
1448 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

Taskflow: A General-Purpose Parallel and
Heterogeneous Task Programming System

Tsung-Wei Huang , Member, IEEE, Dian-Lun Lin , Yibo Lin , Member, IEEE, and Chun-Xun Lin

Abstract—Taskflow tackles the long-standing question: How
can we make it easier for developers to program parallel and het-
erogeneous computer-aided design (CAD) applications with high
performance and simultaneous high productivity? Taskflow intro-
duces a new powerful task graph programming model to assist
developers in the implementation of parallel and heterogeneous
algorithms with complex control flow. We develop an efficient
system runtime to solve many of the new scheduling challenges
arising out of our models and optimize the performance across
latency, energy efficiency, and throughput. Taskflow has demon-
strated promising performance on both micro-benchmarks and
real-world applications. As an example, Taskflow solved a large-
scale circuit placement problem up to 17% faster, with 1.3×
fewer memory, 2.1× less power consumption, and 2.9× higher
throughput than two industrial-strength systems, oneTBB and
StarPU, on a machine of 40 CPUs and 4 GPUs.

Index Terms—Electronic design automation, parallel program-
ming.

I. INTRODUCTION

THE EVER-INCREASING design complexity in very-
large-scale integration (VLSI) implementation will soon

far exceed what many existing computer-aided design (CAD)
tools are able to scale with reasonable design time and effort
(see Fig. 1). A key fundamental challenge is that CAD
must incorporate new parallel paradigms comprising many-
core central processing units (CPUs), graphics processing
units (GPUs), and custom accelerators to allow more effi-
cient design space exploration and optimization [2]. However,
this goal is impossible to reach without the aid of high-
level programming models and system runtimes that target
the unique parallelization challenges of CAD. This type of
system innovation has significant impacts on the CAD com-
munity because it complements the current state-of-the-art by
assisting everyone to tackle the challenges of implementing
and deploying parallel CAD algorithms. Unfortunately, related
system research has received very little attention in the CAD
community.

Manuscript received October 6, 2020; revised March 11, 2021; accepted
May 4, 2021. Date of publication May 21, 2021; date of current version
April 21, 2022. Preliminary version of this paper has been presented at the
IEEE/ACM International Conference on Computer-aided Design (ICCAD),
Austin, TX, USA, November 2020 [1]. This article was recommended by
Associate Editor C. K. Cheng. (Corresponding author: Tsung-Wei Huang.)

Tsung-Wei Huang and Dian-Lun Lin are with the Department of Electrical
and Computer Engineering, University of Utah, Salt Lake City, UT 84112
USA (e-mail: twh760812@gmail.com).

Yibo Lin is with the Department of Computer Science, Peking University,
Beijing 100871, China.

Chun-Xun Lin is with MathWorks, Natick, MA, USA.
Digital Object Identifier 10.1109/TCAD.2021.3082507

Fig. 1. Design cost versus design complexity [3].

Over the past years, we have invested a lot of research in
existing programming systems from the scientific computing
community [4]–[8]. However, almost all existing programming
systems fall short of the needs by CAD, which we explain as
follows.

1) Optimization algorithms, such as logic synthesis, place-
ment, and routing, make essential use of dynamic control
flow to implement various combinatorial and analytical
algorithms that incorporate conditional, cyclic, and non-
deterministic computational patterns. Existing task pro-
gramming frameworks closely rely on directed acyclic
graph (DAG) models to define tasks and dependen-
cies. Users implement control-flow decisions outside the
graph description via either statically unrolling the graph
across fixed-length iterations or resorting to client-side
decisions. This organization typically results in rather
complicated procedure that lack end-to-end parallelism.

2) Analysis algorithms, such as timing and power analysis,
require computations to propagate through the circuit
network. Different quantities are often dependent on
each other and are expensive to compute. The resulting
task graph in terms of encapsulated function calls and
task dependencies is typically very large (e.g., millions
of tasks) However, most existing task parallel frame-
works are good at small- or medium-scale tasking and
they do not scale to large task graphs.

After years of research, we have arrived at a key conclu-
sion: while designing parallel CAD algorithms is nontrivial,
what makes parallelizing CAD an enormous challenge is the
infrastructure work of “how efficiently expressing dependent
tasks along with algorithmic control flow and scheduling
them across heterogeneous computing resources?” To this

1937-4151 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Utah. Downloaded on June 12,2023 at 10:12:24 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9768-3378
https://orcid.org/0000-0003-3075-7437
https://orcid.org/0000-0002-0977-2774

HUANG et al.: TASKFLOW: GENERAL-PURPOSE PARALLEL AND HETEROGENEOUS TASK PROGRAMMING SYSTEM 1449

end, Taskflow introduces a new task programming system to
streamline the building of parallel and heterogeneous appli-
cations with complex control flow. We summarize three key
contributions as follows.

1) Heterogeneous Programming Model: We introduce a
new CPU–GPU programming model by leveraging mod-
ern C++ closures. Developers describe a GPU workload
in a task graph called gpuFlow rather than a sequence
of operations. Data can be captured in reference to
form a stateful closure that marshals parameter exchange
between CPU–GPU-dependent tasks. By abstracting
GPU operations to a task graph closure, we judi-
ciously hide implementation details and provide portable
optimization to schedule GPU tasks.

2) General Control Flow: We develop a new conditional
tasking interface to support general control flow beyond
the DAG models. Our condition tasks enable develop-
ers to integrate complex control-flow decisions, such
as conditional dependencies, cyclic execution, and non-
deterministic flows into an end-to-end task graph. In
case where dynamic behavior is frequent, such as
optimization and branch and bound, developers can effi-
ciently overlap tasks both inside and outside the control
flow without breaking their dependency constraints.

3) Heterogeneous Work Stealing: We develop an efficient
work-stealing algorithm to adapt worker threads to
dynamically generated task parallelism at any time dur-
ing the graph execution. Our algorithm prevents the
graph execution from underutilized threads that is harm-
ful to performance, while avoiding excessive waste of
thread resources when available tasks are scarce. The
result largely improves the overall system performance,
including latency, energy efficiency, and throughput.

We have evaluated Taskflow on both micro-benchmark
and real-world applications to demonstrate its promising
performance over existing programming systems. As an exam-
ple, Taskflow solved a large-scale VLSI placement problem
up to 17% faster, with 1.3× fewer memory, 2.1× less power
consumption, and 2.9× higher throughput than two industrial-
strength systems, oneTBB and StarPU, on a machine of
40 CPUs and 4 GPUs.

II. TASKFLOW PROGRAMMING MODEL

Taskflow is built atop our prior CPU-based parallel task
programming system, Cpp-Taskflow [9]–[11], where we gen-
eralize its idea to a heterogeneous target with control flow.

A. New Heterogeneous Task Programming Model

We introduce a new heterogeneous task programming model
by leveraging modern C++ closures. Fig. 2 and Listing 1
show the canonical CPU–GPU hybrid saxpy (A·X plus Y) task
graph and its implementation using our model. Our model lets
users describe a GPU workload in a coarse-grained task graph
called gpuFlow rather than a sequence of GPU operations con-
trolled by CUDA streams [12] or OpenCL buffers [13]. A
gpuFlow lives inside a closure and defines methods for con-
structing a GPU task graph. In this example, we define two
parallel CPU tasks (allocate_x, allocate_y) to allocate
GPU memory through cudaMalloc, and one gpuFlow task

Fig. 2. Saxpy (“single-precision A·X plus Y”) task graph.

Listing 1. Taskflow program of Fig. 2.

Fig. 3. Taskflow graph of three condition tasks (in diamond) to emulate three-
layer nondeterministic control flow. The graph has six weak dependencies
(dashed line) and one strong dependency (solid line).

to spawn a GPU task graph consisting of two host-to-device
(H2D) transfer tasks (h2d_x, h2d_y), one saxpy kernel
task (kernel), and two device-to-host (D2H) transfer tasks
(d2h_x, d2h_y), in this order of task dependencies. Task
dependencies are established through precede or succeed.
Apparently, gpuFlow must run after allocate_x and
allocate_y.

B. New Conditional Tasking Model

We introduce a new conditional tasking model to overcome
the limitation of existing frameworks in expressing general
control flow beyond DAG. Fig. 3 shows an example of three-
layer control flow that emulates a simplified, very common
nondeterministic layout optimization in CAD. The graph con-
sists of two regular tasks, init and stop, and three condition
tasks, F1, F2, and F3. Each condition task forms dynamic
control flow to randomly go to either the next task or back to
F1 with a probability of 1/2. Starting from init, the expected
number of condition tasks to execute before reaching stop is
eight. Listing 2 gives the implementation of Fig. 3. Creating a
condition task is similar to other tasks, but it returns an inte-
ger index of which successor task to execute. The index is

Authorized licensed use limited to: The University of Utah. Downloaded on June 12,2023 at 10:12:24 UTC from IEEE Xplore. Restrictions apply.

1450 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

Listing 2. Taskflow program of Fig. 3.

Fig. 4. Flowchart of our task scheduling.

defined with respect to the order of successors of a condition
task. For instance, F1 precedes F2 and F1. With this order,
if F1 returns 0, the execution proceeds to F2, or loops back
to F1 otherwise.

III. TASKFLOW SYSTEM RUNTIME

Taskflow enables users to express CPU–GPU-dependent
tasks along with algorithmic control flow in a single
heterogeneous task dependency graph (HTDG). To support our
model with high performance, we design an efficient system
runtime at two scheduling levels, task level and worker level.

A. Task-Level Scheduling Algorithm

Conditional tasking is powerful but challenging to schedule.
Specifically, we must deal with conditional dependency and
cyclic execution under the avoidance of task race, i.e., only
one thread can touch a task at a time. To accommodate this
challenge, we separate the execution logic between condition
tasks and other tasks using two dependency notations, weak
dependency (out of condition tasks) and strong dependency
(other else). For example, the six dashed lines in Fig. 3 are
weak dependencies and the solid line, init→F1, is a strong
dependency. Based on these notations, we design a simple
and efficient algorithm for scheduling tasks, as depicted in
Fig. 4. When the scheduler receives an HTDG, it: 1) starts
with tasks of zero dependencies (both strong and weak) and
continues executing tasks whenever strong dependencies are
met or 2) skips this rule for weak dependency and directly
jumps to the task indexed by the return of a condition task.
By removing the scheduling part of weak dependency, our
algorithm falls back to DAG scheduling (marked in gray).

Fig. 5. Architecture of our work-stealing scheduler on two domains, CPU
and GPU.

Example: Taking Fig. 3, for example, the scheduler starts
with init (i.e., zero weak and strong dependencies) and pro-
ceeds to F1. Assuming F1 returns 0, the scheduler proceeds
to its first successor, F2. Now, assuming F2 returns 1, the
scheduler proceeds to its second successor, F1, which forms
a cyclic execution and so forth. With this concept, the sched-
uler will cease at stop when F1, F2, and F3 all return 0. It
is user’s responsibility for ensuring, based on our algorithm, a
taskflow program is properly conditioned with no task race or
infinite loop during the execution. For instance, adding a strong
dependency from init to F2 can result in task race on F2,
due to two execution paths, init→F2 and init→F1→F2.

B. Worker-Level Scheduling Algorithm

We leverage work stealing to execute submitted tasks
with dynamic load balancing. Work stealing has been exten-
sively studied in multicore programming [14]–[16]. A com-
mon work-stealing framework spawns multiple worker threads
where each worker iteratively drains out the tasks from its local
queue and transitions to a thief to steal a task from a randomly
selected peer called victim. At the architecture level, our sched-
uler maintains a set of workers for each task domain (e.g.,
CPU and GPU). A worker can only steal tasks of the same
domain from others. Fig. 5 shows the architecture of our work-
stealing scheduler on two domains, CPU and GPU. By default,
the number of domain workers equals the number of domain
devices (e.g., CPU cores and GPUs). We associate each worker
with two separate task queues, a CPU task queue (CTQ) and a
GPU task queue (GTQ), and declare a pair of CTQ and GTQ
shared by all workers. The shared CTQ and GTQ pertain to
the scheduler and are primarily used for external threads to
submit HTDGs. A CPU worker can push and pop a new task
into and from its local CTQ and can steal tasks from all the
other CTQs; the structure is symmetric to GPU workers. This
separation allows a worker to quickly insert dynamically gen-
erated tasks to their corresponding queues without contending
with other workers.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of Taskflow on two realistic
workloads: 1) VLSI placement and 2) static timing analysis,
that are representative of many synthesis- and analysis-driven

Authorized licensed use limited to: The University of Utah. Downloaded on June 12,2023 at 10:12:24 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: TASKFLOW: GENERAL-PURPOSE PARALLEL AND HETEROGENEOUS TASK PROGRAMMING SYSTEM 1451

Fig. 6. Partial HTDG of 4 gpuFlows (purple boxes), 1 conditioned cycle
(green diamond), and 12 static tasks (other else) for one iteration of our
algorithm.

applications. All experiments ran on a Ubuntu Linux 5.0.0-
21-generic x86 64-bit machine with 40 Intel Xeon CPU
cores at 2.00 GHz, 4 GeForce RTX 2080 GPUs, and
256 GB RAM. We compiled all programs using Nvidia CUDA
v11 on a host compiler of GNU GCC-8.3.0 with C++17
standard -std=c++17 and optimization flag -O2 enabled.
We consider two industrial-strength libraries, oneTBB [14]
and StarPU [5], as our baseline due to their excellent
performance [2]. Each run of N CPU cores and M GPUs cor-
responds to N CPU and M GPU worker threads. All data is
an average of ten runs.

A. VLSI Placement

We applied Taskflow to solve a VLSI placement problem.
The goal is to determine the physical locations of cells (logic
gates) in a fixed layout region using minimal interconnect
wirelength. Modern placement typically incorporates hundreds
of millions of cells and takes several hours to finish [17].
To reduce the long runtime, recent work started investigat-
ing new CPU–GPU algorithms. We consider a matching-
based hybrid CPU–GPU placement refinement algorithm in
DREAMPlace [17], that iterates a GPU-based independent
set algorithm to optimize cell layouts in a window-based
manner. Each iteration contains thousands of CPU and GPU
tasks with nested conditions to decide the convergence. Fig. 6
shows a partial HTDG of one iteration. A complete task graph
can have up to two-million CPU–GPU dependent tasks on a
million-gate design.

We implemented the hybrid CPU–GPU placement algorithm
using Taskflow, oneTBB, and StarPU. The algorithm is hand-
crafted on one GPU and many CPUs. Since oneTBB and
StarPU have no support for nested conditions, we unroll their
HTDGs across fixed-length iterations found in hindsight. The
overall performance is shown in Fig. 7. Using 8 CPUs and
1 GPU, Taskflow is consistently faster than others across all
problem sizes (placement iterations). The gap becomes clear
at large problem size; at 100 iterations, Taskflow is 17% faster
than oneTBB and StarPU. We observed similar results using
other CPU numbers. Performance saturates at about 16 CPUs,
primarily due to the inherent irregularity of the algorithm (see
Fig. 6). The memory footprint (middle of Fig. 7) shows the
benefit of our conditional tasking. We keep nearly no growth of
memory when the problem size increases, whereas StarPU and
oneTBB grow linearly due to unrolled HTDGs. On a vertical
scale, increasing the number of CPUs bumps up the memory

Fig. 7. Runtime, memory, and power data of the circuit adaptec1 (211K
cells and 221K nets).

Fig. 8. Throughput of corunning placement workloads on two problem sizes
using 40 CPUs and 1 GPU.

usage of all methods, but the growth rate of Taskflow is much
slower than the others. In terms of energy (bottom of Fig. 7),
our scheduler is very power-efficient in completing the place-
ment workload, regardless of problem sizes and CPU numbers.
Beyond 16 CPUs where performance saturates, our system
does not suffer from increasing power as StarPU, due to our
efficient worker management algorithm.

For irregular HTDGs akin to Fig. 6, resource utilization
is critical to the system throughput. We corun the same pro-
gram up to nine processes that compete for 40 CPUs and
1 GPU. Corunning a CAD program is very common for
searching the best parameters for an algorithm. Fig. 8 plots
the throughput across nine coruns at two problem sizes. Both
Taskflow and oneTBB achieve higher throughput than StarPU.

Authorized licensed use limited to: The University of Utah. Downloaded on June 12,2023 at 10:12:24 UTC from IEEE Xplore. Restrictions apply.

1452 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

Fig. 9. Runtime and memory data of GPU-accelerated STA on a large design
of 1.6M gates.

At the largest problem size, Taskflow outperforms oneTBB
and StarPU across all coruns. The result again highlights the
strength of our scheduler, which dynamically balances the
worker count with available task parallelism.

B. Static Timing Analysis

We applied Taskflow to solve a static timing analysis
(STA) problem. We implemented the GPU-accelerated graph-
based timing analysis algorithm proposed by [18] using
OpenTimer [19]–[22] and Taskflow. The most time-consuming
task occurs in RC tree update, where we create up to four
gpuFlows on four GPUs to speed up the net delay update. We
perform 10 full timing iterations based on the TAU 2015 con-
test benchmarks [23]. We implemented oneTBB and StarPU
as the baseline, both of which support explicit task constructs.
Since they have no support for conditional tasking, we unroll
their TDGs across these 100 iterations found in hindsight.

Fig. 9 compares the performance of Taskflow with oneTBB
and StarPU on timing a million-gate design using different
GPU numbers. Taskflow outperforms oneTBB and StarPU in
all aspects. Both our runtime and memory scale better regard-
less of GPU numbers. Our memory usage is 1.7× and 1.8×
less than oneTBB and StarPU, respectively. This highlights the
benefit of our condition task, which encodes control-flow deci-
sions directly in a cyclic TDG rather than unrolling it statically
across iterations.

V. CONCLUSION

In this article, we have introduced Taskflow, a general-
purpose task programming system to streamline the creation
of heterogeneous programs with complex control flow. Our
programming model enables developers to incorporate a broad
range of computational patterns with relative ease of program-
ming. We have developed an efficient work-stealing runtime
optimized for latency, energy efficiency, and throughput. As
an example, we have solved a large-scale circuit placement
problem up to 17% faster, with 1.3× fewer memory, 2.1×
less power consumption, and 2.9× higher throughput than two
industrial-strength systems, oneTBB and StarPU, on a machine
of 40 CPUs and 4 GPUs. Future work will focus on apply-
ing Taskflow to distributed CAD [24], [25] and large-scale
machine learning [26].

REFERENCES

[1] T.-W. Huang, “A general-purpose parallel and heterogeneous task pro-
gramming system for VLSI CAD,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), San Diego, CA, USA, 2020, pp. 1–2.

[2] Y.-S. Lu and K. Pingali, “Can parallel programming revolutionize EDA
tools?” in Advanced Logic Synthesis. Cham, Switzerland: Springer,
2018.

[3] DARPA Intelligent Design of Electronic Assets (IDEA) Program.
[Online]. Available: https://www.darpa.mil/program/intelligent-design-
of-electronic-assets

[4] E. Ayguade et al., “The design of OpenMP tasks,” IEEE Trans. Parallel
Distrib. Syst., vol. 20, no. 3, pp. 404–418, Mar. 2009.

[5] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: A
unified platform for task scheduling on heterogeneous multicore archi-
tectures,” Concurrency Comput. Pract. Exp., vol. 23, no. 2, pp. 187–198,
2011.

[6] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, “HPX:
A task based programming model in a global address space,” in Proc. 8th
Int. Conf. Partitioned Global Address Space Program. Models (PGAS),
2014, pp. 1–11.

[7] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and
J. J. Dongarra, “PaRSEC: Exploiting heterogeneity to enhance scala-
bility,” Comput. Sci. Eng., vol. 15, no. 6, pp. 36–45, Nov./Dec. 2013.

[8] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” J. Parallel Distrib. Comput., vol. 74, no. 12, pp. 3202–3216,
2014.

[9] T.-W. Huang, C.-X. Lin, G. Guo, and M. Wong, “Cpp-Taskflow: Fast
task-based parallel programming using modern C++,” in Proc. IEEE
Int. Parallel Distrib. Process. Symp. (IPDPS), 2019, pp. 974–983.

[10] C.-X. Lin, T.-W. Huang, G. Guo, and M. D. F. Wong, “An efficient
and composable parallel task programming library,” in Proc. IEEE High
Perform. Extreme Comput. Conf. (HPEC), 2019, pp. 1–7.

[11] C.-X. Lin, T.-W. Huang, G. Guo, and M. D. F. Wong, “A modern C++
parallel task programming library,” in Proc. ACM Multimedia Conf.,
2019, pp. 2284–2287.

[12] Nvidia CUDA. [Online]. Available: https://developer.nvidia.com/cuda-
zone

[13] OpenCL. [Online]. Available: https://opencl.org/
[14] Intel OneTBB. [Online]. Available: https://github.com/oneapi-

src/oneTBB
[15] K. Agrawal, C. E. Leiserson, and J. Sukha, “Executing task graphs

using work-stealing,” in Proc. IEEE Int. Symp. Parallel Distrib. Process.
(IPDPS), Atlanta, GA, USA, 2010, pp. 1–12.

[16] C.-X. Lin, T.-W. Huang, and M. D. F. Wong, “An efficient work-stealing
scheduler for task dependency graph,” in Proc. IEEE Int. Conf. Parallel
Distrib. Syst. (ICPADS), Hong Kong, 2020, pp. 64–71.

[17] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan,
“DREAMPIace: Deep learning toolkit-enabled GPU acceleration for
modern VLSI placement,” in Proc. 56th ACM/IEEE Design Autom. Conf.
(DAC), Las Vegas, NV, USA, 2019, pp. 1–6.

[18] Z. Guo, T.-W. Huang, and Y. Lin, “GPU-accelerated static timing anal-
ysis,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD),
San Diego, CA, USA, 2020, pp. 1–8.

[19] T.-W. Huang and M. D. F. Wong, “OpenTimer: A high-performance tim-
ing analysis tool,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), Austin, TX, USA, 2015, pp. 895–902.

[20] T.-W. Huang, G. Guo, C.-X. Lin, and M. Wong, “OpenTimer v2:
A new parallel incremental timing analysis engine,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 4, pp. 776–789,
Apr. 2021.

[21] T.-W. Huang, C.-X. Lin, and M. D. F. Wong, “OpenTimer v2: A parallel
incremental timing analysis engine,” IEEE Design Test, vol. 38, no. 2,
pp. 62–68, Apr. 2021.

[22] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “GPU-accelerated pash-
based timing analysis,” in Proc. ACM/IEEE Design Autom. Conf. (DAC),
2021.

[23] T.-W. Huang and M. D. F. Wong, “UI-Timer 1.0: An ultrafast path-
based timing analysis algorithm for CPPR,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 35, no. 11, pp. 1862–1875, Nov. 2016.

[24] T.-W. Huang and M. D. F. Wong, “Accelerated path-based timing anal-
ysis with MapReduce,” in Proc. ACM Int. Symp. Phys. Design (ISPD),
2015, pp. 103–110.

[25] T.-W. Huang, M. D. F. Wong, D. Sinha, K. Kalafala, and
N. Venkateswaran, “A distributed timing analysis framework for large
designs,” in Proc. 53rd ACM/EDAC/IEEE Design Autom. Conf. (DAC),
Austin, TX, USA, 2016, pp. 1–6.

[26] D.-L. Lin and T.-W. Huang, “A novel inference algorithm for large
sparse neural network using task graph parallelism,” in Proc. IEEE High
Perform. Extreme Comput. Conf. (HPEC), Waltham, MA, USA, 2020,
pp. 1–7.

Authorized licensed use limited to: The University of Utah. Downloaded on June 12,2023 at 10:12:24 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

