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ABSTRACT
Recent static timing analysis (STA) engines have leveraged task depen-

dency graph (TDG) parallelism to accelerate various STA algorithms,

including graph-based analysis and path-based analysis. Despite the

promising speedup via task parallelism, the scheduling cost of a TDG

has become dominant when handling large TDGs. To overcome this

challenge, we propose G-PASTA, a simple and fast TDG partitioning

algorithm to reduce the scheduling cost of large task-parallel STA

algorithms. By harnessing the power of GPU computing, G-PASTA

incurs minimal cost of partitioning while bringing significant runtime

improvement to task-parallel STA algorithms. Compared to a state-of-

the-art CPU-based TDG partitioner, G-PASTA is up to 41.8× faster in

partitioning runtime and can improve the overall STA performance by

43% on large designs.
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1 INTRODUCTION
Static timing analysis (STA) is an important stage in the overall design

flow because it validates the expected timing behaviors of a circuit

design. As the design complexity continues to grow, STA becomes

very time-consuming. To alleviate the long runtime, recent STA tools,

such as OpenTimer [4, 7] and many others [2, 3], have leveraged task
parallelism to describe timing propagation algorithms in a top-down

task dependency graph (TDG). Each TDG node represents a particular

STA task (e.g., delay calculation, required arrival time update), and

each TDG edge represents a dependency between two STA tasks. By

delegating the scheduling of a TDG to a task execution environment,

such as a dynamic scheduler [5, 6], we can efficiently parallelize timing

propagation algorithms across manycore CPUs.
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Figure 1: (a) Runtime breakdown of the core “update_timing”
method in OpenTimer [4] with (right) and without (left) parti-
tioning. (b) Growth of partitioning time with increasing TDG
size for two popular TDG partitioners [1, 10].

Although TDG parallelism offers promising speedup, the schedul-

ing cost–comprising the building and execution of a TDG–can become

dominant when dealing with large task-parallel STA workloads [8].

For example, analyzing a circuit of 1.5M gates can spend over 50%

runtime on building a TDG of 4M tasks and 5M dependencies, whereas

the optimal execution performance is achievable using only 8–16 CPU

threads [4]. This result implies that a large TDG is unnecessary given

the small nubmer of saturated CPU threads. Furthermore, most timing

propagation tasks exhibit relatively short runtime, comparable to or

even shorter than per-task scheduling cost (i.e., assigning a task to a

worker on a CPU core). For example, a backward propagation task in

OpenTimer [4] takes about 0.5–50 us, while scheduling a task using

OpenTimer’s Taskflow scheduler [6] can take 0.2–3 us. Striking a bal-

ance between scheduling cost and task granularity is thus important

for optimizing the performance of task-parallel STA algorithms.

A common solution for reducing scheduling cost is to break down

a large TDG into many partitions, where each partition is a cluster of

tasks that run sequentially with respect to their topological order in

the original TDG. Instead of scheduling these clustered tasks one by

one across different workers, we now only schedule a partition once

and run it by a worker, which reduces the scheduling overhead. Note

that TDG partitioning is very different from conventional graph or

hypergraph partitioners (e.g., Metis [9] and Kahypar [11]) by focusing

on partitioning a directed acyclic graph (DAG) to reduce the scheduling

cost without affecting much the original TDG parallelism. Figure 1(a)

shows the benefit of TDG partitioning by profiling the runtime of

the core method “update_timing” in OpenTimer [4]. Building and

running the original TDG take 59% and 41% of the runtime. After

applying the proposed partitioner, despite incurring an extra cost for
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partitioning, we can achieve nearly 50% runtime improvement due to

reduced TDG size and scheduling cost.

There are a few popular TDG partitioners. Vivek [10] clusters tasks

based on each task’s impact on the overall TDG parallelism and critical

path length. However, this clustering algorithm suffers from quadratic

time complexity due to iterative checking of cycles. To solve this prob-

lem, GDCA [1] removes expensive cycle checking using breadth-first

traversal, yet at the cost of reduced TDG parallelism. While these TDG

partitioners help reduce the scheduling cost, they are all limited to

single-threaded execution. As the TDG size increases, their partitioning

time grows rapidly (see Figure 1(b)) and can outweigh the advantage

of partitioning. To overcome this challenge, we propose G-PASTA, a
fast GPU-powered TDG partitioning algorithm to improve the perfor-

mance of task-parallel STA algorithms. We summarize three technical

contributions of G-PASTA as follows:

• We design a GPU-accelerated partitioning algorithm that effectively

partitions large TDGs into dependent subgraphs to reduce the sched-

uling cost.

• We design an efficient cycle-free clustering algorithm that can auto-

matically cluster tasks to the right granularity without affecting too

much the original TDG parallelism.

• We design a deterministic GPU kernel algorithm which allows ap-

plications to enable predictable results.

We evaluate the performance of G-PASTA on a set of large TDGs de-

rived from a state-of-the-art task-parallel STA engine, OpenTimer [4].

Compared to GDCA, G-PASTA is up to 41.8× faster in partitioning

runtime and can improve the overall STA performance by 43% on large

designs.

2 PROBLEM DEFINITION AND CHALLENGES
Given (1) a TDG where each task represents a particular timing propa-

gation task (e.g., required arrival time update) and each edge represents

a task dependency and (2) a tunable parameter of partition size that

restricts the maximum number of tasks per partition, our goal is to par-

tition the TDG to the right granularity such that the partitioned TDG

can produce the best runtime performance compared to the original

TDG. Unlike the typical graph or hypergraph partitioning algorithms,

TDG partitioning exhibits unique constraints and challenges, which

we summarize below:

• Existing graph partitioning algorithms, such as Metis [9] and

KaHypar[11] cannot be used out of the box for our application

because their main goal is to minimize the cut size instead of the

induced scheduling cost by a partitioning result. Furthermore, their

solutions focus on balanced partitions instead of maximal paral-

lelism which can significantly affect the overall runtime.

• Unlike undirected graph partitioning algorithms which may intro-

duce cycles when clustering tasks together (see Figure 2(a)), a valid

TDG partitioning result needs to be cycle-free (see Figure 2(b)).

Otherwise, the result cannot be scheduled due to cyclic task depen-

dencies.

• Partitioning a TDG in parallel often leads to non-deterministic out-

comes that prevent applications from obtaining predictable results.

For certain application scenarios (e.g., debugging), deterministic

results are preferable. Thus, there is a requirement for an algorithm

that allows applications to opt-in deterministic outcomes.

Furthermore, for many task-parallel STA workloads, the generated

TDGs to perform parallel timing propagation can be huge (e.g., multi-

millions of tasks and dependencies). To maximize the benefits of TDG

partitioning, it is essential for the partitioning process to be as fast as

possible. Otherwise, long partitioning time can outweigh the advan-

tages gained from an improved TDG runtime. Compared to manycore
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Figure 2: (a) An invalid TDG partitioning result due to cyclic
dependencies between P0 and P1. (b) A valid TDG partitioning
result where P0 includes task 0, P1 includes tasks 1 and 2, and
P2 includes task 3.

CPUs, modern GPU offers order-of-magnitude more parallelism and

memory bandwidth, which is particularly suitable for handling large

volume of data. This advantage has inspired us to leverage the power

of GPU computing to design a fast TDG partitioner targeting large

task-parallel STA workloads.

3 G-PASTA
G-PASTA addresses the above challenges by introducing a parallelism-

aware partitioning algorithm equipped with a cycle-free clustering

method and a deterministic GPU kernel algorithm.

3.1 Parallelism-aware Partitioning Algorithm
Unlike the existing parallel graph partitioners that focus on minimiz-

ing the cut size of the partitioned graph, a parallel TDG partitioning

algorithm focuses on reducing the scheduling overhead without affect-

ing much the original TDG parallelism. Partitioning a large TDG in

parallel requires efficient parallel traversal of the TDG, which can be

achieved by the well-studied parallel breadth-first search (BFS). Based

on BFS, the state-of-the-art GDCA obtains a levelized topological order

of tasks and iteratively clusters tasks level by level to derive a parti-

tioning result. However, this approach can largely reduce the TDG

parallelism as nodes at the same level can run in parallel. As shown

in Figure 3(a), GDCA can lead to a partitioning result of sequential

execution.
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Figure 3: (a) Level-by-level partitioning method [1] can result
in a sequential TDG. (b) Parallelism-aware partitioning method
can produce a parallel TDG.

To overcome this challenge, G-PASTA introduces a parallelism-

aware partitioning algorithm. Our algorithm prioritizes clustering tasks

between adjacent levels to largely avoid reducing TDG parallelism.

This is because tasks across different levels typically exhibit at least

one dependency constraint. Compared to Figure 3(a), clustering tasks

between adjacent levels as shown in (b) results in a smaller reduction

of TDG parallelism and can thus produce a better partitioning result.

To this end, we design two arrays: (1) the desired partition ID (𝑑_𝑝𝑖𝑑)

array to store the IDs of the partition that each task desires to be

clustered into, and (2) the final partition ID (𝑓 _𝑝𝑖𝑑) array to store
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the IDs of the partition that each task is eventually clustered into. At

each BFS level, the 𝑓 _𝑝𝑖𝑑 of each task is used to assign the 𝑑_𝑝𝑖𝑑 of

its neighbors in the next BFS level. Algorithm 1 presents G-PASTA’s

kernel for one partitioning iteration. To cluster the tasks between

adjacent levels, our partitioning kernel consists of two steps as follows:

assign f_pid for current-level tasks by d_pid and assign d_pid and release
neighboring dependencies.

3.1.1 Assign f_pid for current-level tasks by d_pid. In step one, each

thread handles one task in the current BFS level by grabbing a task

from the array ℎ𝑎𝑛𝑑𝑙𝑒 , which stores all the tasks to be handled in

the current BFS level. Then each thread assigns the 𝑓 _𝑖𝑑 of the task

with the 𝑑_𝑝𝑖𝑑 of the task, which is the 𝑓 _𝑝𝑖𝑑 of its parent task in the

previous level. We use a partition size counter 𝑝𝑖𝑑_𝑐𝑛𝑡 to count the

number of tasks within a partition. If the desired partition of a task is

not full (see line 5 of Algorithm 1, 𝑃𝑠 is the partition size), we assign

the 𝑑_𝑝𝑖𝑑 of the task to the 𝑓 _𝑝𝑖𝑑 of the task. Otherwise, the task is

assigned to a new partition.

3.1.2 Assign d_pid and release neighboring dependencies. In step two,

each thread first assigns 𝑑_𝑝𝑖𝑑 for the neighbors of the current task.

Then, each thread releases the dependencies of the neighbors, i.e.,

marks the number of visited dependency edges. Note that the depen-

dency mentioned in Algorithm 1 only refers to the fan-in dependency.

We use a dependency counter 𝑑𝑒𝑝_𝑐𝑛𝑡 , which is initialized as the num-

ber of dependencies of the neighbor, to record the remaining number

of dependencies. If the neighbor task’s dependents are fully released

(i.e., 𝑑𝑒𝑝_𝑐𝑛𝑡 = 0), this neighbor is pushed into ℎ𝑎𝑛𝑑𝑙𝑒 for the next

partitioning iteration.

0 2 4

1 3 5

6

0 2 4 x x x x
0 1 2 3 4 5 6

(a) (b) (c)

0 0 1 1 2 2 x

0 x 1 x 2 x x

0 2 4 1 3 5 x
0 1 2 3 4 5 6
0 0 1 1 2 2 2

0 0 1 1 2 2 x

0 2 4 1 3 5 6
0 1 2 3 4 5 6
0 0 1 1 2 2 2

0 0 1 1 2 2 2

1 2 3

0

0
0
0

0

0

0

0
0
00
0

0

: : : _ : _

0 2 4

1 3 5

6

0 2 4

1 3 5

6

Figure 4: An example of our partitioning algorithm in three
iterations under the partition size of 3. 𝐻 is the array to store
the tasks to be handled by threads.𝑉 is the array of vertex (task)
IDs. 𝐷 is the array of the desired partition ID for each task. 𝐹 is
the array of the final partition ID for each task.

To give a better understanding of how Algorithm 1 helps maintain

the TDG parallelism during partitioning, we use Figure 4 to demon-

strate our algorithm in three partitioning iterations under the partition

size of 3. In Figure 4, 𝐻 is the array to store the tasks to be handled

by the threads. 𝑉 is the array of vertex (task) ID. 𝐷 is the array of the

desired partition ID (𝑑_𝑝𝑖𝑑) for each task. 𝐹 is the array of the final

partition ID (𝑓 _𝑝𝑖𝑑) for each task. The grey rectangle on the TDG

refers to G-PASTA’s partitioning kernel. The blue, orange, and green

entries in the array refer to the entries that are handled by threads dur-

ing one partitioning iteration. The black triangle is the reading offset

(𝑅𝑜 𝑓 𝑓 𝑠𝑒𝑡 ), which is an index in 𝐻 to indicate the beginning of the task

sequence in𝐻 to be handled by threads. We also define the reading size

(𝑅𝑠𝑖𝑧𝑒) as the total number of tasks to be handled by threads during

one partitioning kernel as shown in line 2 of Algorithm 1.

Before partitioning, all the source tasks (tasks 0, 2, 4) are pushed

into 𝐻 , and each source task is assigned with a different 𝑑_𝑝𝑖𝑑 (0, 1,

2). 𝑅𝑜 𝑓 𝑓 𝑠𝑒𝑡 is initialized as 0. We also initialize 𝑅𝑠𝑖𝑧𝑒 as the number

of source tasks (3). Figure 4(a) shows the first partitioning iteration.

G-PASTA’s partitioning kernel is invoked at the first level of the TDG.

With the 𝑅𝑜 𝑓 𝑓 𝑠𝑒𝑡 as 0 and the 𝑅𝑠𝑖𝑧𝑒 as 3, threads 1, 2, and 3 handle

tasks 0, 2, and 4, respectively. Based on the initialized 𝑑_𝑝𝑖𝑑 of tasks 1,

2, and 3 in 𝐷 , threads 1, 2, and 3 assign the 𝑓 _𝑝𝑖𝑑 for tasks 0, 2, and 4

as 0, 1, and 2 accordingly, marked as blue, orange, and green entries in

𝐹 . Then, threads 1, 2, and 3 update the 𝑑_𝑝𝑖𝑑 of the neighboring tasks

of tasks 0, 2, and 4, which are tasks 1, 3, and 5, as 0, 1, and 2 separately,

marked as blue, orange, and green entries in 𝐷 . Since tasks 1, 3, and 5

have all their dependencies released by the threads, they are pushed

into 𝐻 . Then, we update the 𝑅𝑜 𝑓 𝑓 𝑠𝑒𝑡 as 3 and the 𝑅𝑠𝑖𝑧𝑒 as 3 for the

next iteration since three tasks are written into 𝐻 in the first iteration.

Figure 4(b) shows the second partitioning iteration. The partitioning

kernel moves to the second level of the TDG. With the 𝑅𝑜 𝑓 𝑓 𝑠𝑒𝑡 as 3

and the 𝑅𝑠𝑖𝑧𝑒 as 3, threads 1, 2, and 3 handle tasks 1, 3, and 5. Based on

the 𝑑_𝑝𝑖𝑑 of tasks 1, 3, and 5, which are 0, 1, and 2, respectively, threads

1, 2, and 3 assign the 𝑓 _𝑝𝑖𝑑 of tasks 1, 3, and 5 as 0, 1, and 2 accordingly

since the 𝑝𝑖𝑑_𝑐𝑛𝑡 of 𝑃0, 𝑃1, and 𝑃2 is less than the partition size (3).

Then threads 1, 2, and 3 simultaneously try to assign the 𝑑_𝑝𝑖𝑑 for

task 6. Based on our proposed cycle-free clustering algorithm, which

will be discussed in the next section, thread 3 eventually assigns the

𝑑_𝑝𝑖𝑑 of task 6 as 2. The partitioning kernel finishes in Figure 4(c) by

assigning the 𝑓 _𝑝𝑖𝑑 of task 6 as 2.

Algorithm 1: G-PASTA partitioning kernel

1: /* Step 1: assign f_pid for current-level tasks by d_pid */

2: parallel for each thread gid { /* gid < Rsize */
3: cur = handle[Roffset + gid];
4: cur_pid = d_pid[cur];
5: if (atomicAdd(pid_cnt[cur_pid], 1) < Ps) then
6: f_pid[cur] = cur_pid;
7: else then
8: new_pid = atomicAdd(max_pid, 1) + 1;

9: f_pid[cur] = new_pid;
10: pid_cnt[new_pid] ++;
11: }
12: /* Step 2: assign d_pid and release neighboring dependencies */

13: parallel for each thread gid {
14: for each n ∈ neighbors of cur
15: /* cycle_free_clustering_algorithm() */

16: atomicMax(d_pid[n], f_pid[cur]);
17: if (atomicSub(dep_cnt[n], 1) == 1) then
18: Woffset = atomicAdd(Wsize, 1);
19: handle[Roffset + Rsize +Woffset] = n;
20: }

3.2 Cycle-free Clustering Algorithm
To ensure the partitioned TDG is cycle-free, one simple solution is to

iteratively check cycles and avoid clustering tasks that can introduce

cyclic dependencies during the partitioning process [10]. However, it-

erative cycle checking can incur significant runtime overhead. To solve

this problem, GDCA [1] partitions the TDG based on its topological

order and clusters tasks level by level to avoid backward dependencies.

Nevertheless, as shown in Figure 3(a), this method can largely reduce
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the TDG parallelism because tasks at the same level should run in par-

allel. To overcome these challenges, we propose a simple yet efficient

cycle-free clustering algorithm by restricting the parent partition to

which a task can be clustered.

Specifically, we assign each task a partition ID. When multiple

partitions want to cluster a task, only the partition with the largest ID
can cluster this task. Since we traverse the TDG level by level using BFS,

the partition IDs of all tasks at one level are always larger than those

at previous levels. This organization implies no cyclic dependencies

because the partition with a larger ID will always come after a partition

with a smaller ID. Formally speaking, given a DAG, 𝐺 , for each vertex

𝑣𝑖 ∈ 𝐺 , we define 𝑝𝑖𝑑 (𝑖) as the partition ID of 𝑣𝑖 and 𝑃𝑅𝐸 (𝑖) as the set
of parent vertices of 𝑣𝑖 . We denote 𝑃 as a partition in𝐺 and𝑉 (𝑃) as the
set of vertices within 𝑃 . We say 𝑃 is convex when (1) ∀𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 (𝑃),
𝑖 ≠ 𝑗 , and (2) ∀𝑣𝑘 in any paths between 𝑣𝑖 and 𝑣 𝑗 , 𝑣𝑘 ∈ 𝑉 (𝑃). With

these notations, we outline our clustering rule as follows: ∀𝑣𝑖 ∈ 𝐺 ,

𝑝𝑖𝑑 (𝑖) =𝑚𝑎𝑥{𝑝𝑖𝑑 ( 𝑗) | 𝑣 𝑗 ∈ 𝑃𝑅𝐸 (𝑖)}.

Theorem 1. The proposed clustering algorithm does not introduce

any cycle during the partitioning process.

Proof. We summarize three cases where a cycle can happen during

the partitioning process and prove that none of them can exist in

our algorithm. The first case where a cycle can occur is when 𝑃 is

not convex. As shown in Figure 5(a), 𝑃0 is not convex as 𝑣1 is in the

path between 𝑣0 and 𝑣2 and 𝑣1 ∉ 𝑃0. Based on our algorithm, we have

𝑝𝑖𝑑 (0) < 𝑝𝑖𝑑 (1) and 𝑝𝑖𝑑 (1) < 𝑝𝑖𝑑 (2). Thus 𝑝𝑖𝑑 (0) < 𝑝𝑖𝑑 (2). However,
this is contradictory to the fact that 𝑝𝑖𝑑 (0) = 𝑝𝑖𝑑 (2) as 𝑣0, 𝑣2 ∈ 𝑉 (𝑃0).
Thus, the first casewill not exist and 𝑃 must always be convex following

our algorithm. The second case is when a cycle occurs among partitions

even when partitions are all convex. As shown in Figure 5(b), assuming

𝑃0 and 𝑃1 are convex, there is a cycle between them. Based on our

algorithm, we have 𝑝𝑖𝑑 (0) < 𝑝𝑖𝑑 (1) and 𝑝𝑖𝑑 (4) < 𝑝𝑖𝑑 (2). Besides,
𝑝𝑖𝑑 (1) = 𝑝𝑖𝑑 (4) as 𝑣1, 𝑣4 ∈ 𝑉 (𝑃1). Thus 𝑝𝑖𝑑 (0) < 𝑝𝑖𝑑 (2). However,
this is contradictory to the fact that 𝑝𝑖𝑑 (0) = 𝑝𝑖𝑑 (2) as 𝑣0, 𝑣2 ∈ 𝑃0. Thus
the second case won’t exist. The case in Figure 5(b) can be extended

to a more general case as shown in Figure 5(c), where there is a cycle

among n convex partitions. Based on the above analysis, eventually

we have 𝑝𝑖𝑑 (0) < 𝑝𝑖𝑑 (𝑛 + 2), which is still contradictory to the fact

that 𝑝𝑖𝑑 (0) = 𝑝𝑖𝑑 (𝑛 + 2) as 𝑣0, 𝑣𝑛+2 ∈ 𝑉 (𝑃0). Thus, the more general

case as shown in Figure 5(c) will not exist. □

The proposed cycle-free clustering algorithm can be efficiently im-

plemented using just one lightweight GPU atomic operation, as shown

in lines 15–16 in Algorithm 1. As a result, our algorithm is easy to

implement and is extremely efficient with little kernel overhead. Be-

sides, our algorithm always decides a lower bound for the number of

partitions in the TDG since partitions with smaller IDs cannot continue

to cluster tasks if all the available tasks are clustered by the partition

with the largest ID. For instance, in Figure 4(c), there are no available

tasks to cluster for 𝑃0 and 𝑃1. Thus, our algorithm guarantees a lower

bound for the TDG parallelism regardless of the partition size. This

property highlights the advantage of G-PASTA that users do not need

to fine-tune a partition size as GDCA but simply use the original TDG

size as the default value.

3.3 Deterministic GPU Kernel Algorithm
Although our cycle-free kernel algorithm is efficient in parallel cluster-

ing, it can introduce non-deterministic partitioning results, preventing

certain applications of interest from obtaining predictable outcomes.

As shown in Figure 6, two of the four tasks (task 0, 1, 2, and 3) can

be clustered into 𝑃0. However, the selection of which two tasks are

clustered is entirely determined by the runtime. To further enhance
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Figure 5: Three cases where cycles are introduced.

our algorithm by offering an option for predictable partitioning re-

sults, we propose an efficient deterministic GPU kernel algorithm. As

presented in Algorithm 2, our kernel algorithm consists of four steps:

sort the handle array and the desired partition ID array, identify the first
task in each partition, determine if a desired partition is full, and assign
deterministic partitioning results.

Algorithm 2: G-PASTA deterministic kernel

1: /* Step 1: sort the handle arr and the desired partition ID arr */

2: parallel for each thread gid {
3: key_arr[gid] = d_pid[gid] « 32 | handle[gid];
4: }
5: handle = parallel_sort_by_key(handle, key);
6: d_pid = get_d_pid_sort(handle, d_pid);
7: /* Step 2: identify the first task in each partition */

8: ones← an array of ones; // reduce values

9: fir_tid_arr = parallel_reduce_by_key(ones, d_pid);
10: fir_tid_arr = parallel_exclusive_scan(fir_tid_arr);
11: /* Step 3: determine if a desired partition is full */

12: parallel for each thread gid {
13: fir_index = binarySearch(gid, fir_tid_arr);
14: num_left = Ps - pid_cnt[handle[Roffset + gid]];
15: if (gid < num_left + fir_tid_arr[fir_index]) then
16: is_full_pid[gid] = 0;

17: else then
18: is_full_pid[gid] = 1;

19: }
20: num_full_arr = parallel_inclusive_scan(is_full_pid);
21: /* Step 4: assign deterministic partitioning results */

22: parallel for each thread gid {
23: if (is_full_pid[gid] == 1) then
24: f_pid[gid] = max_pid + num_full_arr[gid];
25: else then
26: f_pid[gid] = d_pid[gid];
27: atomicAdd(pid_cnt[f_pid[gid]], 1);
28: }
29: max_pid += num_full_arr.back();

3.3.1 Sort the handle array and the desired partition ID array. The
goal of this step is to sort the handle array and the desired partition

ID array by each task’s desired partition ID, such that tasks with

the same desired partition ID are grouped together. As presented in

lines 1–6 of Algorithm 2, we create a 64-bit sorting key array 𝑘𝑒𝑦_𝑎𝑟𝑟

where the left 32 bits of each key store the desired partition ID, and

the right 32 bits store the task ID of a given task. We then apply the

parallel_reduce_by_key method on the handle array. This sort-by-

key strategy eliminates the non-deterministic arising from the original

ordering of tasks in the handle array. By the sorted handle array, we

can also obtain the sorted desired partition ID array, 𝑑_𝑝𝑖𝑑 . As shown

in Figure 6, after step 1, tasks 0, 1, 2, and 3 with 𝑑_𝑝𝑖𝑑 = 0 are grouped

together, and tasks 4 and 5 with 𝑑_𝑝𝑖𝑑 = 1 are grouped together.
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Figure 6: Example of the deterministic GPU kernel algorithm
under the partition size of 4. A grey vertex represents a task
that can be clustered into its desired partition. A blue vertex
represents a task with a new partition.

3.3.2 Identify the first task in each partition. Based on the sorted ar-

rays, the goal of this step is to identify the first task in each par-

tition. We create 𝑓 𝑖𝑟_𝑡𝑖𝑑_𝑎𝑟𝑟 to store the ID of each first task. As

presented in lines 7–10 of Algorithm 2, to get 𝑓 𝑖𝑟_𝑡𝑖𝑑_𝑎𝑟𝑟 , we ap-

ply parallel_reduce_by_key on an array of ones with the key as

𝑑_𝑝𝑖𝑑_𝑠𝑜𝑟𝑡 to get the size of each partition. We then store the re-

duced values in 𝑓 𝑖𝑟_𝑡𝑖𝑑_𝑎𝑟𝑟 and apply parallel_exclusive_scan
on 𝑓 𝑖𝑟_𝑡𝑖𝑑_𝑎𝑟𝑟 to obtain the final result. As shown in Figure 6, after

step 2, 𝑓 _𝑡𝑖𝑑 has two entries where 0 represents that task 0 is the first

task in 𝑃0, and 4 represents that task 4 is the first task in 𝑃1.

3.3.3 Determine if a desired partition is full. The goal of this step is to

determine if a task can be clustered into its desired partition. If a task’s

desired partition is full, we need to create a new partition for that task

and increment the maximum partition ID,𝑚𝑎𝑥_𝑝𝑖𝑑 . To this end, we cre-

ate two arrays, 𝑖𝑠_𝑓 𝑢𝑙𝑙_𝑎𝑟𝑟 and 𝑛𝑢𝑚_𝑓 𝑢𝑙𝑙_𝑎𝑟𝑟 . 𝑖𝑠_𝑓 𝑢𝑙𝑙_𝑎𝑟𝑟 indicates if

each task’s desired partition is full or not. 𝑛𝑢𝑚_𝑓 𝑢𝑙𝑙_𝑎𝑟𝑟 indicates the

accumulated number of full partitions corresponding to 𝑖𝑠_𝑓 𝑢𝑙𝑙_𝑎𝑟𝑟 .

Specifically, 𝑛𝑢𝑚_𝑓 𝑢𝑙𝑙_𝑎𝑟𝑟 is the prefix sum (i.e., scan) of 𝑖𝑠_𝑓 𝑢𝑙𝑙_𝑎𝑟𝑟 .

As presented in lines 11–20 of Algorithm 2, we assign a task to a

GPU thread. Each thread applies binary_search on the 𝑓 𝑖𝑟_𝑡𝑖𝑑_𝑎𝑟𝑟

to find which desired partition the task belongs to. We then calcu-

late 𝑛𝑢𝑚_𝑙𝑒 𝑓 𝑡 , the remaining number of tasks that can be clustered

into that desired partition. If the task 𝑣 can still be clustered into its

desired partition, 𝑖𝑠_𝑓 𝑢𝑙𝑙_𝑎𝑟𝑟 [𝑣] = 0; otherwise, 𝑖𝑠_𝑓 𝑢𝑙𝑙_𝑎𝑟𝑟 [𝑣] = 1.

After we obtain 𝑖𝑠_𝑓 𝑢𝑙𝑙_𝑎𝑟𝑟 , we derive 𝑛𝑢𝑚_𝑓 𝑢𝑙𝑙_𝑎𝑟𝑟 by applying

parallel_inclusive_scan on the 𝑖𝑠_𝑓 𝑢𝑙𝑙_𝑎𝑟𝑟 .

3.3.4 Assign deterministic partitioning results. Based on the

𝑖𝑠_𝑓 𝑢𝑙𝑙_𝑎𝑟𝑟 and 𝑛𝑢𝑚_𝑓 𝑢𝑙𝑙_𝑎𝑟𝑟 , we finally calculate the deterministic

partitioning results and store them into 𝑓 _𝑝𝑖𝑑 . As presented in lines

21–29 of Algorithm 2, we assign a task to a GPU thread. We then

check whether a task can be clustered into its desired partition using

𝑖 𝑓 _𝑓 𝑢𝑙𝑙_𝑎𝑟𝑟 . If not, we assign the task to a new partition where

the new partition ID is the maximum partition ID plus the task’s

corresponding element in 𝑛𝑢𝑚_𝑓 𝑢𝑙𝑙_𝑎𝑟𝑟 . This organization not only

ensures the assigned partition ID per task is deterministic, but also

avoids synchronization that atomically gets a new partition ID for a

task. Finally, we update 𝑝𝑖𝑑_𝑐𝑛𝑡 for the next partition iteration. As

shown in Figure 6, tasks 0, 1, and 4 are clustered into their desired

partition (shown in grey), whereas tasks 2, 3, and 5 is 1 are assigned

into new partitions (shown in blue). After four steps described in

Algorithm 2, we increment the maximum partition ID by the number

of new partitions created in this iteration (i.e., the last element in

𝑛𝑢𝑚_𝑓 𝑢𝑙𝑙_𝑎𝑟𝑟 ).

4 EXPERIMENTAL RESULTS
We implemented G-PASTA in C++ and CUDA and compiled it using

nvcc v12.2 with -O2 and -std=c++17 enabled. We performed exper-

iments on a 4.8 GHz 64-bit Linux machine equipped with an Intel

Core i5-13500 CPU and an Nvidia RTX A4000 GPU. We compare the

performance of G-PASTA with its two variants, seq-G-PASTA and

deter-G-PASTA, and a baseline GDCA [1]. Seq-G-PASTA is a sequen-

tial, CPU-based implementation of G-PASTA using a single thread.

Deter-G-PASTA incorporates the proposed deterministic GPU kernel

algorithm to produce deterministic partitioning results.

We consider GDCA as our baseline due to its efficiency. As GDCA

requires users to provide a partition size, we fine-tune it and use the

value that produces the best performance for each circuit; for G-PASTA,

we simply use the TDG size for the partition size, as our algorithm

will converge to a suitable value. We conduct our experiments by

integrating different partitioners into OpenTimer [4] and run graph-

based analysis (update_timing command) on six industrial circuits.

Specifically, when calling update_timing, OpenTimer will generate a

TDG to perform parallel timing update. Statistics of these circuits and

their generated TDGs are listed in Table 1. All data is an average of 10

runs.

4.1 Partition Performance Comparison
Table 1 compares the overall performance amongGDCA, seq-G-PASTA,

G-PASTA, and deter-G-PASTA in terms of their runtime improvement

on generated TDGs and their partitioning runtime. The values un-

der the 𝑇𝑇𝐷𝐺𝑃 column show the runtime of partitioned TDGs and

their speedup over the original TDGs. The values under the 𝑇𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛
column show the runtime of partitioners and their speedup over the

baseline GDCA. We measure the performance in one full-timing itera-

tion through the update_timing method in OpenTimer. The largest

circuit, leon2, generates a TDG of 4.3M tasks and 5.3M dependencies

to perform parallel timing update.

In general, all partitioners can improve the performance of

update_timing due to reduced TDG size and scheduling cost. For

instance, GDCA can improve the TDG runtime of the smallest circuit

(aes_core) from 4.7 ms to 3.1 ms (1.5×) and of the largest circuit (leon2)
from 349.1 ms to 193.5 ms (1.8×). Regardless of the improvement by

GDCA, G-PASTA always outperforms GDCA. For instance, G-PASTA

can improve the TDG runtime of the six circuits by 1.7–2.0×, whereas
GDCA is 1.5–1.8×. Similar results can be observed in the other two

variants of G-PASTA, seq-G-PASTA (1.7–2.0×) and deter-G-PASTA

(1.7–2.0×). We attribute this result to G-PASTA’s parallelism-aware

partitioning algorithm that minimizes the impact on the original TDG

parallelism during task clustering.

In terms of partitioning runtime, G-PASTA has demonstrated su-

perior performance over GDCA because of the efficiency of our GPU

kernel algorithm. The largest speedup values are observed in the three

largest circuits, leon3mp, netcard, and leon2, where G-PASTA is 38.5×,
34.2×, and 41.8× faster than GDCA. On the other hand, we can see

that deter-G-PASTA is a bit slower than G-PASTA (though still much

faster than GDCA) due to the overhead of our deterministic kernel

algorithm. Even without GPU, seq-G-PASTA is still 2.4–6.2× faster

than GDCA across all circuits. As a result, we cannot see any benefit of

GDCA because its long partitioning runtime outweighs its advantage

in improved TDG runtime.
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Table 1: Overall performance comparison among different partitioners (GDCA, seq-G-PASTA, G-PASTA, deter-G-PASTA) and their
improvements on generated TDGs in the core update_timingmethod of OpenTimer [4].

circuit #tasks #deps 𝑇𝑇𝐷𝐺
𝑇
𝑇𝐷𝐺𝑃 (ms) 𝑇𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (ms)

(ms) GDCA seq-G-PASTA G-PASTA deter-G-PASTA GDCA seq-G-PASTA G-PASTA deter-G-PASTA

aes_core 66.8K 86.4K 4.7 3.1 (1.5×) 2.3 (2.0×) 2.3 (2.0×) 2.4 (1.9×) 7.3 1.9 (3.8×) 2.3 (3.1×) 12.4

des_perf 303.7K 387.3K 25.5 16.0 (1.5×) 13.5 (1.8×) 13.6 (1.8×) 13.4 (1.9×) 49.4 9.4 (5.2×) 3.5 (14.1×) 16.4 (3.0×)
vga_lcd 397.8K 498.9K 33.5 21.2 (1.5×) 19.2 (1.7×) 19.3 (1.7×) 19.0 (1.7×) 70.7 11.4 (6.2×) 3.7 (19.1×) 17.1 (4.1×)
leon3mp 3.4M 4.1M 265.9 153.0 (1.7×) 131.8 (2.0×) 133.1 (1.9×) 130.8 (2.0×) 727.9 261.1 (2.7×) 18.9 (38.5×) 61.3 (11.8×)
netcard 4.0M 4.9M 312.1 175.2 (1.7×) 153.3 (2.0×) 154.7 (2.0×) 151.2 (2.0×) 856.8 338.8 (2.5×) 25.0 (34.2×) 61.1 (14.0×)
leon2 4.3M 5.3M 349.1 193.5 (1.8×) 173.3 (2.0×) 172.7 (2.0×) 171.1 (2.0×) 986.9 399.2 (2.4×) 23.6 (41.8×) 67.6 (14.5×)

𝑇𝑇𝐷𝐺 : TDG runtime before partitioning 𝑇𝑇𝐷𝐺𝑃 : TDG runtime after partitioning 𝑇𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 : partitioning runtime

1k 2k 3k 4k 5k 6k 7k 8k

0

2,000

4,000

6,000

8,000

number of iterations

o
v
e
r
a
l
l
r
u
n
t
i
m
e
(
s
)

netcard (3.9M tasks)

origin

GDCA

G-PASTA

1k 2k 3k 4k 5k 6k 7k 8k

0

0.2

0.4

0.6

0.8

1

·104

number of iterations

o
v
e
r
a
l
l
r
u
n
t
i
m
e
(
s
)

leon2 (4.3M tasks)

origin

GDCA

G-PASTA

Figure 7: Comparison of STA runtime improvement between
GDCA and G-PASTA over 8K incremental timing iterations.
The black lines represents the original runtime without any
partitioning.
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Figure 8: Comparison of TDG runtime (after partitioning)
among GDCA, seq-G-PASTA, G-PASTA, and deter-G-PASTA un-
der different partition sizes.

4.2 STA Runtime Comparison
Figure 7 compares the overall STA runtime between GDCA and G-

PASTA over 8K incremental timing iterations, where the given parti-

tioner is iteratively issused at each call to a design modifier followed

by update_timing. The overall STA runtime includes the time of par-

titioning, construction, and execution of partitioned TDGs. The black

line represents the original STA runtime without applying any parti-

tioners to the generated TDGs. As we can see, G-PASTA largely im-

proves the performance of update_timing due to its fast partitioning

runtime and high partitioning quality. The improvement continues to

accumulate as we increase the number of incremental timing iterations.

However, we do not observe any benefit of using GDCA primarily

because of its long partitioning runtime. For instance, running 8K iter-

ations on leon2, G-PASTA speeds up the overall STA performance by

43%, whereas GDCA slows down the process by 3.7×.

4.3 TDG Runtime vs Different Partition Sizes
Figure 8 compares the TDG runtime (after partitioning) among GDCA,

seq-G-PASTA, G-PASTA, and deter-G-PASTA under different partition

sizes. Note that the partition size refers to the maximum number of

tasks within a partition. As GDCA strictly requires each partition to

have the same size, its TDG runtime shows a V-shape pattern, where

the runtime first decreases because of reduced scheduling cost and

then increases because of reduced parallelism. For GDCA, it is user’s

responsibility to find the right partition size that produces the best

performance. However, for G-PASTA, the TDG runtime continues to

decrease until saturation (e.g., partition size of 15 for leon2). This is

because Algorithm 1 always decides a lower bound for the number

of partitions that cannot be clustered together, guaranteeing a lower

bound for the resulting TDG parallelism. This property highlights

another advantage of G-PASTA that user does not need to fine-tune

the partition size but can simply use the original TDG size as the default

value. G-PASTA will automatically converge to the right partition size

and granularity that produce the best TDG runtime performance.

5 CONCLUSION
In this paper, we have proposed G-PASTA, a fast TDG partitioning

algorithm to reduce the scheduling cost of large task-parallel STA

algorithms. G-PASTA introduces an efficient cycle-free clustering al-

gorithm that can automatically cluster tasks to the right granularity

without affecting too much the TDG parallelism. Compared to a state-

of-the-art CPU-based TDG partitioner, G-PASTA is up to 41.8× faster

in partitioning runtime and can improve the overall STA performance

by 43% on large designs.
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