until I/O dumping finishes. By enabling our non-blocking I/O using
TaroRTL, we are able to improve the simulation efficiency.

Figure 9 illustrates the achieved speed-up by TaroRTL over Verilator at dif-
ferent numbers of input stimuli using eight threads on riscv-mini. When the
number of input stimuli equals 8, Verilator is faster due to the limited par-
allelism available for eight threads. However, as the number of input stimuli
exceeds 8, where parallelism becomes more abundant (i.e., more independent
tasks), TaroRTL starts to outperform Verilator. Since RTL simulation typically
involves many input stimuli on the same design [11,16], TaroRTL’s ability to
handle larger parallelism provides a significant advantage.

Fig. 9. Achieved speed-up by TaroRTL over Verilator at different numbers of input
stimuli using eight threads for 3K cycles.

5 Related Work

Verilator [12], an open-source RTL simulator, aggregates adjacent logic ele-
ments into macro tasks, which are then scheduled using a static multi-threaded
algorithm, achieving optimal performance with 8-10 CPU cores. RepCut [13]
improves upon this by partitioning circuits into balanced segments with minimal
overlap, reducing synchronization overhead and achieving superlinear speed-ups
through task replication. However, it is restricted to strong scaling for single
input stimuli. RTLflow [11] further innovates by executing multiple independent
input stimuli in parallel on a GPU, utilizing a heterogeneous task set and a

TaroRTL 165

work-stealing scheduling algorithm. Despite its advancements, RTLflow encoun-
ters significant CPU idle time, as CPU threads must await the completion of
GPU tasks within each simulation cycle. Taskflow [6] is a task graph scheduling
system that has been adopted by many EDA algorithms [4,5,8,15], including
RTLflow. However, Taskflow does not support multitasking in a task graph.
Libfork [14] is a coroutine-tasking library that is primarily an abstraction for
fully-portable, strict, fork-join parallelism. However, it does not support hetero-
geneous parallelism.

6 Conclusion

In this paper, we have introduced TaroRTL, a coroutine-based task graph sched-
uler for RTL simulation. TaroRTL has introduced a coroutine-based task graph
scheduling model to enable multitasking in a task graph. TaroRTL has also intro-
duced a coroutine-aware work-stealing algorithm to reduce unnecessary context
switches. Compared to RTLflow, TaroRTL can further achieve 40–80% speed-up
while using fewer CPU resources to simulate large industrial designs. Future work
includes generalizing TaroRTL into a generic library with a new programming
model that can be easily integrated with various applications.

Acknowledgment. This project is supported by NSF grants 2235276, 2349144,
2349143, 2349582, and 2349141.

References

1. C++ Coroutine (2020). https://en.cppreference.com/w/cpp/language/coroutines
2. Appello, D., et al.: Accelerated analysis of simulation dumps through paralleliza-

tion on multicore architectures. In: DDECS (2021)
3. Axboe, J.: Efficient io with io uring (2019)
4. Chang, C., Huang, T.W., Lin, D.L., Lin, S., Guo, G.: Ink: Efficient k-critical path

generation. In: IEEE/ACM DAC (2024)
5. Huang, T.W., Guo, G., Lin, C.X., Wong, M.D.F.: Opentimer v2: a new parallel

incremental timing analysis engine. IEEE TCAD (2021)
6. Huang, T.W., Lin, D.L., Lin, C.X., Lin, Y.: Taskflow: a lightweight parallel and

heterogeneous task graph computing system. In: IEEE TPDS (2022)
7. Lê, N.M., Pop, A., Cohen, A., Zappa Nardelli, F.: Correct and efficient work-

stealing for weak memory models. In: PPoPP (2013)
8. Lee, W.L., et al.: G-kway: multilevel GPU-Accelerated k-way Graph Partitioner.

In: IEEE/ACM DAC (2024)
9. Lin, D.L., Huang, T.W.: Efficient GPU computation using task graph parallelism.

In: Euro-Par (2021)
10. Lin, D.L., Huang, T.W.: Accelerating large sparse neural network inference using

GPU task graph parallelism. IEEE TPDS 33(11), 3041–3052 (2022)
11. Lin, D.L., Ren, H., Zhang, Y., Khailany, B., Huang, T.W.: From RTL to CUDA:

a GPU acceleration flow for RTL simulation with batch stimulus. In: ICPP (2023)
12. Snyder, W.: Verilator 4.0: open simulation goes multithreaded (2018)

https://en.cppreference.com/w/cpp/language/coroutines

166 D.-L. Lin et al.

13. Wang, H., Beamer, S.: Repcut: superlinear parallel RTL simulation with
replication-aided partitioning. In: ASPLOS (2023)

14. Williams, C.J., Elliott, J.: Libfork: portable continuation-stealing with stackless
coroutines. arXiv preprint arXiv:2402.18480 (2024)

15. Zhang, B., et al.: G-PASTA: GPU accelerated partitioning algorithm for static
timing analysis. In: IEEE/ACM DAC (2024)

16. Zhang, Y., Ren, H., Khailany, B.: Opportunities for RTL and gate level simulation
using GPUs. In: ICCAD (2020)

http://arxiv.org/abs/2402.18480

	TaroRTL: Accelerating RTL Simulation Using Coroutine-Based Heterogeneous Task Graph Scheduling
	1 Introduction
	2 The Motivation of Using Coroutine in RTL Simulation
	3 TaroRTL
	3.1 Overview
	3.2 Coroutine-Aware Work Stealing
	3.3 Execution Control Strategy
	3.4 Performance Improvement Analysis

	4 Experimental Results
	4.1 CPU-GPU RTL Simulation
	4.2 RTL Simulation with I/O

	5 Related Work
	6 Conclusion
	References

