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ABSTRACT
Critical Path Generation (CPG) is crucial for static timing analysis

(STA) applications to validate timing constraints. Recent years have

witnessed CPG algorithms that can rank 𝑘 critical paths efficiently

and accurately. However, they all suffer from the lack of incremen-
tality, which is the ability to quickly update critical paths after

the circuit is incrementally modified. To solve this problem, we

introduce Ink, an efficient incremental CPG algorithm. Inspired by

the large path trace similarity between adjacent CPG queries, Ink

identifies a set of paths to reuse for the next query and effectively

prunes the path search space. We have demonstrated the promising

performance of Ink on large circuit benchmarks. Ink is up to 22.4×
faster and consumes up to 31% less memory than a state-of-the-art

timer when generating one million paths on a large design.
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1 INTRODUCTION
Critical Path Generation (CPG) is a key routine in static timing

analysis (STA) applications. For example, a practical timer counts

on CPG to perform path-based analysis (PBA), such as common

path pessimism removal (CPPR) and advanced on-chip variation

(AOCV) update, for removing unwanted pessimism [1]. As the de-

sign complexity continues to grow, CPG runtime can become a

significant bottleneck in many STA engines [5]. To alleviate this

problem, academia has introduced various CPG algorithms that

can rank 𝑘 critical paths efficiently. For example, iTimerC intro-

duces a branch-and-bound technique to prune redundant path tra-

versals [6]; iitRace introduces a pin coloring scheme to perform

efficient path reduction [7]; OpenTimer introduces a fast implicit

path representation algorithm using suffix tree and prefix tree [2].

Although existing CPG algorithms have demonstrated efficiency

and accuracy, they all suffer from the lack of incrementality, which
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Figure 1: Illustration of CPG (𝑘 = 2) for a gate sizing operation
(X1→X2). The second most critical path trace is unaffected.

is the ability to quickly update critical paths after the circuit is

incrementally modified. Incrementality plays an important role in

many optimization flows, such as timing-driven placement and gate

sizing [5]. Figure 1 shows two critical paths before and after a gate

sizing operation that incrementally modifies the circuit. Despite

different slack values, critical path traces exhibit a large similarity

between the two CPG queries (e.g., the second most critical path

trace does not change). In fact, according to [5], the overlap ratio

of path traces between adjacent incremental timing iterations can

go up to 90%. This implies that many path results computed in the

previous CPG query are highly reusable for the next CPG query.

Without incrementality, CPG algorithms will waste substantial time

and memory on recomputing the same paths.

However, designing a fast incremental CPG algorithm is very

challenging because we need to efficiently identify which paths to

keep and reuse for the next CPG query after the circuit is modified.

When those paths are identified, we need to effectively prune them

from the search space to avoid duplicated paths. To overcome these

challenges, we introduce Ink, an efficient incremental CPG algo-

rithm. Ink is inspired by the implicit path representation algorithm

of OpenTimer [2] (suffix and prefix trees), but redesigns its core

search routine to efficiently support incrementality. We summarize

three technical contributions of Ink as follows:

• We design a fast incremental suffix tree update algorithm that

minimally identifies the affected subgraph of the suffix tree and

performs only the necessary updates on shortest path values.

• We design a fast incremental prefix tree expansion algorithm that

identifies a set of paths to reuse for the next CPG query. With

these paths, we can effectively prune the path search space.

• We give rigorous analysis to justify the correctness and complex-

ity of the proposed algorithms.

We evaluate Ink’s performance on real circuit benchmarks gen-

erated by a state-of-the-art timer, OpenTimer [2]. Compared to

OpenTimer’s CPG algorithm [2], Ink is up to 22.4× faster and con-

sumes up to 31% less memory when generating one million critical

paths on a large design.
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2 BACKGROUND
2.1 Incremental Critical Path Generation
The circuit network is input as a directed-acyclic graph𝐺 = {𝑉 , 𝐸}.
𝑉 is a set of 𝑛 vertices that represent pins of circuit components

(e.g., logic gates, flip-flops, etc.). 𝐸 is a set of𝑚 edges that represent

pin-to-pin connections. Each edge 𝑒 is directed from its head vertex

𝑢 to tail vertex 𝑣 and is associated with a delay 𝑤𝑒 . A path is an

ordered sequence of edges ⟨𝑒1, 𝑒2, ..., 𝑒i⟩. The path delay is the sum-

mation of delays through all edges of that path. A circuit modifier

is an operation that modifies the circuit to perform timing-driven

optimization. In this paper, we target the circuit modifier that only

alters the edge weights of the graph, which is a specific yet widely

used scenario.

Given a circuit graph 𝐺 and a positive integer 𝑘 , a CPG query

reports the top-𝑘 critical paths in ascending order of path slack

(or path delay depending on how the graph is formulated [2]). An

incremental iteration is defined as at least one circuit modifier

followed by one CPG query.

2.2 Implicit Path Representation
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Figure 2: Implicit path representation using suffix tree and
prefix tree. Suffix ⟨𝑒9⟩ + Prefix ⟨𝑒0, 𝑒6⟩ = Path ⟨𝑒0, 𝑒6, 𝑒9⟩.

Although there are many CPG algorithms [2, 6, 7], we adopt the

implicit path representation algorithm proposed by OpenTimer [2],

which outperforms existing algorithms in space and time complex-

ity. As shown in Figure 2, OpenTimer represents critical paths using

two complementary data structures, suffix tree and prefix tree. A
suffix tree is a shortest path tree rooted at the destination vertices,

constructed with topological relaxations. Figure 2(a) shows an ex-

ample graph and its suffix tree. Solid edges denote the suffix tree,

and dashed edges denote non-suffix tree edges. Numbers on the

vertices denote the shortest distance to their destination vertices.

A prefix tree is a tree order of non-suffix tree edges. Each prefix

tree node implicitly represents a path deviated from its parent path.

The prefix tree root refers to the shortest path in the suffix tree.

Figure 2(b) shows an example. The prefix tree root 𝜑 implicitly

represents the shortest path ⟨𝑒0, 𝑒5, 𝑒7⟩ in the suffix tree. The prefix

tree node marked by “𝑒6” (colored in gray) implicitly represents

the path with prefix ⟨𝑒0⟩ from its parent path deviated on 𝑒6 and

followed by suffix ⟨𝑒9⟩ from the suffix tree. Figure 2(c) illustrates

this path as bold edges ⟨𝑒0, 𝑒6, 𝑒9⟩. To retrieve the path delay, we

record the “deviation cost” of each non-suffix tree edge e: dvi[e]
= dis[tail[e]] + weight[e] − dis[head[e]], where dis[v] denotes the
shortest distance from vertex v to its destination vertex. Intuitively,

deviation cost measures the distance loss by deviating on edge e

instead of taking the ordinary shortest path to the destination vertex.

For example, in Figure 2(a), 𝑒6 has a deviation cost of dis[tail[𝑒6]] +
weight[𝑒6] − dis[head[𝑒6]] = 10, which means by deviating on 𝑒6,

we get a path that is 10 longer than the shortest path from head[𝑒6]
to its destination vertex. To conclude, Table 1 lists the data fields to

which we apply for each prefix tree node [2].

Constructor PfxtNode(p, e, w) RespurListItem(pfx, pes)

Members

p: parent node pfx: prefix tree node
e: deviation edge pes: pruned edges for pfx
w: cumulative dvi[e]

Table 1: Data fields of a prefix tree node (PfxtNode) and a
re-spur list item (RespurListItem).

3 INK: INCREMENTAL 𝑘-CRITICAL PATH
GENERATION

Ink has two stages, incremental suffix tree update and incremental
prefix tree expansion, to perform incremental CPG.

3.1 Incremental Suffix Tree Update
The goal of incremental suffix tree update is to perform only neces-

sary topological relaxations on the affected subgraph of the suffix

tree, as opposed to the complete bottom-up topological relaxations

in OpenTimer [2]. Algorithm 1 presents the incremental suffix tree

update algorithm. After collecting an array of head verticesM from

user-modified edges, we perform DFS on M to identify the affected

vertices V in reversed topological order (line 2). We record the af-

fected prefix tree nodes for the second stage (line 5:6) and perform

edge relaxations on the fanouts of each vertex in V (line 7).

Following the suffix tree example in Figure 2(a), Figure 3(a) shows

that we modify the weights of 𝑒1, 𝑒3, 𝑒6, and 𝑒10. Figure 3(b) shows

that after performing DFS on the head vertices of the modified

edges, we identify five affected vertices (marked in gray). We then

perform edge relaxations on the fanouts of these five vertices. For

example, as shown in Figure 3(b), we perform edge relaxations on

𝑒5 (dis[tail[𝑒5]] + weight[𝑒5] = −3) and 𝑒6 (dis[tail[𝑒6]] + weight[𝑒6]
= −4). Since −3 > −4, −4 becomes head[𝑒6]’s new shortest distance

to its destination vertex. tail[𝑒6] is the new successor of head[𝑒6].
Lemma 1 concludes Algorithm 1.

Lemma 1. Algorithm 1 takes 𝑂 (𝑛 + 𝑘𝑚) time complexity.

Algorithm 1: IncSfxt(M)

Input: array of head vertices of user-modified edges M
Global :array of affected prefix tree nodes P

1 P← 𝜙 ;

2 V ← DFS on M to identify affected vertices in reversed

topological order;

3 Foreach u ∈ V
4 Foreach e ∈ fanout(u)
5 Foreach n ∈ dependent_pfxt_nodes(e)
6 P← P ∪ n;
7 Relax(u, tail[e], weight[e]);
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Figure 3: Illustration of Algorithm 1. We only perform topo-
logical relaxations on the fanouts of the gray vertices in (b).

3.2 Incremental Prefix Tree Expansion
After updating the suffix tree, the next step is to explore paths that

deviate from the suffix tree by expanding the prefix tree. To be clear,

“expand” means to generate the children nodes for a certain prefix

tree node by finding non-suffix tree edges to deviate on. When a

timing-driven application queries 𝑘 critical paths (potentially very

large 𝑘), expanding the prefix tree becomes very expensive if not

done incrementally. However, incremental prefix tree expansion

has two major challenges: 1) we need to know which prefix tree

nodes are reusable after applying the circuit modifiers and 2) after

identifying these nodes, we need to prune them from the search

space for the next query to avoid generating duplicated nodes. To

overcome challenge 1, we introduce a theorem that serves as the

cornerstone of our incremental prefix tree expansion algorithm:

Theorem 1. Given a prefix tree node p and p’s children C, and each
child 𝑐i ∈ C is associated with an edge 𝑒i, where i represents the order
in which 𝑐i is discovered. ∀𝑖, 𝑗 ∈ Z>0, if 𝑖 < 𝑗 and 𝑒j becomes a suffix
tree edge after the circuit is changed, then 𝑐i remains p’s child.

Proof. Assume 𝑐i is not p’s child, we examine two cases: 1) if 𝑒i
and 𝑒j have the same head vertex 𝑣 , 𝑒i must be a suffix tree edge,

which contradicts the fact that 𝑒j is the only suffix edge among

𝑣 ’s fanouts. 2) if 𝑒i and 𝑒j have different head vertices, since 𝑐j is

discovered later than 𝑐i, 𝑐i is not affected. Thus, by contradiction

Theorem 1 is correct. □

Intuitively, Theorem 1 states that if 𝑐j is associated with a suffix

tree edge after the circuit is changed (meaning that 𝑐j will disappear

from the prefix tree in the next CPG query), we can reuse 𝑐j’s left

siblings because they are discovered before 𝑐j and removing 𝑐j does

not affect them. We only need to update these siblings’ cumulative

deviation costs. Since Theorem 1 applies to every level of the prefix

tree, we can maximize the number of reusable nodes and reduce

memory reallocation overhead. To overcome challenge 2, we main-

tain a “re-spur list” that records which nodes need re-expansion.

For each of these nodes, to avoid generating duplicated children

nodes, we also record which edges to skip during re-expansion.

Table 1 lists the data field to which we apply for each re-spur list

item. pes records what edges we should skip when generating the

children nodes for pfx.
Algorithm 2 describes a key subroutine of Ink, MarkPfxtNodes.

The goal of Algorithm 2 is to categorize the prefix tree nodes into

reusable and removed nodes by applying Theorem 1. We update

Algorithm 2:MarkPfxtNodes(P, Q)
Input: array of affected prefix tree nodes P, queue Q
Output: re-spur list R

1 Sort P in ascending order of level;

2 R, pes← 𝜙 ;

3 Foreach p ∈ P
4 if p is updated or p is removed then
5 continue;
6 Foreach s ∈ siblings(p)
7 Q.push(s);
8 while Q is not empty

9 n← Q.pop();
10 if n.parent ∈ a re-spur list item then
11 mark n as removed;

12 if n is not removed then
13 if tail[n.e] = successor[head[n.e]] then
14 mark n as removed;

15 if n.parent ∉ a re-spur list item then
16 r ← new RespurListItem(n.parent, pes);
17 R← R ∪ r ;
18 clear pes;
19 else
20 update n.w and mark n as updated;

21 pes← pes ∪ n.e;
22 Foreach c ∈ n.children
23 Q.push(c);
24 if n is removed then
25 mark c as removed;

26 return R;

the cumulative deviation costs of the reusable nodes and mark

others for lazy removal. Note that Algorithm 2 only prepares Ink

for incremental prefix tree expansion by generating the re-spur

list; the actual expansion happens in Algorithm 4. To ensure top-

down traversal of the affected prefix tree nodes, we sort the array of

affected prefix tree nodes P in ascending order of level (line 1). We

initialize a re-spur list R and a set of pruned edges pes (line 2). For
each node in P, if unmarked (line 4:5), we push its siblings to a queue

Q to perform BFS (line 6:7). This is because Theorem 1 requires us

to visit these nodes in the same order as they are discovered. We

pop a node n from Q (line 9). If n’s parent is already in the re-spur

list (line 10), implying that a left sibling of n is marked as removed,

we mark n as removed too (line 11), since n is discovered later than

this sibling. If n is unmarked (line 12), we check if n.e is a suffix tree

edge (line 13). If so, n disappears from the prefix tree, and we mark

n as removed (line 14). We create a re-spur list item (line 16:17),

indicating that n’s parent will later expand but skip pes. Otherwise,
we update n’s cumulative deviation cost and add n’s edge to its

parent’s pes (line 20:21). We finally enqueue n’s children for the

later BFS iterations (line 22:25).

Continuing from the updated suffix tree in Figure 3(b), Figure

4 illustrates Algorithm 2. We denote a prefix tree node associated

with 𝑒i and cumulative deviation cost 𝑤 as PfxtNode(𝑒i, 𝑤 ). For

simplicity, we leave out the parent node member mentioned in
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Figure 4: Illustration of Algorithm 2 (continuation of Figure 3(b)), a key subroutine of the proposed incremental prefix tree
expansion algorithm. (a) Prefix tree and a queue that has PfxtNode(𝑒1, 8) and its siblings. (b) 𝑒1 is still a non-suffix tree edge, so
we update PfxtNode(𝑒1, 8)’s cumulative deviation cost to 14. (c) 𝑒6 is now a suffix tree edge, so we mark PfxtNode(𝑒6, 10) and its
children as removed. We then create a re-spur list item indicating that 𝜑 will skip 𝑒1 during re-expansion. (d) 𝑒8 is discovered
later than 𝑒6, so we mark PfxtNode(𝑒8, 16) and its children as removed. (e) Similar to (b), we update PfxtNode(𝑒3, 9)’s cumulative
deviation cost to 21. (f) Similar to (c), we mark PfxtNode(𝑒6, 18) as removed. We then create a re-spur list item indicating that
PfxtNode(𝑒1, 14) will skip 𝑒3 during re-expansion.

Table 1, since it is already illustrated. Figure 4(a) illustrates the

prefix tree for four paths and a queue containing PfxtNode(𝑒1, 8)

and its siblings. Note that a four-critical path query may generate

more than four nodes [2], so we see eight nodes in Figure 4(a).

Figure 4(b) illustrates that we pop PfxtNode(𝑒1, 8) from the queue.

Since 𝑒1 is still a non-suffix tree edge, PfxtNode(𝑒1, 8) remains

𝜑 ’s child. We update PfxtNode(𝑒1, 8)’s cumulative deviation cost to

0+9−(−5) = 14 using the shortest path values in Figure 3(b).We also

push PfxtNode(𝑒1, 14)’s children to the queue. Figure 4(c) illustrates

that we pop PfxtNode(𝑒6, 10) from the queue. Since 𝑒6 is now a suffix

tree edge, PfxtNode(𝑒6, 10) should be removed. We create a re-spur

list item indicating that PfxtNode(𝑒6, 10)’s parent 𝜑 will skip 𝑒1
during re-expansion. We should remove PfxtNode(𝑒6, 10)’s children

as well, and we push them to the queue. Figure 4(d) illustrates that

we pop PfxtNode(𝑒8, 16) from the queue. PfxtNode(𝑒8, 16)’s parent

𝜑 belongs to a re-spur list item, indicating that one of PfxtNode(𝑒8,

16)’s left siblings is removed. Since PfxtNode(𝑒8, 16) is discovered

later than this removed sibling, we remove PfxtNode(𝑒8, 16) and

its children. Figure 4(e)–(f) repeat the same procedure and finally

produce two re-spur list items. Lemma 2 concludes Algorithm 2.

Lemma 2. Algorithm 2 takes 𝑂 (𝑘 log𝑘) time complexity.
Algorithm 3 describes another subroutine, which redesigns the

Spur algorithm in [2] to support incrementality. Algorithm 3 ex-

pands the prefix tree from a given prefix tree node. Our algorithm

includes a set of pruned edges pes as input, which allows us to

minimally expand the prefix tree from a given node by pruning pes
during expansion (lines 1 and 5). Lemma 3 concludes Algorithm 3.

Lemma 3. Algorithm 3 takes 𝑂 (𝑛 +𝑚 log𝑘 + 𝑘) time complexity.
Using Algorithms 2–3 as primitives, Algorithm 4 describes the

incremental prefix tree expansion algorithm. The goal of Algorithm

4 is to retrieve the top-𝑘 critical paths in ascending order of path

delay by incrementally expanding the prefix tree. Since we are

Algorithm 3: SpurPruned(pfx, d, ˆQ, pes)
Input: a prefix tree node pfx, destination vertex d, priority

queue
ˆQ, a set of pruned edges pes

1 mark all edges in pes as pruned in the given graph;

2 u← tail[pfx.e];
3 while u ≠ d
4 Foreach e ∈ fanout(u)
5 if tail[e] = successor[u] or e is pruned then
6 continue;
7 pfx_new← new PfxtNode(pfx, e, pfx.w + dvi[e]);
8 ˆQ.enqueue(pfx_new);
9 u← successor[u];

10 unmark all edges in pes in the given graph;

retrieving paths incrementally, we transfer the essential information

from the previous CPG query, including a priority queue
ˆQ of nodes

keyed on their cumulative deviation costs (line 1) and the dequeued

nodes Λ (line 2). We initialize the solution path set and a queue

Q (line 3). We generate a re-spur list R using Algorithm 2 (line 4).

Since Algorithm 2 invalidates
ˆQ’s heap property, we heapify ˆQ (line

5). With R, we can reuse updated nodes from the previous CPG

and minimally expand the prefix tree (line 6:7). In OpenTimer [2],

this critical path retrieval procedure always satisfies the condition

where the nodes in Λ have cumulative deviation costs no more than

the minimum cumulative deviation cost in
ˆQ. However, Algorithm 2

may cause Λ to violate this condition. To solve this, we recover

unremoved paths from Λ and record the maximum cumulative

deviations cost max_dc in Λ (line 8); we also expand any leaf nodes

in Λ, because they may have undiscovered children. If in the path

search loop (line 9:18), we see a node that has a cumulative deviation
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cost less than max_dc (line 16), meaning the above condition is still

violated, we continue executing the loop. The path search loop

iteratively dequeues a node pfx (line 10), recovers the path (line

14:15), and then expands the search space for pfx (line 18) until

we retrieved enough paths and the above condition is fulfilled.

Combining Lemma 2–3, we draw the following theorem.

Theorem 2. Algorithm 4 takes 𝑂 (𝑛 +𝑚 + 𝑘) space complexity and
𝑂 (𝑘𝑛 + 𝑘𝑚 log𝑘 + 𝑘2) time complexity.

Proof. The space complexity of Algorithm 4 involves𝑂 (𝑛 +𝑚)
for storing the circuit graph, 𝑂 (𝑛) for the suffix tree, 𝑂 (𝑘) for the
prefix tree, and 𝑂 (𝑘) for the re-spur list. Hence, the total space

complexity is 𝑂 (𝑛 +𝑚 + 𝑘). We perform Algorithm 3 up to 𝑘 iter-

ations to obtain the top-𝑘 critical paths. Therefore, the total time

complexity is 𝑂 (𝑘𝑛 + 𝑘𝑚 log𝑘 + 𝑘2). □

Algorithm 4: IncPfxt(d, k, P)
Input: destination vertex d, path count k, affected prefix

tree nodes P
Output: solution set Ψ of critical paths

1 ˆQ← priority queue of nodes from the previous CPG;

2 Λ← transfer dequeued nodes from the previous CPG;

3 Ψ,Q← 𝜙

4 R←MarkPfxtNodes(P, Q);
5 ˆQ.heapify();
6 Foreach r ∈ R
7 SpurPruned(r.pfx, d, ˆQ, r.pes);
8 num_paths, max_dc, Ψ← recover paths from nodes that are

unremoved in Λ and record max cumulative deviation cost;

9 while ˆQ is not empty

10 pfx ← ˆQ.dequeue();
11 if pfx is removed then
12 continue;
13 num_paths← num_paths + 1;
14 path← recover path from pfx;
15 Ψ← Ψ ∪ path;
16 if pfx.w ≥ max_dc and num_paths ≥ k then
17 break;
18 SpurPruned(pfx, d, ˆQ, 𝜙);
19 return Ψ;

4 EXPERIMENTAL RESULTS
We implemented Ink in C++ and compiled it with GCC 11.4.0 on

a 4.8-GHz 64-bit Linux machine of an Intel Core i5-13500 Pro-

cessor. We enable the optimization flag -O3 and C++17 standard

-std=c++17. We select seven large circuits generated by Open-

Timer [2] to evaluate Ink’s performance. We only compare the

proposed algorithms with OpenTimer beacuse its CPG algorithm

outperformed existing methods.

4.1 Overall Performance Comparison
Table 2 compares the suffix tree update runtime, prefix tree ex-

pansion runtime, total runtime, and memory usage between full

CPG and incremental CPG (Ink) on seven circuits. For each circuit,

we measure the performance of Ink by taking the average of 100

incremental iterations that simulate a gate-sizing optimization algo-

rithm developed atop OpenTimer [2]. For wb_dma, tv80, ac97_ctrl,

aes_core, and des_perf, we use their maximum path counts for each

CPG call. For vga_lcd and netcard, whose maximum path counts are

enormous, we use sufficiently large path counts (one million and

five million) for each CPG call. Each incremental iteration randomly

resizes a gate to alter the edge weight of the circuit graph and issue

a CPG call to trigger a timing update. Full CPG refers to the update

that re-runs the whole CPG without incrementality, which is how

OpenTimer [2] deals with circuit graph updates, while incremen-

tal CPG refers to the proposed method. As shown in Table 2, Ink

outperforms full CPG in all circuits. Since Ink partially reuses the

previous CPG results, it is faster and uses less memory than full

CPG. For example, Ink is 22.4× faster and uses 31% less memory in

vga_lcd. We do not compare accuracy because our algorithms can

produce the same solutions as the golden solutions produced by

OpenTimer.

Figure 5 plots the runtime distribution of full CPG and Ink across

50 incremental iterations. Depending on the circuit modifier, the

runtime per incremental iteration can vary. Regardless of the vari-

ation, we see a consistent runtime gap between full CPG and Ink.

Taking netcard as an example, Ink is 8.3× faster than full CPG at

the 22
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Figure 5: Runtime distribution of full CPG and Ink across 50
incremental iterations for des_perf and netcard.
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Figure 6: Speedup vs path count for des_perf and netcard.

4.2 Performance at Different Path Counts
Figure 6 demonstrates the speedup of Ink over full CPG at different

path counts for des_perf and netcard. As we increase the path count,
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Table 2: Overall performance comparison between full CPG (OpenTimer [2]) and incremental CPG (Ink).

Full CPG (OpenTimer [2]) Incremental CPG (Ink)

Circuit |𝑉 | |𝐸 | Path count

(K)

Sfxt

(ms)

Pfxt

(ms)

Total

(ms)

Mem

(MB)

Sfxt

(ms)

Pfxt

(ms)

Total

(ms)

Mem

(MB)

wb_dma 12602 8184 32 1.3 3.9 5.2 23.1 0.4 (3.3×) 0.6 (6.5×) 1 (5.2×) 17.8 (-23%)

tv80 16681 11364 45 2 6.3 8.3 30.4 0.5 (4×) 1.1 (5.7×) 1.6 (5.2×) 22.6 (-26%)

ac97_ctrl 40210 25803 103 7 19.4 26.4 64.3 1.7 (4.1×) 3 (6.5×) 4.7 (5.6×) 47.2 (-27%)

aes_core 66221 43022 172 13.2 56.1 69.3 104.7 3.3 (4×) 6 (9.4×) 9.3 (7.5×) 75.9 (-28%)

des_perf 295808 189276 757 82.1 260.3 342.4 447.1 13.4 (6.1×) 30.8 (8.5×) 44.2 (7.7×) 320.8 (-28%)

vga_lcd 397806 473772 1000 99.6 712 811.6 778.7 5.7 (17.5×) 30.5 (23.3×) 36.2 (22.4×) 538.5 (-31%)

netcard 3901343 2402788 5000 1612.4 3012.1 4624.5 4308.9 440.2 (3.7×) 209.5 (14.4×) 649.7 (7.1×) 3466.2 (-20%)

Sfxt: suffix tree update runtime Pfxt: prefix tree expansion runtime
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Figure 7: Speedup vs incrementality for des_perf and netcard.
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Figure 8: Speedup breakdown of Algorithm 1 (IncSfxt) and
Algorithm 4 (IncPfxt) at different path counts.

the speedup of Ink first decreases and then increases after a certain

path count. For example, in des_perf, the speedup decreases from

over 3× to less than 2× between one path and 100K paths, and

then the speedup increases after 100K paths. This is because when

the path count is small, Algorithm 1 is the major contributor to

Ink’s overall speedup. As we increase the path count, prefix tree

expansion starts to dominate the performance, but the path count

is not large enough for Algorithm 4 to become effective; thus, Ink’s

overall speedup decreases. As we further increase the path count,

Algorithm 4 exhibits a large speedup over full prefix tree expansion;

thus, Ink’s overall speedup increases.

4.3 Performance at Different Incrementalities
Figure 7 demonstrates the speedup of Ink over full CPG at different

graph modification rates for des_perf and netcard. As we increase

the graph modification rate, the speedup drops accordingly. For

example, Ink’s speedup drops from 3.6× to 1.8× in netcard. This is

because the higher the graph modification rate, the more nodes that

Ink needs to visit in Algorithm 2. Ink is most effective at a low graph

modification rate. For example, Ink is over 4× faster in des_perf at

1% graph modification rate. This emphasizes Ink’s benefit because

realistically one incremental iteration involves only modifying far

less than 1% of the gates in the circuit. On the contrary, Ink is still

faster at 100% graphmodification rate. For example, Ink is almost 2×
faster in netcard at 100% graph modification rate. This is because

even if the whole circuit is updated, it is very likely that many

critical path traces remain the same. Ink only needs to update the

path delays, which largely reduces memory reallocation overhead.

4.4 Speedup Breakdown of IncSfxt and IncPfxt
Figure 8 demonstrates the speedup breakdown of Algorithm 1 (IncS-

fxt) and Algorithm 4 (IncPfxt) for netcard. As we increase the path

count from one million to five million, the speedup of Algorithm 4

becomes more remarkable. For example, the speedup of Algorithm

4 increases from 26.2% to 70.5%. This is because the efficiency of

Algorithm 1 is constrained by the size of the affected subgraph of

the suffix tree.

5 CONCLUSION
In this paper, we have introduced Ink, an efficient incremental 𝑘-

critical path generation algorithm. Compared to a state-of-the-art

timer, Ink is up to 22.4× faster and consumes up to 31% less memory

when generating one million critical paths on a large design. We

plan to extend Ink to a parallel target using [3, 4].
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