
GenFuzz: GPU-accelerated Hardware Fuzzing using
Genetic Algorithm with Multiple Inputs

Dian-Lun Lin
University of Utah

Salt Lake City, UT, USA
dian-lun.lin@utah.edu

Brucek Khailany
Nvidia Corporation
Austin, TX, USA

bkhailany@nvidia.com

Yanqing Zhang
Nvidia Corporation

Santa Clara, CA, USA
yanqingz@nvidia.com

Shih-Hsin Wang
University of Utah

Salt Lake City, UT, USA
shwang@math.utah.edu

Haoxing Ren
Nvidia Corporation
Austin, TX, USA

haoxingr@nvidia.com

Tsung-Wei Huang
University of Utah

Salt Lake City, UT, USA
tsung-wei.huang@utah.edu

Abstract—Hardware fuzzing has emerged as a promising
automatic verification technique to efficiently discover and verify
hardware vulnerabilities. However, hardware fuzzing can be
extremely time-consuming due to compute-intensive iterative sim-
ulations. While recent research has explored several approaches
to accelerate hardware fuzzing, nearly all of them are limited to
single-input fuzzing using one thread of a CPU-based simulator.
As a result, we propose Gen-Fuzz, a GPU-accelerated hardware
fuzzer using a genetic algorithm with multiple inputs. Measuring
experimental results on a real industrial design, we show that
GenFuzz running on a single A6000 GPU and eight CPU cores
achieves 80× runtime speed-up when compared to state-of-the-
art hardware fuzzers.

I. INTRODUCTION

The ever-increasing complexity of hardware design has
put significant strain on System-on-Chip (SoC) designers and
system integrators to detect and evaluate hardware vulnera-
bilities within the design stage [1]–[3]. As SoC complexity
continues to grow, industry-quality functional verification sig-
noff typically requires a significant and growing amount of
engineering effort to generate and simulate many thousands
of test cases on the same Design-Under-Test (DUT) for
converging on coverage closure and avoiding bug escape from
corner cases. Much research over the past decades has focused
on automatic constrained random verification (CRV) [4] to
relieve the increasing strain for hardware engineers. CRV
tests a DUT by randomly combining manually-defined inputs
(i.e., instructions plus compiled RTL stimulus) into transaction
sequences. However, since CRV relies only on randomly
generated inputs, it suffers from zero knowledge of coverage
and becomes inefficient when verifying large designs.

Coverage-guided verification, also known as hardware
fuzzing, has emerged as a promising automatic hardware ver-
ification technique to efficiently discover and verify hardware
vulnerabilities [1], [5]. Unlike CRV that randomly combines
inputs, hardware fuzzing generates inputs by mutating previ-
ously interesting inputs (i.e., the inputs that increase coverage)
to effectively discover unknown hardware behaviors. However,

since this process requires time-consuming feedback analysis,
hardware fuzzing often takes hours or days to finish.

To alleviate the long runtime, recent research has ex-
plored several approaches to speed up the single-input, single-
threaded, per fuzzing iteration time. RFUZZ [1] proposes a
mux-coverage metric that treats the select signal of each 2:1
multiplexer as a coverage point. However, RFUZZ cannot
scale to large designs since their runtime grows significantly as
the number of multiplexers increases. DirectFuzz [2] extends
RFUZZ to generate test inputs that maximize the coverage of a
specific block. Compared to RFUZZ, DirectFuzz can improve
performance on small designs. However, the speedup on com-
plex designs is insignificant (e.g., 1.08× on the Sodor1Stage
RISC-V processor). Also, their work only targets RFUZZ’s
mux coverage and is not generalizable to other coverage
metrics. DIFUZZRTL [5] introduces a reg-coverage metric
to monitor value changes of control registers connected to
mux control signals. While DIFUZZRTL’s reg coverage shows
capability for large designs, their fuzzing technique requires
many hours or days to achieve high coverage.

TheHuzz [6] explores processor states using multiple cover-
age metrics. However, it induces over 70% runtime overhead
when collecting coverage data since it must access multiple
metrics per fuzzing iteration. Hw-Fuzzing [4] converts a
hardware-description-language (HDL) model into an equiva-
lent software model using Verilator, and performs fuzzing on
the software code using software coverage metrics. Although
it shows software coverage metrics are comparable with
HDL line coverage, other hardware coverage metrics such as
finite-state-machine (FSM) coverage cannot be easily added.
Other research has leveraged FPGAs to accelerate hardware
fuzzing [1], [5]. However, there are three drawbacks of FPGA-
based hardware fuzzing: 1) It suffers from a complicated
compilation setup. 2) It does not provide visibility to internal
signals, complicating bug detection. 3) Instrumenting a design
on an FPGA is challenging [1], [5].

While all these approaches have shown coverage or runtime
improvements, nearly all of them are limited to single-input

!""""""""""""""""""!""""""""""""""""""""!""""""""""""""""""""!""""""""""""""""""!"""""""""""""""""""!""

#"""""""""""""""""""#"""""""""""""""""""""#"""""""""""""""""""""#"""""""""""""""""""#$%&'()*

+,-.."""""/0123),(44 /%,-..+56""""5728(44 89:,(440&;"""""#$%&'((

<=-
*0&;>2

)712?@

*0&;>2

)712?@

*0&;>2

)712?@

*0&;>2

)712?@

*0&;>2

)712?@

)'*+,-*$

+./$012

A=-

B !""""""""""""""""""""B""""""""""""""""""""!""""""""""""""""""!"""""""""""""""""""!,=AC

)'*+,-*$

Fig. 1. Comparison between GenFuzz and existing hardware fuzzers.

fuzzing using one thread of simulation on a CPU architecture.
Recently, RTL simulation research has achieved significant
performance improvement by leveraging GPUs to simulate
multiple inputs simultaneously [3]. This result inspires us to
accelerate hardware fuzzing by exploring data parallelism,
which we refer to as multi-input hardware fuzzing, using
CPU-GPU heterogeneous computing. However, multi-input
hardware fuzzing is extremely challenging for three reasons.
Firstly, existing works focus on speeding up single-input
fuzzing using sequential mutation frameworks. Multi-input
hardware fuzzing requires a new CPU-GPU task decom-
position strategy to benefit from heterogeneous parallelism.
Secondly, multi-input hardware fuzzing needs an effective
mutation algorithm to find the best previous inputs as seeds
and generate multiple new inputs of interest. Lastly, fuzzing
multiple inputs in parallel can introduce inefficiencies from
highly overlapped coverage within a fuzzing iteration. We need
to rule out unwanted inputs that cause redundant overlaps.

To overcome these challenges, we propose GenFuzz, a
GPU-accelerated hardware fuzzer using a genetic algorithm
(GA) with multiple inputs. Figure 1 compares the key dif-
ferences between GenFuzz and existing hardware fuzzers. To
the best of our knowledge, this is the first GPU-accelerated
hardware fuzzing using GA in the literature. We summarize
three key contributions as follows:

• We design an efficient multi-input hardware fuzzer to
fuzz multiple inputs simultaneously using both CPU and
GPU parallelisms.

• We design an effective GA-based framework to itera-
tively produce multiple inputs of interest that are most
likely to extend the coverage.

• We design a novel coverage-maximization algorithm
to avoid overlapped coverage for both inter- and intra-
fuzzing iterations.

We have evaluated GenFuzz on real designs and demon-
strated its promising performance compared to the state-of-
the-art DIFUZZRTL [5] and RFUZZ [1]. GenFuzz using one
A6000 GPU and eight CPU cores outperforms DIFUZZRTL
on single CPU thread with up to 80× speed-up for BOOMCore
design using reg coverage. We have also shown that GenFuzz
achieves 2.1× more coverage points when the same number of
instructions are fuzzed. We will make GenFuzz open-source to
benefit the community and inspire hardware fuzzing research
with heterogeneous parallelism.

II. BACKGROUND

A. Conventional Hardware Fuzzing

!"#$"%&#''%"()*+*%"
,%-.#/0"#1#"#/�

'23)-+*%"

4560

'23)-+*%"

7##.8+&90:;&%<#"+=#>0&%<#"+=#03+$>0#*&?@A%<#"+=#

3%/2*%"

!"#$%&

#''(

!""#$%&#$'&#$(

)*+ $,&#$-&#.

/0 $.&#-1$%,2

3

!""#$%&#$'&#$(

!"# $%&'(&')(

/0 $.&#-1$%,2

3

456)*+*/789:*5!;+9

!"#$%&'

A"%''B&C#&9

Fig. 2. Conventional single-input hardware fuzzing flow.

Figure 2 shows the flow of conventional single-input hard-
ware fuzzing [5]. We start by randomly choosing one input
from the input pool that maintains a set of interesting inputs.
The mutator generates a new input by mutating instructions
from the selected input. The preprocessor compiles the input
into a stimulus and an executable for simulation. Depending on
different hardware fuzzers and coverage metrics, we may need
a reference simulator to validate an input. We then use an RTL
simulator to simulate the DUT with the mutated stimulus and
collect the coverage data. The input that discovers new hard-
ware states (i.e., new coverage points) is considered interesting
and is saved back to the input pool for future fuzzing. The
fuzzing iteration continues until we cannot explore new states
for a maximum number of iterations. Finally, we use assertions
or cross-check RTL simulation results against results from the
reference simulator to detect bugs.

B. Genetic Algorithm

GA [7] is a search heuristic that reflects the process of
natural selection. The best individuals are selected to produce
good offsprings for the next generation. Listing 1 gives an
example. The code wraps all individuals with a population and
applies GA iteratively. A quantitative fitness function evaluates
the quality of each individual in each iteration. We then select
individuals with better fitness as parents to produce superior
offsprings. For each parent pair, we perform crossover to
exchange genes between parents to generate offsprings. The
new offsprings become a new population for the next GA
iteration. The iteration continues until we cannot find a better
solution after a maximum number of iterations.

P o p u l a t i o n pop ; / / c o n s t r u c t a p o p u l a t i o n
I n d i v i d u a l s p a r s ; / / c o n s t r u c t p a r e n t s
I n d i v i d u a l s o f f s ; / / c o n s t r u c t o f f s p r i n g s
pop . i n i t i a l i z e () ; / / i n i t i a l i z e a p o p u l a t i o n
w h i l e (i t e r < MAX ITER) {

pop . c a c u l a t e f i t n e s s () . / / c a l c u l a t e f i t n e s s
p a r s = pop . s e l e c t () ; / / s e l e c t good p a r e n t s
o f f s = p a r s . c r o s s o v e r () ; / / g e n e r a t e new o f f s p r i n g s
o f f s . m u t a t e () ; / / mu t a t e t o add d i v e r s i t y
pop . r e p l a c e (o f f s) ; / / r e p l a c e o l d p o p u l a t i o n

}

Listing 1. A common C++ genetic algorithm.

Fig. 3. Overview of GenFuzz.

III. GENFUZZ

A. Multi-input Hardware Fuzzing

At a high level, GenFuzz efficiently discovers new coverage
by fuzzing multiple inputs in parallel at each fuzzing iteration.
Figure 3 shows the overview of GenFuzz. We define the multi-
input hardware fuzzing workload as a parallel task dependency
graph that iterates five stages: GA, input processing, RTL
simulation, cross-check and coverage maximization. At the GA
stage, GenFuzz incorporates three GA processes, selection,
crossover, and mutation, to generate inputs that are most
likely to extend coverage. Based on the results from the
previous fuzzing iteration, we select the best inputs as parents
to generate new inputs. The input processing stage involves
CPU-intensive tasks including the compilation of simulation
inputs and file I/O. Without data parallelism, RTL simulation
needs to wait until we process all inputs, thus incurring
significant overhead. To improve runtime performance, we
evenly distribute inputs across different CPUs to process each
input in parallel.

We integrate the state-of-the-art RTL simulator,
RTLflow [3], into GenFuzz to enable GPU acceleration
for multi-stimulus RTL simulation. Unlike existing hardware
fuzzers that typically use Verilator or ModelSim to simulate
one stimulus at a time, RTLflow achieves high-throughput
RTL simulation by running multiple stimuli in parallel using
GPU. After the RTL simulation, we cross-check results
derived from the reference simulator and RTLflow. We do
not parallelize cross-check since this stage is fast (e.g., a
few seconds to finish). Our coverage-maximization algorithm
scores each input by analyzing the feedback of each input.
Finally, we send each input with its fitness to GA for
selection. The fuzzing iteration continues until GA cannot
find new coverage after a maximum number of iterations.

B. GA-based Framework

The goal of our GA-based framework is to produce new
inputs that can maximally extend coverage using results from
the previous fuzzing iteration. Our GA consists of selection,
crossover, and mutation. Unlike existing mutation approaches
that only select one input to mutate, our GA framework
exchanges interesting instructions between two parents and

!"#"

$#%&'&%()*

+,(*"--"./0""*1

2"*"3-&,#

4.5,&#-167,88,'"7

9(-)-&,#

)%%174:17;:17<
=(* 7>:17?:1@

8A 7@:1?B74>C

D&-#"88E1>;

D&-#"88E1;
D&-#"88E144

D&-#"88E1;?

8**& 7F:17F:14F
G)*7 7?:1HB7IC

)%%174:17;:17<

=(* 7>:17?:1@

8A 7@:1?B74>C

D&-#"88E1>; D&-#"88E1;?

8**& 7F:17F:14F

G)*7 7?:1HB7IC

)%%174:17;:17<
=(* 7>:17?:1@

8A 7@:1?B74>C

8**& 7F:17F:14F
G)*7 7?:1HB7IC

)%%174:17;:17<

G)*7 7?:1HB7IC

8**& 7F:17F:14F
=(* 7>:17?:1@

8A 7@:1?B74>C

*)174:1%J>J>

$#5(-15,,*

K,7 7?:17?:17@!

2"*"3-&,#17)-"E !!
"
"

#!

$
"#$
% #"

)%%174:17;:17<

J7"5*)3"

J%"*"-"
=(* 7>:17?:1@

8A 7@:1?B74>C

J"7-

)%%174:17;:17<

!"# #$%&#$%&#'

=(* 7>:17?:1@

8A 7@:1?B74>C

()* !$%&$

L)7"#-

67,88,'"717)-"E1!% " #$%

Fig. 4. Overview of our GA-based fuzzing framework.

passes instructions to newborn inputs. Furthermore, we adopt
variable-length individual representation. Each input can have
a different number of instructions, allowing us to efficiently
explore coverage on the time dimension.

Figure 4 shows the overview of our GA-based framework.
Each gene represents an instruction, and each individual con-
sists of multiple genes to form an input. Our GA framework
can be applied to arbitrary coverage metrics and inputs. For
example, to perform fuzzing on the RTL level using mux
coverage [1], we can map the input value of each input pin
as a gene. Each individual thus concatenates multiple genes to
form a stimulus. Since the mux coverage is collected after RTL
simulation, it can be transformed to fitness for the selection
process.

1) Selection: The selection process chooses individuals
with higher fitness from the input pool for later reproduction.
We apply Roulette-Wheel Selection (RWS) for our frame-
work such that the probability of choosing an individual is
proportional to its fitness. Compared to truncation selection
which directly eliminates a fixed percentage of the weakest
candidates, RWS can still select individuals with lower fitness
to create more diversity and to avoid quick convergence. We
define the selection rate P I

s of input I as P I
s = fI∑n

j=1 fj
where

fI is the fitness of input I and n is the number of input.
2) Crossover: The crossover process allows parents to

exchange instructions for producing the next generation of
individuals. We choose two parents from selected individuals
and apply one-point crossover. Since individuals can have
different lengths of genes, we randomly choose a crossover
point based on the parent with smaller length. As shown in
Figure 4, genes of both parents after the crossover point (red
line) are interchanged. We choose a crossover rate Pc = 0.5
to randomly determine whether two parents occur crossover.
If crossover does not happen, the two parents are considered
as newborn inputs and passed into the mutation process.

3) Mutation: The mutation process provides a mechanism
for newborn inputs to escape from local regions and to create

more diversity. During the mutation phase, we iterate each
gene in an individual and decide if the gene is mutated using
the mutation rate Pm. Our mutation contains three operators:
insert, delete, and replace as shown in Figure 4. Once mutation
occurs, we randomly choose one operator to mutate the gene.

The mutation rate Pm plays an important role in the
mutation process. If the mutation rate is minimal, there will be
too many similar individuals. On the other hand, having a large
mutation rate can easily direct GA toward random search. To
have a better mutation rate for effective GA search, we use a
time-dependent mutation rate proposed by [7]:

Pm =

{
0.6

[
1− (t

T
)2
]
, 0 ≤ t ≤ 0.2T

0.2
[
0.1(t−T

T
)2
]
+ 0.05, 0.2T < t ≤ T

where T is the total number of fuzzing iterations and t is the
tth iteration.

C. Coverage-Maximization Algorithm

Multi-input hardware fuzzing can introduce inefficiencies
due to highly overlapped coverage within a fuzzing iteration.
Moreover, selecting inputs with large overlap as parents causes
newborn inputs to inherit the same overlap. The overlap grows
significantly as we increase the number of fuzzing iterations.
To overcome this problem, a greedy solution is to find the top-
k inputs based on the maximum coverage problem, defined as
follows:

Definition 1. Let {Ij}nj=1 be the sequence of inputs where
Ij is the j−th input and n is the number of these inputs. Let
C(Ij) represent the set of coverage discovered by input Ij .
Then, given a positive number k ≤ n, the goal of the maxi-
mum coverage problem is to find a subsequence {Ijl}kl=1 =
{Ij1 , Ij2 , ..., Ijk}, called the top-k inputs in {Ij}nj=1, such that
their total coverage |

⋃k
l=1 C(Ijl)| is maximized.

Unfortunately, this problem is NP-hard [8]. Also, existing
greedy algorithms that choose one input with the largest
uncovered coverage at a time cannot be used out of the box.
Specifically, after selecting the best input, greedy algorithms
require remaining inputs to re-calculate uncovered coverage by
iterating all coverage for each input. The time complexity of
greedy algorithms is thus O((cov size∗n)2) where cov size
is the coverage size in a design and n is the number of inputs
per fuzzing iteration. Since the number of coverage points is
in the millions for large designs, such greedy algorithms are
extremely time-consuming.

To reduce the time complexity, we introduce two coverage
metrics, delta and progressive coverage, as fitness for GA to
select inputs:

Definition 2. The delta coverage Cd(Ij) measures how much
new coverage is discovered by Ij compared to the total
coverage explored in previous fuzzing iterations.

Definition 3. The progressive coverage Cp(Ij) measures how
much new coverage is discovered by Ij compared to the total
coverage explored by all inputs before Ij .

Fig. 5. The proposed progressive coverage and delta coverage calculation.
The progressive coverage and delta coverage of the first input is identical.

Figure 5 shows an example of calculating delta and pro-
gressive coverage for two inputs I1, I2. We represent the total
explored coverage at iteration t−1 by Ct−1 and the coverage
of input Ij at iteration t by Ct

j .
Since all inputs before the first input are in previous fuzzing

iterations, Cd(I1) = Cp(I1) are both given by taking the
complement of Ct−1 w.r.t. Ct

1. Similar to Cd(I1), we calculate
Cd(I2) by taking the complement of Ct−1 w.r.t. Ct

2. On the
other hand, we take the union of Ct−1 and Ct

1 to get the
total coverage explored by all the inputs before I2. Finally,
we calculate Cp(I2) by taking the complement of Ct−1 ∪Ct

1

w.r.t. Ct
2.

Based on our delta and progressive coverage metrics, we
define the fitness function as follows:

Fitness(Ij) = Norm(Cd(Ij)) +Norm(Cp(Ij))

where Norm represents mix-max normalization that trans-
forms two coverage metrics to the same scale.

Algorithm 1 shows our coverage-maximization algorithm.
Each input owns a coverage map of size cov size to record
its coverage. The total cov map represents total coverage by
taking a union of all inputs. In the beginning, we initialize
total cov and total cov map by using coverage explored in
previous fuzzing iterations (lines 3-4). During delta coverage
calculation, each input iterates its coverage map and compares
coverage results with prev total cov map (lines 6-14). If
an input discovers a new coverage that was not explored in
previous fuzzing iterations, we increment the delta coverage of
the input by one (lines 10-12). During progressive coverage
calculation, each input iterates its coverage map again and
compares coverage results with total cov map (lines 16-26).
If an input discovers a new coverage that was not toggled in
total cov map, we increment the progressive coverage of the
input and total cov by one (lines 22 and 23). Also, we toggle
the corresponding coverage in total cov map to one (line 21).
In this case, the next input that discovers the same coverage
cannot increment its progressive coverage. After coverage
calculation, we normalize both delta and progressive coverage
(line 27). Finally, we calculate the fitness for each input by
summing up its delta and progressive coverage (lines 29-31).

Algorithm 1: Coverage-maximization algorithm
Input: NUM INPUTS: Number of inputs
Input: COV SIZE: Coverage size
Input: prev total cov: Total coverage at previous iter
Input: prev total cov map: Total coverage map at previous iter
Input: cov maps: Array of coverage maps
Output: total cov: Total coverage
Output: total cov map: Total coverage map
Output: fitness: Array of fitness

1 delta covs.initialize(0)
2 prog covs.initialize(0)
3 total cov ← prev total cov
4 total cov map← prev total cov map
5 i, c← 0
/* delta coverage caculation */

6 while i++ < NUM INPUTS
7 while c++ < COV SIZE
8 result← cov maps[i][c]
9 prev result← prev total cov map[c]

10 if prev result == 0 and result == 1 then
11 delta covs[i] + +
12 end
13 end
14 end
15 i, c← 0

/* progressive coverage calculation */
16 while i++ < NUM INPUTS
17 while c++ < COV SIZE
18 result← cov maps[i][c]
19 prev result← total cov map[c]
20 if prev result == 0 and result == 1 then
21 total cov map[c] = 1
22 prog covs[i] + +
23 total cov ++
24 end
25 end
26 end
27 min max norm(delta covs, prog covs)
28 i← 0
29 while i++ < NUM INPUTS
30 fitness[i]← delta covs[i] + prog covs[i]
31 end

We can clearly see the time complexity of our algorithm is
O(cov size ∗ n).

IV. EXPERIMENTAL RESULTS

We conducted our experiments on a 64-bit CentOS Linux
machine with one NVIDIA RTX A6000 GPU and eight
Intel i7-11700 CPU cores at 2.5 GHz. We compiled our
programs with CUDA NVCC 11.6 on a GCC 8.3.0 host com-
piler and enabled optimization flag -O3 and C++17 standard
-std=c++17. Each fuzzing iteration has an input size of
1024. For each run, we used 1024 GPU threads for RTL
simulation and 8 CPU cores for all host operations. We used
Taskflow [9], [10] to parallelize our task dependency graph.
All data is an average of five runs.

We consider two state-of-the-art hardware fuzzers,
RFUZZ [1] and DIFUZZRTL [5], as our baselines. RFUZZ
and DIFUZZRTL each proposed coverage metrics (i.e.,
mux coverage and reg coverage) to measure the number of
discovered design states. We compare GenFuzz with each
fuzzer using their coverage metrics. DIFUZZRTL performs
fuzzing on its CPU input format at the instruction level. It

combines several instructions into a word and performs per-
word mutations. On the other hand, RFUZZ directly fuzzes
at the RTL level. It concatenates all input pins as an input
vector to represent input values in one test cycle. To explore
coverage on the time dimension, it further concatenates
several single-cycle stimuli to form a multi-cycle stimulus.
For a fair comparison, we perform fuzzing at the same level
as DIFUZZRTL and RFUZZ. We use Verilator as the RTL
simulator for RFUZZ and DIFUZZRTL. For single-input
hardware fuzzing, RTLflow is slower than Verilator due to
little data parallelism [3]. To demonstrate our efficiency,
we evaluate GenFuzz on five real designs, BoomCore1,
BoomCore2, RocketCore, Sodor3Stage, and Sodor5Stage,
provided by RFUZZ and DIFUZZRTL.

A. Overall Performance Comparison

Table I compares the overall runtime between GenFuzz
and DIFUZZRTL on RocketCore, BoomCore1, and Boom-
Core2. We run DIFUZZRTL for 48 hours to derive the total
number of coverage (#coverage), and compare runtime of
GenFuzz and DIFUZZRTL for achieving 50%, 70%, and
100% #coverage. GenFuzz outperforms DIFUZZRTL in all
scenarios. For achieving 100% #coverage, GenFuzz is 61×
faster on RocketCore and is 80× faster on BOOMCore1.
The significant improvement on runtime demonstrates the
promise of our multi-input hardware fuzzing techniques. The
speedup of achieving 100% #coverage is larger than 50% and
70% #coverage. When discovered coverage becomes large, the
coverage of DIFUZZRTL starts to saturate. On the other hand,
our genetic algorithm keeps finding new inputs of interest
and thus efficiently increases the coverage. Figure 6 compares
the coverage throughput among GenFuzz, DIFUZZRTL, and
RFUZZ on different designs. To demonstrate the efficiency
of coverage throughput, we use the number of words and
cycles as the x-axis for different coverage metrics. Compared
to DIFUZZRTL using reg coverage, GenFuzz achieves 2.1×
speed-up using the same amount of words. The throughput
gap continues to grow as we increase the number of inputs.
Compared to RFUZZ using mux coverage, GenFuzz achieves
1.6× speed-up using the same amount of cycles. The number
of coverage quickly saturates since both Sodor3Stage and
Sodor5Stage are small designs that do not have many coverage
points to discover.

B. Performance Result of Coverage-maximization Algorithm

In this section, we study the performance benefit of our
coverage-maximization algorithm. Figure 7 shows total cov-
erage over increasing numbers of fuzzing iterations for Gen-
Fuzz, random (GenFuzzr), and GenFuzz without coverage-
maximization algorithm (GenFuzz−cm). In GenFuzzr, we
set the mutation rate to 1 to achieve random testing. In
GenFuzz−cm, each input uses the coverage number achieved
by itself as fitness. We can clearly see the performance
advantage of our coverage-maximization algorithm. GenFuzz
achieves a higher coverage number than other implementations
in almost all scenarios. The performance gap continues to

TABLE I
OVERALL PERFORMANCE COMPARISON BETWEEN DIFUZZRTL AND GENFUZZ ON DIFFERENT BENCHMARKS FOR ACHIEVING 50%, 70%, AND 100%

COVERAGE USING REG COVERAGE. THE BENCHMARK STATISTICS SHOW VERILOG LINES OF CODE (VERILOG LOC) AND NUMBER OF ACHIEVED
COVERAGE (#COVERAGE) BY RUNNING DIFUZZRTL FOR 48 HOURS. BOLD TEXT REPRESENTS SPEED-UP.

Runtime (s) for achieving K% #Coverage

K=50 K=70 K=100

Benchmark Verilog LOC #Coverage DIFUZZRTL GenFuzz DIFUZZRTL GenFuzz DIFUZZRTL GenFuzz

RocketCore 81883 110509 6218s 578s (10.8×) 18972s 1216s (15.6×) 172800s 2835s (61.0×)

BoomCore1 193689 518506 7503s 484s (15.5×) 22278s 1180s (18.9×) 172800s 2160s (80.0×)

BoomCore2 239282 684202 9208s 835s (11.0×) 24555s 1428s (17.2×) 172800s 2690s (64.2×)

500 1,000 1,500 2,000

60

80

100

#Words (×K)

#C
ov

er
ag

e
(×

K
)

RocketCore (Reg coverage)

GenFuzz
DIFUZZRTL

500 1,000 1,500 2,000
200

400

600

800

#Words (×K)

#C
ov

er
ag

e
(×

K
)

BOOMCore1 (Reg coverage)

GenFuzz
DIFUZZRTL

0 5 10 15 20

200

250

300

350

#Cycles (×K)
#C

ov
er

ag
e

Sodor3Stage (Mux coverage)

GenFuz
RFUZZ

0 5 10 15 20
200

250

300

350

400

#Cycles (×K)

#C
ov

er
ag

e

Sodor5Stage (Mux coverage)

GenFuz
RFUZZ

Fig. 6. Comparison of coverage throughput among GenFuzz, DIFUZZRTL, and RFUZZ on RocketCore, BOOMCore, Sodor3Stage, and Sodor5Stage. The
x-axis uses the number of words and the number of cycles.

0 10 20 30 40 50

200

400

600

800

#Iterations

#C
ov

er
ag

e
(×

K
)

BOOMCore1

GenFuzz
GenFuzzr

GenFuzz−cm

0 10 20 30 40 50
0

200

400

600

800

1,000

#Iterations

#C
ov

er
ag

e
(×

K
)

BOOMCore2

GenFuzz
GenFuzzr

GenFuzz−cm

Fig. 7. Coverage growth over increasing numbers of iterations for GenFuzz,
GenFuzz with mutation rate Pr = 1 (GenFuzzr), and GenFuzz without
coverage-maximization algorithm (GenFuzz−cm) on BOOMCore using reg
coverage with 256 inputs.

enlarge as we increase the number of fuzzing iterations.
Without our coverage-maximization algorithm, both GenFuzzr

and GenFuzz−cm fail to distinguish overlapped coverage
within each fuzzing iteration, thus misguiding GA to select
inputs that are less likely to extend coverage. The coverage
growth of GenFuzz−cm is even slower than GenFuzzr because
GenFuzz−cm does not consider coverage improvement at each
fuzzing iteration. GA converges within 20 iterations and hardly
discovers new coverage points.

V. CONCLUSION

In this paper, we have introduced GenFuzz, a GPU-
accelerated hardware fuzzer using a novel genetic algorithm
to speed up hardware fuzzing with multiple inputs. GenFuzz
introduces a multi-input hardware fuzzer, a genetic algorithm-
based framework, and a coverage-maximization algorithm to

accelerate hardware fuzzing to a new performance milestone.
Measuring experimental results on real industrial designs,
GenFuzz achieves up to 80× runtime speed-up when com-
pared to DIFUZZRTL and RFUZZ.

ACKNOWLEDGMENT

We are grateful for the support of four National Science
Foundation (NSF) grants, CCF-2126672, CCF-2144523 (CA-
REER), OAC-2209957, and TI-2229304.

REFERENCES

[1] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, “Rfuzz:
Coverage-directed fuzz testing of rtl on fpgas,” in IEEE ICCAD, 2018.

[2] S. Canakci, L. Delshadtehrani, F. Eris, M. B. Taylor, M. Egele, and
A. Joshi, “Directfuzz: Automated test generation for rtl designs using
directed graybox fuzzing,” in ACM/IEEE DAC, 2021.

[3] D.-L. Lin, H. Ren, Y. Zhang, B. Khailany, and T.-W. Huang, “From rtl
to cuda: A gpu acceleration flow for rtl simulation with batch stimulus,”
in ACM ICPP, 2022.

[4] T. Trippel, K. G. Shin, A. Chernyakhovsky, G. Kelly, D. Rizzo, and
M. Hicks, “Fuzzing hardware like software,” in USENIX SECURITY,
2022.

[5] J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee, “Difuzzrtl:
Differential fuzz testing to find cpu bugs,” in IEEE SP, 2021.

[6] R. Kande, A. Crump, G. Persyn, P. Jauernig, A.-R. Sadeghi, A. Tyagi,
and J. Rajendran, “Thehuzz: Instruction fuzzing of processors using
golden-reference models for finding software-exploitable vulnerabili-
ties,” in USENIX SECURITY, 2022.

[7] K. Tan, C. Goh, Y. Yang, and T. Lee, “Evolving better population dis-
tribution and exploration in evolutionary multi-objective optimization,”
European Journal of Operational Research, 2006.

[8] D. S. Hochba, “Approximation algorithms for np-hard problems,”
SIGACT News, 1997.

[9] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, “Taskflow: A lightweight
parallel and heterogeneous task graph computing system,” IEEE TPDS,
2022.

[10] D.-L. Lin and T.-W. Huang, “Efficient gpu computation using task graph
parallelism,” in Euro-Par, 2021.

