
3466 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

A Provably Good and Practically Efficient
Algorithm for Common Path Pessimism

Removal in Large Designs
Zizheng Guo , Mingwei Yang, Tsung-Wei Huang , Member, IEEE, and Yibo Lin , Member, IEEE

Abstract—Common path pessimism removal (CPPR) is
imperative for eliminating redundant pessimism during static
timing analysis (STA). However, turning on CPPR can signif-
icantly increase the analysis runtime by 10×–100× in large
designs. Recent years have seen much research on improving the
algorithmic efficiencies of CPPR, but most are architecturally
constrained by either the speed–accuracy tradeoff or design-
specific pruning heuristics. In this article, we introduce a novel
CPPR algorithm that is provably good and practically efficient.
We have evaluated our algorithm on large industrial designs and
demonstrated promising performance over the current state of
the art. As an example, our algorithm outperforms the baseline
by 36×–135× faster when generating the top-10K post-CPPR
critical paths on a million-gate design. At the extreme, our algo-
rithm with one core is even 4×–16× faster than the baseline with
eight cores. Our algorithm also outperforms the commercial STA
engine PrimeTime up to 26.99× faster. By exploiting parallelism
within the circuit graph, we can reduce the memory consumption
of our algorithm by 30%, with only 3% runtime increase.

Index Terms—Common path pessimism removal (CPPR), static
timing analysis (STA).

I. INTRODUCTION

STATIC timing analysis (STA) is a pivotal step in the
overall design flow [1]. The predominant approach creates

early and late bounds on each signal delay. However, this
early/late timing split causes the analysis to be artificially
pessimistic due to analyzing only the worst case scenarios.
Unnecessary pessimism will lead tests to be marked fail-
ing whereas in actuality they should be passing. Designers
and optimization tools might be misled into an overpes-
simistic timing report, leading to unnecessary increases in
design turnaround time and cost. To this end, common path
pessimism removal (CPPR) is imperative for eliminating

Manuscript received 20 April 2021; revised 19 July 2021; accepted
13 October 2021. Date of publication 2 November 2021; date of cur-
rent version 20 September 2022. This work was supported in part by
the National Science Foundation of China under Grant 62034007 and
Grant 62004006; in part by the National Science Foundation of the U.S.
under Grant CCF-2126672; and in part by the Zhejiang Provincial Key
Research and Development program under Grant 2020C01052. This arti-
cle was recommended by Associate Editor Y. Shi. The preliminary version
has been presented at the Design Automation Conference (DAC) in 2021.
(Corresponding author: Yibo Lin.)

Zizheng Guo, Mingwei Yang, and Yibo Lin are with the Center for Energy-
Efficient Computing and Applications, School of Electronics Engineering
and Computer Science, Peking University, Beijing 100871, China (e-mail:
yibolin@pku.edu.cn).

Tsung-Wei Huang is with the Department of Electrical and Computer
Engineering, The University of Utah, Salt Lake City, UT 84112 USA.

Digital Object Identifier 10.1109/TCAD.2021.3124758

redundant pessimism during STA. Fig. 1 gives an example.
Prior to CPPR, data path 2 can be more critical than data path
1, but the result may change after CPPR because the common
path pessimism 2 is larger than pessimism 1. However, this
process of pessimism removal is extremely time consuming
because we need to analyze timing path by path across all
flip-flop (FF) pairs. According to [2], generating a complete
timing report with CPPR incurs 10×–100× more runtime and
memory.

The recent years have seen several research work and algo-
rithms to reduce the long runtimes of CPPR. For instance,
the TAU community has organized contests to seek new ideas
for accurate and fast CPPR algorithms [3], [4]. iTimerC [5]
employs a branch-and-bound technique to prune the search
space of path generation. HappyTimer [6] designs a block-
based algorithm with an alternative delay metric to remove
pessimism during the timing update. OpenTimer [2], [7]
introduces a dual data structure to remove path pessimism
and parallelize the process across independent FFs. There
is also research on improving the memory consumption of
CPPR [8], [9]. Other approaches, such as tag-based updates
and modified delay models have been applied in commercial
tools [4]. A fundamental challenge is that existing algorithms
encounter large time and space complexities proportional to
the product of FF count and the graph size, because they
may end up enumerating all possible FF pairs for CPPR. As
a result, even introducing speed–accuracy tradeoff or design-
specific pruning heuristics cannot guarantee consistent, decent
performance in large designs.

In this article, we introduce a novel provably good and prac-
tically efficient CPPR algorithm for analyzing large designs.
We summarize three technical contributions of our work.

1) First, instead of enumerating all possible FF pairs, we
identify lowest common ancestors (LCAs) that incur
common path pessimism on data paths, and process the
FF pairs in different LCA depth groups. Then, we design
an efficient distance tuple structure to deal with depth
constraints, largely reducing the search space of CPPR.

2) Second, we prove that the time complexity of our algo-
rithm is irrelevant to the number of FFs, but the depth
of the clock tree, which is typically smaller by orders
of magnitude.

3) Third, our algorithm is highly parallelizable, both within
the circuit graph and across the depths of the clock tree.
The organization of parallelism across the clock tree

1937-4151 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Utah. Downloaded on June 12,2023 at 10:10:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0724-5356
https://orcid.org/0000-0001-9768-3378
https://orcid.org/0000-0002-0977-2774

GUO et al.: PROVABLY GOOD AND PRACTICALLY EFFICIENT ALGORITHM FOR CPPR IN LARGE DESIGNS 3467

depths largely facilitates the adoption of multithreading
to gain further speed-up through multicore parallelism.
However, the drawback of this parallelism is that its
memory consumption is proportional to the number of
threads, because each thread works on a duplicate of
the circuit graph. By introducing parallelism within the
circuit graph, we can reduce the memory consumption
of our algorithm on multicore CPUs without trading in
much runtime.

We have evaluated our algorithm on large industrial designs
of millions of gates and compared our performance with three
state-of-the-art CPPR algorithms [2], [5], [6]. Our algorithm
significantly outperforms the baseline algorithms in runtime
and memory. For instance, when generating one post-CPPR
critical path, we are 3×–23× faster. The difference becomes
even remarkable at a large path count. When generating the
top-10K post-CPPR critical paths, our algorithm is 36×–
135× faster than the others, using only 2.5%–10.9% of their
memory. At the extreme, our algorithm of one core (single-
threaded parallelism) is even 4×–16× faster than the baseline
of eight cores where performance scalability stagnates. By
exploiting parallelism both within the circuit graph and across
the depths of the clock tree, we can halve our memory con-
sumption while still being 29×–104× faster in generating the
top-10K paths. We also compared our performance with the
commercial STA engine PrimeTime, where our algorithm is
18.51× faster on generating top-1 critical path, and 26.99×
faster on generating top-10K critical paths.

The remainder of the article is organized as follows.
Section II describes the background and motivation; Section III
explains the detailed implementation; Section IV demonstrates
the results; and Section V concludes this article.

II. PRELIMINARIES

In STA, a circuit is represented as a directed acyclic
graph (DAG), where nodes denote pins and edges denote
interconnections between pins. FFs are driven by a clock
source through the clock tree. Each edge has an early and a late
bounds on the signal delay. A data path starts from a launch-
ing FF or a primary input and ends at a capturing FF. The
delay of a path is the sum of the edge delays along the path.
We consider the setup and hold timing constraints [3], [4].

Definition 1: We denote oi and di as the respective clock
pin and the data pin of FF i. For a path p from o1 to d2, the
setup slack and the hold slack of p are defined as follows:

slacksetup(p) = ratlate(d2)− atlate(d2)

= atearly(o2)+ Tclk − Tsetup − atlate(o1)− delaylate(p)

slackhold(p) = atearly(d2)− ratearly(d2)

= atearly(o1)+ delayearly(p)− atlate(o2)− Thold. (1)

The definition of slack assumes a worst case of edge delays
for each test. However, it introduces unnecessary pessimism
because there can be a common segment between two clock
paths (see Fig. 1). To remove the pessimism, we add a credit
to the slack as follows.

Definition 2: We define CPPR credit on clock tree node u
as credit(u) = atlate(u)− atearly(u). Each FF corresponds to a

Fig. 1. Example of CPPR impact. Before CPPR, data path 2 can be more crit-
ical than data path 1. However, the post-CPPR slack of data path 2 can become
less critical than data path 1, as pessimism 2 is larger than pessimism 1.

Fig. 2. When fixing the depth of LCA to be 1, we only care about these
launching-capturing FF pairs: (c, d), (d, c), (a, b), (a, e), (b, a), (b, e), (e, a),
(e, b). We can then tell precisely for each launching FF the pessimism it will
introduce when paired with any other capturing FF, namely the edges above
Level 1 colored yellow in the figure.

clock tree leaf node. The credit for a path with launching FF
u and capturing FF v is thus credit(LCA(u, v)).

Then, the post-CPPR slack for path p can be written as [3]
and [4]

slacksetup/hold
CPPR (p) = slacksetup/hold(p)+ credit(LCA(u, v)) (2)

where u = p.lauFF, v = p.capFF, and slacksetup/hold(p) is the
pre-CPPR slack. With the above definitions, we formulate the
CPPR problem as follows.

CPPR Problem Formulation [4]: Given a circuit graph with
updated delay values, timing constraints, and a number k,
report the top-k post-CPPR critical paths.

The key challenge of CPPR is that the credit is path-specific
and it depends on the launching and capturing FFs. Different
paths might have different credits to add to the slack, even if
they share the same launching or capturing FFs. Most previous
work enumerate all FF pairs to find post-CPPR critical paths
ended at a target capturing FF and then reduce the result to a
top-k set [2], [5], [6]. However, the main drawback is that these
algorithms may end up enumerating all FF pairs in the worst
case, requiring long analysis runtimes to complete CPPR.

III. ALGORITHMS

We propose a new CPPR algorithm to overcome the run-
time challenges of CPPR by enumerating the LCA depths of
launching FFs and capturing FFs, instead of a large amount of
FF pairs. Fig. 2 illustrates our motivation. By fixing a depth
and then looking for all possible FF pairs pertaining to this

Authorized licensed use limited to: The University of Utah. Downloaded on June 12,2023 at 10:10:41 UTC from IEEE Xplore. Restrictions apply.

3468 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

TABLE I
NOTATIONS OF OUR ALGORITHMS

LCA depth, we are able to precisely remove the pessimism
and directly get the global top-k post-CPPR critical paths.

A. Definitions and Notations

Definition 3: We break the clock tree into levels at differ-
ent depths d and define d-Pessimism Removed slack of path p
as the pre-CPPR slack of path p eliminating the pessimism
above (i.e., up to) level d, precisely slacksetup/hold(p, d) =
slacksetup/hold(p)+ credit(fd(p.lauFF)).

Apparently, we have slacksetup/hold(p, 0) = slacksetup/hold(p).
We rewrite (2) as

slacksetup/hold
CPPR (p) = slacksetup/hold(p, 0)+ credit(LCA(u, v))

= slacksetup/hold(p, depth(LCA(u, v))) (3)

where u = p.lauFF and v = p.capFF.
Definition 4: We define the set of setup/hold path can-

didates at level d as setup/hold critical paths p that sat-
isfy these two constraints: 1) p.lauFF �= p.capFF and
2) depth(LCA(p.lauFF, p.capFF)) ≤ d.

We define the top-k path candidates at level d as
Psetup/hold

d (k), which are the top-k among the set of setup/hold
path candidates at level d, ranked by slacksetup/hold(p, d).

Note that the second constraint requires depth ≤ d instead
of depth = d. This is important as it makes the fast retrieval
of Psetup/hold

d (k) possible. This definition covers all top-k post-
CPPR paths p satisfying p.lauFF �= p.capFF (see Lemma 1).

As Definition 4 does not cover paths that have p.lauFF =
p.capFF, we define another type of path candidates as follows:

Definition 5: We define self-loop paths as paths that satisfy
p.lauFF = p.capFF. We define top-k self-loop path candi-
dates as Psetup/hold∗ (k), which are the top-k among all setup/hold
critical paths ranked by slacksetup/hold(p, depth(p.lauFF)).

Note that in Definition 5, a self-loop path candidate
is not necessarily a self-loop path, as we consider both
self-loop paths and nonself-loop paths and rank them by
slacksetup/hold(p, depth(p.lauFF)). We shall show (in Lemma 2)
that this definition still covers all self-loop paths present in the
global top-k post-CPPR paths. The above definitions are for
paths that originate from an FF. We also consider paths that
originate from a primary input pin:

Algorithm 1: getPostCPPRPaths(k, mode = setup/hold)

1 for d = 0, 1, 2, ..., D− 1 do
2 Pmode

d (k)←getPathsAtLCALevel(d, k, mode);
3 Pmode∗ (k)←getPathsFromSelfLoops(k, mode);
4 Pmode

PI (k)←getPathsFromPIs(k, mode);
5 paths← [Pmode

0 (k), ..., Pmode
D−1 (k), Pmode∗ (k), Pmode

PI (k)];
6 return Pmode

CPPR(k) =selectTopPaths(paths, k);

Definition 6: We define top-k primary input path candidates
as Psetup/hold

PI (k), which are the top-k among all setup/hold crit-
ical paths that originate from a primary input, ranked by their
slacks. Paths that originate from primary inputs do not have
pessimism to remove.

B. Overall Algorithm

The overall algorithm is presented in Algorithm 1. The algo-
rithm consists of two stages: 1) path candidates generation and
2) top paths selection. We generate path candidates based on
enumeration of the depth of LCA between launching FF and
capturing FF (line 2), self-loop path candidates (line 3), and
primary input path candidates (line 4). A total of up to k(D+2)

path candidates are generated, of which kD are path candidates
at each level, k are self-loop path candidates, and another k are
primary input path candidates. After that, we select the top-k
of all path candidates with smallest post-CPPR slack values
(line 6), and output them. We elaborate on the subroutines in
more detail and prove the correctness in the following sections.

C. Generation of the Top-1 Path

We first propose an efficient algorithm to generate path can-
didates for k = 1, including top-1 path candidates at each level
(Definition 4), top-1 self-loop path candidate (Definition 5),
and top-1 primary input path candidate (Definition 6). This
algorithm will generalize to our top-k case. After generating
all top-1 path candidates, we can reduce them to the global
top-1 path using selectTopPaths.

We introduce a node grouping technique to find path
candidates at different levels (Definition 4). In Fig. 3, we
demonstrate how node grouping helps us filter out paths that
are not path candidates. When generating path candidates at
level d, we group each node u satisfying depth(u) > d by
fd+1(u). Intuitively, we cut the tree between level d and level
d+ 1, and the tree below level d+ 1 breaks into pieces which
are formed as groups. The path constraints in Definition 4 are
equivalent to finding paths that connect two different groups,
i.e., fd+1(p.lauFF) �= fd+1(p.capFF).

Algorithm 2 generates top-1 path candidates at level d
(Definition 4) with node grouping. The notations are sum-
marized in Table II. We traverse the circuit graph to compute
the earliest (latest) arrival time tuples of each pin for hold
(setup) constraint. We keep two arrival time tuples, at(u) and
at′(u), for each pin u. at′(u) serves as a fallback for at(u) when
at(u) is unavailable due to the node grouping requirement that
the capturing FF must have a different group index than the
launching FF.

Authorized licensed use limited to: The University of Utah. Downloaded on June 12,2023 at 10:10:41 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: PROVABLY GOOD AND PRACTICALLY EFFICIENT ALGORITHM FOR CPPR IN LARGE DESIGNS 3469

Fig. 3. Example of node grouping with d = 1 for hold check. In this case,
nodes are grouped using f2(u), forming 5 different groups, e.g., node x’s group
is e, node a’s group is a, etc. We disallow data paths that connect the same
group, i.e., that have fd+1(p.lauFF) = fd+1(p.capFF). Invalid data paths are
marked in red. All data paths are labeled with their LCA depths. Each valid
data path p in the figure satisfies p.lauFF �= p.capFF and LCA depth ≤ d.

TABLE II
ARRIVAL TIME TUPLES ON PIN u FOR ALGORITHM 2

First, we initialize the arrival time for Q-pins of FFs in
the arrival time arrays (lines 1–7). We offset the arrival
time of Q-pins by credit(fd(u)) (lines 4 and 6), because we
are interested in slacksetup/hold(p, d), as Definition 4 required.
Then, we propagate the arrival time tuples through a topo-
logical order of the pins in the graph (lines 8–13). After
that, we compute slacks on each D-pin of FF (lines 14–24).
For an FF with clock pin u and D-pin v, we are interested
in paths that end at v and start at a Q-pin of another
FF, whose clock pins reside in a different group than u.
We find the best of such path using at(v) and at′(v) in
lines 17–18. Specifically, if at(v) is a path that originates
from a different group, we accept it; if not, we accept the
fallback, i.e., at′(v). Finally, we select the path with the
smallest slacksetup/hold(p, d). This slack value is computed in
lines 21 and 23, derived from (1), with D_at = Q_at(p.lauFF)

+ delay(p).
Algorithm 3 finds self-loop path candidates (Definition 5).

As Definition 5 does not limit the range of paths as
Definition 4 does, the algorithm is a simplified version of
Algorithm 2, where we do not maintain group indices or fall-
backs for arrival time tuples. First, we initialize the arrival
time for Q-pins (lines 1–7). For self-loop path candidates,
we need to rank paths by slacksetup/hold(p, depth(p.lauFF)), so
we offset the arrival time of Q-pins by credit(u). Then, we
do arrival time propagation (lines 8–12), slack computation

Algorithm 2: getPathsAtLCALevel(d, k = 1, mode)

1 for FF clock pin u with depth(u) > d do
2 v← the Q-pin of u;
3 if mode = setup then
4 Q_at← atlate(u)+ delaylate(u, v)− credit(fd(u));
5 else
6 Q_at← atearly(u)+delayearly(u, v)+credit(fd(u));
7 Update at(v) and at′(v) with time = Q_at, from = u,

groupid = fd+1(u);
8 for Circuit pin u in topological order do
9 for Edge u→ v do

10 if mode = setup then d← delaylate(u, v);
11 else d← delayearly(u, v);
12 Update at(v) and at′(v) with

time = at(u).time+ d, from = u,
groupid = at(u).groupid;

13 Update at(v) and at′(v) with
time = at′(u).time+ d, from = u,
groupid = at′(u).groupid;

14 for FF clock pin u with depth(u) > d do
15 v← the D-pin of u;
16 Tsetup/hold ← the setup/hold constraint value;
17 if at(v).groupid = fd+1(u) then D_at← at′(v).time;
18 else D_at← at(v).time;
19 if mode = setup then
20 Tclk ← clock period;
21 slack← atearly(u)+ Tclk − Tsetup − D_at;
22 else
23 slack← D_at − (atlate(u)+ Thold);
24 Obtain one path with slack = slack;
25 return path with smallest slack;

(lines 13–21), and finally select the path with smallest
slack.

Algorithm 4 finds primary input path candidates
(Definition 6). This algorithm is similar to Algorithm 3,
except that we initialize the arrival time of primary inputs in
lines 1–3 rather than the arrival time of Q-pins. There are no
common paths in primary input path candidates, so this time
we do not offset the arrival time.

D. Generation of Top-k Paths

We now present our algorithm for generating the top-k
path candidates where k > 1. We extend our algorithm for
k = 1 to support generating k path candidates. We repre-
sent a path implicitly using a list of deviation edges, and
generate paths progressively from previous paths, inspired
by [10] and [2]. We demonstrate the idea of deviation edges
in Fig. 4. Adding a deviation edge to a path will increase
its slack, and we compute the amount of increase using fall-
backs provided by our arrival time tuples. For brevity, we
define

atauto(u, gid) =
{

at(u), at(u).groupid �= gid
at′(u), at(u).groupid = gid.

Authorized licensed use limited to: The University of Utah. Downloaded on June 12,2023 at 10:10:41 UTC from IEEE Xplore. Restrictions apply.

3470 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

Algorithm 3: getPathsFromSelfLoops(k = 1,
mode)

1 for FF clock pin u do
2 v← the Q-pin of u;
3 if mode = setup then
4 Q_at← atlate(u)+ delaylate(u, v)− credit(u);
5 else
6 Q_at← atearly(u)+ delayearly(u, v)+ credit(u);
7 Update at(v) with time = Q_at, from = u;
8 for Circuit pin u in topological order do
9 for Edge u→ v do

10 if mode = setup then d← delaylate(u, v);
11 else d← delayearly(u, v);
12 Update at(v) with time = at(u).time+ d,

from = u;
13 for FF clock pin u do
14 v← the D-pin of u;
15 Tsetup/hold ← the setup/hold constraint value;
16 if mode = setup then
17 Tclk ← clock period;
18 slack← atearly(u)+ Tclk − Tsetup − at(v).time;
19 else
20 slack← at(v).time− (atlate(u)+ Thold);
21 Obtain one path with slack = slack;
22 return path with smallest slack;

Algorithm 4: getPathsFromPIs(k = 1, mode)

1 for Primary input pin u do
2 PI_at← the early/late arrival time of u for

mode=hold/setup;
3 Update at(u) and at′(u) with time = PI_at,

from =N/A, groupid =N/A;
4 Propagate at(u) for circuit pin u in topological order,

same as Algorithm 3 line 8-12;
5 Obtain paths at FF clock pins, same as Algorithm 3 line

13-21;
6 return path with smallest slack;

The algorithm for generating top-k path candidates at level
d is presented in Algorithm 5. First, the arrival time arrays
at(u) and at′(u) are computed in the same way as Algorithm 2.
Then, paths with the smallest slack on each capturing FF are
pushed into a min–max heap [11] (lines 3–7), with computed
slacks the same as Algorithm 2. After that, we repeatedly pop
a path with minimal slack from the min–max heap, output it,
and then push all its deviations into heap again (lines 8–20).
We enumerate deviations by traversing backwards on the path
(the loop at line 12), and enumerate all incoming edges for
nodes on the path (the loop at line 14). For each deviation
edge, we compute its cost by equations at line 16 and 18. This
cost is always nonnegative, because we are deviating from a
more pessimistic path to a less pessimistic one by introducing
a suboptimal edge. The resulting deviated path is pushed back
to the heap and the loop continues.

Fig. 4. Illustration of deviation edge and its effect. Assume the shortest
path to z′ is CLK → y, y → m, m → n, n → p, p → z′. Deviation happens
when we choose to go to p from another direction r, and the deviation edge
is r→ p that replaces n→ p in the original path. In the example, we can go
from a launching FF to r by two paths. When node grouping is used, we do
not consider the one tagged “bad path” because it originates from d which is
in the same group as the capturing FF z′.

Algorithm 5: getPathsAtLCALevel(d, k, mode)

1 Compute and propagate arrival time tuples, same as
Algorithm 2 lines 1-13;

2 H← new Min-Max Heap of paths ranked by p.slack;
3 for FF clock pin u with depth(u) > d do
4 v← the D-pin of u;
5 constraint← the setup/hold constraint value;
6 Compute smallest slack at v, same as Algorithm 2

lines 17-23;
7 Push one path p into H with p.slack = slack,

p.groupid = fd(u), p.pos = v, p.devlist = [];
8 for i = 1 to k do
9 p← pop path with smallest slack from H;

10 Output path p as i-th smallest slack path candidate;
11 u← p.pos;
12 while u is not a clock tree node do
13 from← atauto(u, p.groupid).from;
14 for edge w→ u where w �= from do
15 if mode = setup then
16 cost← atauto(u, p.groupid).time−

atauto(w, p.groupid).time−delaylate(w, u);
17 else
18 cost← atauto(w, p.groupid).time+

delayearly(w, u)−
atauto(u, p.groupid).time;

19 Push one path p′ into H with
p′.slack = p.slack + cost,
p′.groupid = p.groupid, p′.pos = w,
p′.devlist = p.devlist + [w→ u];

20 u← from;

The algorithm for generating top-k self-loop path candi-
dates and top-k primary input path candidates is similar to
Algorithm 5, except that we do not add constraints to the
group of nodes. Specifically, we replace the occurrence of
atauto(u, gid) by at(u) and discard gid. All other codes for
maintaining the heap and generating deviated paths is the
same.

Authorized licensed use limited to: The University of Utah. Downloaded on June 12,2023 at 10:10:41 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: PROVABLY GOOD AND PRACTICALLY EFFICIENT ALGORITHM FOR CPPR IN LARGE DESIGNS 3471

Algorithm 6: selectTopPaths(paths, k)

1 [Pmode
0 (k), ..., Pmode

D−1 (k), Pmode∗ (k), Pmode
PI (k)]← paths;

2 H← new Min-Max Heap of paths ranked by p.slack;
3 for d = 0, 1, 2, ..., D− 1 do
4 for path p in Pmode

d (k) do
5 if depth(LCA(p.lauFF, p.capFF)) = d then
6 Push p into H;
7 for path p in Pmode∗ (k) do
8 if p.lauFF = p.capFF then
9 Push p into H;

10 for path p in Pmode
PI (k) do

11 Push p into H;
12 return top-k paths in H;

After getting all path candidates, we reduce them to the
global top-k paths using Algorithm 6. We get paths with LCA
depth d from Pmode

d (k), self-loop paths from Pmode∗ (k), and
primary-input paths from Pmode

PI (k). We discard other path
candidates that are not used (lines 5 and 8). We push the paths
into a heap and finally extract the top-k among them.

E. Parallelization

We now introduce two parallelization strategies of our algo-
rithm that exploit different types of parallelism of the CPPR
problem.

In parallelization strategy #1 (Section III-E1), we exploit
parallelism across different iterations (i.e., different clock tree
depths). This is our default parallel strategy that demonstrates
the best runtime performance on multicore CPUs. However, its
memory footprint is proportional to the number of the threads
used to run the algorithm, because each thread works on a
duplicate of the circuit graph.

In parallelization strategy #2 (Section III-E2), we overcome
the memory issue of parallelization strategy #1 by seeking
parallelism within the circuit graph to be processed in each
iteration. By parallelizing within the circuit graph, all threads
work on the same circuit graph structure in memory. The
memory consumption is reduced as a result of the shared
circuit graph structure by multiple threads. However, this par-
allelization strategy can introduce small runtime overhead,
because of the following reasons.

1) Tasks on graph nodes enumerate the input edges and
compute the arrival time tuples. This workload is small,
which makes it hard to fully utilize the CPU core.

2) The maximum number of tasks in parallel is limited by
the number of nodes in each level. For the levels at the
rear of the circuit, the number of nodes can be smaller
than the number of threads.

3) Scheduling and sychronization for parallelization across
circuit graph nodes is more complex than paralleliza-
tion across iterations, which introduces a larger runtime
overhead.

In Section III-E3, we combine the parallelization strate-
gies #1 and #2 by allocating threads among the two kinds

Fig. 5. Parallelization across clock tree depth; i.e., parallelize the algorithm
by putting different iterations onto different threads.

of parallelism. In this way, we can balance the runtime and
memory of our algorithm.

1) Parallelization Strategy #1 (Exploit Parallelism Across
Clock Tree Depths): In this parallelization strategy, each
thread computes the path candidates from one iteration (i.e.,
one clock tree depth), as demonstrated in Fig. 5. The main
algorithm (Algorithm 1) calls procedures getPathsAtLCA-
Level, getPathsFromSelfLoops, and getPaths-
FromPIs for a total of D + 2 times. Each time we perform
an iteration on the graph, with the iterations independent of
each other and, hence, we can perform parallel iterations with
T threads. The selectTopPaths procedure can run itera-
tively, in which each thread locks and updates the global heap
once it finishes one call.

The majority of runtime lies in the calls to getPaths-
AtLCALevel, getPathsFromSelfLoops, and get-
PathsFromPIs, while the runtime of iterative top path
selection is negligible. As a result, this strategy maximizes
the CPU parallelism.

2) Parallelization Strategy #2 (Exploit Parallelism Within
the Circuit Graph): In this parallelization strategy, each thread
computes the arrival time tuple for a single clock tree node, as
demonstrated in Fig. 6. For each clock tree depth, we initialize
and propagate the arrival time tuples along the clock tree and
circuit DAG. The propagation on nodes can be regarded as
tasks with dependencies. We can put different tasks onto dif-
ferent threads, provided that the dependencies between tasks
are not violated. This can be addressed by either levelizing the
task graph or using a dynamic scheduled parallel programming
framework like Taskflow [12], [13]. We describe briefly the
idea of levelization as follows.

We build the levelization of a DAG iteratively, by maintain-
ing a set of nodes called frontiers, denoted as F. The initial
frontiers are nodes that do not have input edges. We iteratively
discover the next frontiers F′ from the current frontiers F, by
deleting all output edges from F and collect the nodes that
lose all input edges afterwards. The resulting levels are the
frontiers in each iteration. It is guaranteed that nodes within

Authorized licensed use limited to: The University of Utah. Downloaded on June 12,2023 at 10:10:41 UTC from IEEE Xplore. Restrictions apply.

3472 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

Fig. 6. Parallelization within circuit graph; i.e., parallelize the algorithm
by distributing nodes to different threads while preserving their dependency
(through levelization or dynamic scheduling), and processing the iterations
one by one.

the same level do not have mutual dependency, and they only
depend on nodes from previous frontiers. Thus, we process
levels one by one, and perform tasks within the same level in
parallel.

3) Hybrid Parallelization: We combine the advantages of
the above two parallelization strategies by parallelizing both
across clock tree depths and within a circuit graph, as illus-
trated in Fig. 7. We assign a group of threads to each iteration
(Threads 0, 1 in Fig. 7 for iteration d = 0, Threads 2, 3
for iteration d = 1), and different iterations are computed in
parallel by different groups of threads. Within each iteration,
threads within the group propagate arrival time tuples on the
circuit graph in parallel.

Let Tw denote the number of threads within a group (i.e., the
number of threads to compute each iteration), and Tg denote
the number of groups (i.e., the number of concurrent itera-
tions). There are a total of T = Tw × Tg threads, working on
only Tg circuit graph instances in memory. When Tw = 1,
we only parallelize our algorithm across clock tree depths.
Similarly, when Tg = 1, we only parallelize our algorithm
within the circuit graph. Larger Tg introduces higher parallel
scalability across independent iterations, and larger Tw reduces
the overall memory footprint, because we do not need to repli-
cate the clock graph when increasing it. By adjusting Tw and
Tg, we can balance the runtime and memory of our algorithm,
and get the best performance within the memory budget of
independent situations.

F. Correctness and Complexity

The correctness of our algorithm is based on Lemmas 1–3.
We show in these lemmas that the global top-k post-CPPR
critical paths are covered by the three types of path candidates
(See Definitions 4–6 for the three types).

Lemma 1: For any path p ∈ Pmode
CPPR(k) with p.lauFF �=

p.capFF and depth(LCA(p.lauFF, p.capFF)) = d, we have
p ∈ Pmode

d (k).

Fig. 7. Parallelize the algorithm by assigning each clock tree depth a
group of threads, each working on a batch of nodes. This makes use of both
interdepth and intradepth parallelism.

This lemma is derived from the fact that we rank path can-
didates in Pmode

d (k) by optimistic slack values. Paths with
depth(LCA) < d are ranked with slacks larger than their
post-CPPR slacks. Paths with depth(LCA) = d are ranked
with exact post-CPPR slacks and, thus, they will be top-k in
Pmode

d (k) as long as they are global top-k. The detailed proof
is presented as follows.

Proof: By contradiction, suppose p �∈ Pmode
d (k). Then, for

any q ∈ Pmode
d (k), we have

slackmode(q, d) ≤ slackmode(p, d).

For path p, because depth(LCA(p.lauFF, p.capFF)) = d, we
have

slackmode
CPPR(p) = slackmode(p, d).

For any q ∈ Pmode
d (k), because depth(LCA

(q.lauFF, q.capFF)) ≤ d, we have

slackmode
CPPR(q) ≤ slackmode(q, d).

Combining the equations above, we get

slackmode
CPPR(q) ≤ slackmode(q, d) ≤ slackmode(p, d) = slackmode

CPPR(p).

That means every path q ∈ Pmode
d (k) has smaller post-

CPPR slack than p. There are a total of k paths in Pmode
d (k).

Thus, p cannot be ranked top-k in Pmode
CPPR(k), which is a

contradiction.
Lemma 2: For any path p ∈ Pmode

CPPR(k) with p.lauFF =
p.capFF, we have p ∈ Pmode∗ (k).

Proof: By contradiction. Suppose p �∈ Pmode∗ (k). Then for
any q ∈ Pmode∗ (k), we have

slackmode(q, depth(q.lauFF)) ≤ slackmode(p, depth(p.lauFF)).

Whether or not q is a self-loop path, there must be
depth(q.lauFF) ≥ depth(LCA(q.lauFF, q.capFF)), and thus we
have

slackmode
CPPR(q) ≤ slackmode(q, depth(q.lauFF)).

Authorized licensed use limited to: The University of Utah. Downloaded on June 12,2023 at 10:10:41 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: PROVABLY GOOD AND PRACTICALLY EFFICIENT ALGORITHM FOR CPPR IN LARGE DESIGNS 3473

On the other side, p is a self-loop path by our assumption,
and thus

slackmode
CPPR(p) = slackmode(p, depth(p.lauFF)).

Combining the equations above, we get

slackmode
CPPR(q) ≤ slackmode(q, depth(q.lauFF))

≤ slackmode(p, depth(p.lauFF))

= slackmode
CPPR(p).

That means every path q ∈ Pmode∗ (k) has smaller post-
CPPR slack than p. There are a total of k paths in Pmode∗ (k).
Thus, p cannot be ranked top-k in Pmode

CPPR(k), which is a
contradiction.

Lemma 3: For any path p ∈ Pmode
CPPR(k) that originates

from a primary input rather than a launching FF, we have
p ∈ Pmode

PI (k).
Proof: This one is apparent because every path q ∈ Pmode

PI (k)
originates from primary inputs and they are sorted by their
post-CPPR slacks.

The three lemmas draw the following correctness theorem,
which implies that we can obtain top-k post-CPPR paths from
the path candidates.

Theorem 1: With all the path candidates, selectTop-
Paths (Algorithm 6) correctly selects and returns global top-k
paths ranked by their post-CPPR slacks.

Proof: Because of Lemma 1–3, we have encountered every
path that has the potential to become one of the global top-k
paths within the execution of Algorithm 6. By filtering out
paths that we do not want, every path appears at most once.
Thus, the global top-k paths can be obtained by selecting the
top-k of all kinds of path candidates.

For the correctness of our algorithms for finding path can-
didates (Algorithm 5), we have the following lemma which
states the property of arrival time tuples.

Lemma 4: For any circuit pin v whose input edges are u1 →
v, u2 → v, . . . , uk → v, by the definition of at(v) and at′(v),
we have

at(v).time = min
1≤i≤k

at(ui).time+ delayearly(ui, v)

at′(v).time = min
1≤i≤k

atauto(ui, at(v).groupid).time

+ delayearly(ui, v).

This ensures that we can correctly propagate the two sets
of arrival time tuples using tuples on previous pins. The above
statements are for hold check. For setup check, one needs to
replace min by max, and early by late.

Proof: The first equation is obvious according to the optimal
substructure of shortest path on DAG. For the second one, the
right-hand side (RHS) gives a valid solution to the problem
defined by left-hand side (LHS), so we must have LHS≤RHS.
We assume LHS<RHS and prove by contradiction. Assume
that the shortest path given by LHS is from ui. Then the arrival
time of the path at ui must be smaller than both at(ui).time
and at′(ui).time, and that contradicts the optimality of
them.

This lemma draws the following correctness theorem for
our path candidates finding algorithm.

Theorem 2: Procedure getPathsAtLCALevel
(Algorithm 5) correctly computes Pmode

d (k).
Proof: According to the way the algorithm assigns the

arrival time of launching FFs and capturing FFs, slack(p, d) is
added to the slack of path p in both modes. For every circuit
pin v, the algorithm maintains two sets of arrival time tuples,
at(v) and at′(v), the latter of which serves as a fallback for
the former. From these two sets of arrival time, according
to Lemma 4, we can always find the shortest path (for hold
check, longest path for setup check) to v subject to any node
grouping constraint. Thus, the algorithm computes top-1 path
candidate at level d correctly.

For the correctness of top-k path finding, we represent each
path as a list of deviations from a shortest path. Since by
the definition all paths can be regarded as a list of deviations
from a shortest path, it suffices to show that we find paths in
ascending order of their slacks. In other words, each deviation
introduces a nonnegative increase on the slack of a path (the
cost in Algorithm 5 lines 16 and 18). For any circuit pin u
and group index gid

costhold = atauto(w, gid).time+ delayearly(w, u)

− atauto(u, gid).time

for hold check, and

costsetup = atauto(u, gid).time− delaylate(w, u)

− atauto(w, gid).time

for setup check are nonnegative. This is obvious according to
Lemma 4 and the definition of atauto.

Finally, we conclude with the following theorem of the
overall correctness.

Theorem 3: The overall algorithm (Algorithm 1) outputs
Pmode

CPPR(k) correctly.
Proof: The correctness of procedures getPathsFrom-

SelfLoops and getPathsFromPIs can be proved
similarly to Theorem 2. The correctness follows from
Theorem 1.

For time and space complexity, we have the following
theorems.

Theorem 4: For k = 1, Algorithm 1 runs in O(nD) time
complexity.

Proof: The algorithm calls getPathsAtLCALevel D
times, getPathsFromSelfLoops once, and getPaths-
FromPIs once. Each of them consists of a single forward
propagation and constant times of enumeration on FFs. Thus,
they run in O(n) time. For k = 1, the selectTopPaths
procedure just selects the path with the smallest slack from at
most D + 2 paths, so it runs in O(D) time. As a result, the
overall algorithm runs in O(nD).

Theorem 5: For k > 1, Algorithm 1 runs in O(nDk log k)
time complexity.

Proof: In procedures getPathsAtLCALevel, get-
PathsFromSelfLoops, and getPathsFromPIs, the
propagation of arrival time takes O(n). After that, we pop
paths from a min-heap for k times. Each time one path is
popped from the heap, and we scan for all its deviations and
push them into the heap. The count of deviations from a single

Authorized licensed use limited to: The University of Utah. Downloaded on June 12,2023 at 10:10:41 UTC from IEEE Xplore. Restrictions apply.

3474 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

TABLE III
BENCHMARK STATISTICS

path cannot exceed the size of the graph, which is n and, thus,
there are O(nk) heap operations. By using a min–max heap,
we are able to limit the size of the heap and always keep the
smallest k paths in the heap. In this way, each heap operation
takes O(log k). As a result, each of the three procedures runs
in O(nk log k).

The selectTopPaths procedure selects the top-k paths
from at most k(D + 2) paths, which can be done in
O(kD log k). We conclude that the overall algorithm runs in
O(nDk log k).

Theorem 6: The algorithm runs with space complexity
O(Tg(n + k) + kp), where Tg denotes the number of thread
groups working on independent iterations, and p < n denotes
the average length of critical paths.

Proof: For every call to getPathsAtLCALevel, get-
PathsFromSelfLoops, and getPathsFromPIs, we
need O(n) of memory to store arrival time tuples for cir-
cuit pins. We represent each path as a list of deviation edges.
Because deviation edges are added one by one, we do not need
to store all of them on a single path. Instead, we arrange them
in a prefix tree [2], where each path is denoted by a node and
each deviation edge is denoted by an edge, and thus we need
O(k) memory to store all the paths. Each thread group has its
own dedicated memory for working on a call. Thus, the over-
all memory complexity is O(Tg(n+ k)). The additional O(kp)

of memory is the size of the resulting global top-k paths.

IV. EXPERIMENTAL RESULTS

We implemented our algorithm in C++ and evaluated the
performance of our algorithm on a 64-bit Linux machine
with 40 cores Intel Xeon CPU at 2.20 GHz and 960-GB
memory. We conducted experiments on large industrial designs
from TAU contests [3], [4], and their statistics are shown in
Table III. The levels of the clock trees are about 100 in all
benchmarks, 300×–1700× smaller than the number of FFs.

We compare our approach with three state-of-the-art timers:
an opensource tool (OpenTimer [2]), and the TAU 2014 contest
winners (HappyTimer [6] and iTimerC [5]). Since HappyTimer
and iTimerC are not opensource, we acquired their executables
directly from the authors. We also compare our approach with
the commercial STA engine PrimeTime.

A. Parallelization Strategy #1

We start by setting Tw = 1, i.e., no parallelization within the
circuit graph. As a result, T = Tg, which means that all threads

work on independent iterations. This is our default paralleliza-
tion strategy which demonstrates the best runtime performance
on multicore CPUs. Table IV lists the overall performance
comparison. We measure the runtime and memory consump-
tion on computing the global top-k post-CPPR slacks on the
designs listed in Table III where k = 1, 100, 10K, for both
setup and hold tests. We tested our timer for both one and eight
threads, as it starts saturating at eight threads. OpenTimer and
iTimerC are tested using 8 threads. HappyTimer is tested using
one thread because it does not support multithreading. We did
not include accuracy metrics because our proposed algorithm
generates full accuracy results.

Our timer is faster than all baseline timers by at least 2.41×.
The largest speedup of our timer with 8 threads is 96.28×
compared to OpenTimer, 217.51× compared to HappyTimer,
and 87.46× compared to iTimerC. Our timer with a sin-
gle thread can achieve up to 89.01× speedup (Combo4v2,
k = 10K) compared to HappyTimer. The average speedup
ratios (baseline over ours), for k = 1 are 22.69, 20.83, and 3.28
compared to OpenTimer, HappyTimer, and iTimerC, respec-
tively. The ratios for k = 10K are 51.80, 135.21, and 36.47,
respectively. The large runtime gains come from the funda-
mental difference of the time complexity. All baselines can
end up with enumerating all pairs of FFs (#FFs in Table III),
while our algorithm depends only on the depth of the clock
tree (D in Table III), which is 300×–1700× smaller. These
results demonstrate the effectiveness and efficiencies of our
algorithm to reduce the long runtimes of CPPR.

Our algorithm with parallelization strategy #1 has a good
memory performance when generating a large number of crit-
ical paths. For example, we reduce the memory consumption
for k = 10K by 14.15×, 38.83×, and 9.14× compared to
OpenTimer, HappyTimer, and iTimerC, respectively. Although
we use more memory than OpenTimer when k ≤ 100, our
timer with 1 thread already outperforms OpenTimer up to
33.37× (leon2, k = 10K) with very little memory over-
head. As we will show later, by exploiting parallelism within
the circuit graph (i.e., setting Tw > 1), we can get comparable
runtime while largely reduce memory consumption.

HappyTimer and iTimerC adopt design-specific pruning
heuristics and achieve good performance on designs (e.g.,
vga_lcdv2, leon3mp) with small k, but they do not scale
well to large k. For example, HappyTimer leverages the spar-
sity of the connection between launching and capturing FFs
for pruning, but such an assumption fails at designs with high
“FF connectivity” (defined as the average number of captur-
ing FFs that can be reached from each launching FF). As a
result, it becomes extremely slow and memory intensive on
large designs such as leon2 in Table III.

B. Parallelization Strategy #2 and Hybrid

We now test the performance when incorporating paral-
lelization strategies within the circuit graph. To conduct a
fair comparison, we fix the total number of threads T =
Tw×Tg = 8, and test the runtime and memory performance of
different (Tw, Tg) pairs. Table V lists the overall performance
comparison.

Authorized licensed use limited to: The University of Utah. Downloaded on June 12,2023 at 10:10:41 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: PROVABLY GOOD AND PRACTICALLY EFFICIENT ALGORITHM FOR CPPR IN LARGE DESIGNS 3475

TABLE IV
PERFORMANCE COMPARISON BETWEEN OPENTIMER (8 THREADS), HAPPYTIMER (1 THREAD), ITIMERC (8 THREADS) AND OURS [14] (BOTH 1

THREAD AND 8 THREADS ARE TESTED) TO FIND THE TOP-k POST-CPPR CRITICAL PATHS ON LARGE CIRCUIT DESIGNS

TABLE V
RUNTIME AND MEMORY COMPARISON OF OUR ALGORITHM RUNNING WITH DIFFERENT (Tw, Tg) PAIRS, AND OPENTIMER WITH 8 THREADS. ALL

PAIRS SATISFY T = Tw × Tg = 8. THE PAIR Tw = 1, Tg = 8 IS THE SAME AS THE 8-THREAD STRATEGY [14] IN TABLE IV

By increasing Tw and decreasing Tg, the runtime becomes
longer due to less parallel iterations and more parallelism
inside the circuit graph. However, the memory consumption
is reduced because we store less circuit graph instances in
memory. For example, strategy Tw = 2, Tg = 4 only increases
the average runtime by 3%, 6%, and 7% for k = 1, 100, 10K,
respectively, but reduces 30% of the memory consumption in
all cases we have tested. In this strategy, we have compa-
rable memory consumption compared to OpenTimer even at
small ks. At large ks, we reduce the memory usage by at most
33.02× (netcard, k = 10K).

Increasing Tw generally reduces the memory usage at the
cost of increased runtime. Strategy Tw = 4, Tg = 2 increases

the average runtime by 15%, 19%, and 25% for k = 1, 100,
and 10K, respectively, but only uses 0.54× memory of our
parallelization strategy #1. Despite this runtime overhead, our
algorithm is still 41.77×, 109.04×, and 29.41× faster than
OpenTimer, HappyTimer, and iTimerC, respectively, on aver-
age in generating the top-10K paths (computed by dividing
the average runtime ratio of the baselines by the average run-
time ratio of this strategy. Specifically, 41.77 = 51.80/1.24,
109.04 = 135.21/1.24, and 29.41 = 36.47/1.24). Strategy
Tw = 8, Tg = 1 has the smallest memory consumption,
which is nearly the same as our 1-thread version. By par-
allelizing within the circuit graph, it accelerates the 1-thread
version by 1.63×, 1.60×, and 1.51× for k = 1, 100, and

Authorized licensed use limited to: The University of Utah. Downloaded on June 12,2023 at 10:10:41 UTC from IEEE Xplore. Restrictions apply.

3476 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

Fig. 8. Runtime and memory values at different numbers of post-CPPR paths
(i.e., k) on leon2.

Fig. 9. Runtime and memory values at different numbers of threads for
k = 1 on leon2. OpenTimer with 1 and 2 threads failed to finish within 3
h, so we skip those two points.

10K, respectively. However, it introduces 44%–69% runtime
overhead compared to parallelizing across iterations because
of limited parallelism within the circuit graph.

C. Performance at Different Path Counts

Fig. 8 draws the runtime and memory consumption ver-
sus k, the number of post-CPPR critical paths requested. We
tested two strategies of our algorithms, one with Tw = 1 and
Tg = 8 [14] and another with Tw = 4 and Tg = 2. Our algo-
rithm runs very fast for all number of paths, while the runtime
of iTimerC rises rapidly when k increases from 1K to 10K.
Meanwhile, our algorithm has a steady memory consumption
regardless of k, while the memory usage of OpenTimer and
iTimerC explode when k is large. We attribute the decent scal-
ability over k to the elimination of FF enumeration and the
progressive path generation. For our algorithm, the memory
consumption of strategy Tw = 4, Tg = 2 is smaller compared
to strategy Tw = 1, Tg = 8 across all numbers of paths, and
there is a remarkable gap. Meanwhile, these two strategies
have similar runtime except for k = 100K. This shows that
additional parallelization within circuit graph gives smaller
memory consumption only at the cost of a slight runtime
overhead.

D. Performance at Different Thread Counts

Figs. 9 and 10 draw the runtime and memory consump-
tion at different numbers of threads. To show the runtime and
memory feature of our algorithm under different paralleliza-
tion strategies, we have tested three different ways of thread
allocation between Tg and Tw. For the first strategy, we fix
Tw = 1 (which is the same strategy as [14]) to demonstrate the

Fig. 10. Runtime and memory values at different numbers of threads for
k = 10K on leon2. OpenTimer with 1 and 2 threads failed to finish within
3 h, so we skip those two points.

parallelism across clock tree depths. For the other two strate-
gies, we fix Tg to 2 and 4, respectively, to demonstrate the
parallelism within the circuit graph. We do not show iTimerC
because its binary is hardcoded for eight threads. The result
shows that our algorithm has an outstanding performance on
runtime. For k = 10K, our algorithm uses only a small por-
tion of the memory than OpenTimer, while being significantly
faster. We also observe that our algorithm is scalable to dif-
ferent numbers of threads in all of the three strategies. For
Tw = 1 and k = 1, it uses more memory than OpenTimer
at a larger thread count. The reason is that we parallelize our
algorithm across clock tree depths (setting T = Tg), thus repli-
cating the circuit graph in many threads. This is the same way
OpenTimer adopted to leverage multicore CPU power, while
we have a slightly larger constant behind our space complex-
ity, in which we use extra arrival time tuples to keep track
of paths. However, by fixing Tg = 2 or 4 instead of Tw, we
achieve both low runtime and low memory than OpenTimer,
even when k = 1. Furthermore, by fixing Tg instead of Tw,
our algorithm uses a fixed amount of memory regardless of
the number of threads used.

E. Comparison With Commercial Tool

In this section, we provide a detailed comparison between
our proposed algorithm and Synopsys PrimeTime. We conduct
the test in this section on a platform with 12 cores Intel Xeon
CPU at 2.60 GHz and 64-GB memory. We have to use this
platform instead of the one used in previous sections, because
our PrimeTime 2018.3 license is tied to this hardware. Note
that the comparison between our algorithm and PrimeTime
may be unfair because of different application scopes. Our
scope targets a standalone research environment, but commer-
cial tools need to deal with many other components in the
closure flow even though many of them may not be directly
related to CPPR. It is very difficult to come up with a fair
comparison for the CPPR problem itself. Despite this, we
have made several efforts to make this comparison as fair as
possible.

1) We write a simple program to transform the data format
in TAU contests (i.e., delay-annotated timing graph) into
format that PrimeTime can read directly (i.e., verilog
source code, cell library, and design constraints). This
helps us run PrimeTime on the same set of benchmarks
as we use in the previous sections.

Authorized licensed use limited to: The University of Utah. Downloaded on June 12,2023 at 10:10:41 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: PROVABLY GOOD AND PRACTICALLY EFFICIENT ALGORITHM FOR CPPR IN LARGE DESIGNS 3477

TABLE VI
RUNTIME AND MEMORY COMPARISON WITH THE COMMERCIAL

STA ENGINE PRIMETIME

2) We enable CPPR in PrimeTime reports by setting
remove_clock_reconvergence_pessimism to
true, and crpr_threshold_ps to 0. With these
settings, PrimeTime will rank paths based on precise
post-CPPR slacks without speed–accuracy tradeoff.

3) We provide delay annotations directly to PrimeTime (in
the SDF format) to bypass its built-in delay modeling
of cell arcs and net arcs. In this way, PrimeTime con-
centrates on solving the CPPR path extraction problem.

Table VI shows the overall runtime and memory results.
We run our proposed algorithm with parallel strategy #1
(i.e., Tw = 1 and Tg = 8). Note that we have rerun the
experiments of our algorithm on the new platform for a fair
comparison with PrimeTime. We observe an average runtime
speedup of 18.52×, 18.51×, and 26.99× for k = 1, 100, 10K,
respectively. Across all benchmarks we have tested, we are at
least 13.48× faster than PrimeTime. Our algorithm also has
efficient memory performance, using only 60% the memory
for k = 1, 100, and 50% the memory for k = 10K on average.
A notable case with the largest runtime speedup is Combo4v2
with k = 10K. In this case, we are 43.13× faster, while only
using 27% of the memory compared to PrimeTime. The run-
time and memory gap becomes larger with larger k. These
results demonstrate the advantage of our proposed algorithm
compared to an industry-standard commercial STA engine.

V. CONCLUSION

In this article, we have proposed a novel provably good
and practically efficient CPPR algorithm. Instead of enumer-
ating all the FF pairs, we processed the FF pairs in groups of

LCA depths to address their common path pessimism in the
clock tree, and introduced efficient data structures to reduce
the search space for finding post-CPPR paths. We proved the
algorithm has a time complexity proportional to the depth of
the clock tree, rather than the number of FFs which is typi-
cally larger by orders of magnitude. Our algorithm is highly
parallelizable, and we can balance the runtime and memory
consumption by changing the allocation of threads. By per-
forming parallel iterations over different, independent LCA
depths, and the nodes in the same level when propagating
the arrival time tuples, our algorithm has achieved 3×–23×
speedup on generating one post-CPPR critical path, and 36×–
135× speedup on generating 10K post-CPPR critical paths
over the state-of-the-art CPPR algorithms. We plan to extend
our algorithm to a GPU target [15]–[17] in our future work,
and integrate our timer into timing-driven design optimization
tasks, such as placement [18]–[20] and routing. Meanwhile,
incremental CPPR analysis remains a challenging problem
due to lack of pruning techniques for post-CPPR path-based
analysis, which we plan to investigate in the future.

REFERENCES

[1] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer
Designs: A Practical Approach. Boston, MA, USA: Springer, 2009.

[2] T.-W. Huang, G. Guo, C.-X. Lin, and M. D. F. Wong, “OpenTimer
v2: A new parallel incremental timing analysis engine,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 4, pp. 776–789,
Apr. 2021.

[3] J. Hu, D. Sinha, and I. Keller, “TAU 2014 contest on removing common
path pessimism during timing analysis,” in Proc. ACM Int. Symp. Phys.
Design (ISPD), 2014, pp. 153–160.

[4] J. Hu, G. Schaeffer, and V. Garg, “TAU 2015 contest on incremental
timing analysis,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), Austin, TX, USA, 2015, pp. 882–889.

[5] P.-Y. Lee, I. H.-R. Jiang, C.-R. Li, W.-L. Chiu, and Y.-M. Yang,
“iTimerC 2.0: Fast incremental timing and CPPR analysis,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Austin, TX,
USA, 2015, pp. 890–894.

[6] B. Jin, G. Luo, and W. Zhang, “A fast and accurate approach for
common path pessimism removal in static timing analysis,” in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), Montreal, QC, Canada, 2016,
pp. 2623–2626.

[7] T.-W. Huang and M. D. F. Wong, “UI-timer 1.0: An ultrafast path-
based timing analysis algorithm for CPPR,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 35, no. 11, pp. 1862–1875, Nov. 2016.

[8] C. Peddawad, A. Goel, B. Dheeraj, and N. Chandrachoodan, “iitRACE:
A memory efficient engine for fast incremental timing analysis and
clock pessimism removal,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), Austin, TX, USA, 2015, pp. 903–909.

[9] C.-H. Tsai and W.-K. Mak, “A fast parallel approach for common path
pessimism removal,” in Proc. IEEE/ACM Asia South Pac. Design Autom.
Conf. (ASPDAC), Chiba, Japan, 2015, pp. 372–377.

[10] D. Eppstein, “Finding the k shortest paths,” SIAM J. Comput., vol. 28,
no. 2, pp. 652–673, 1999.

[11] M. D. Atkinson, J.-R. Sack, N. Santoro, and T. Strothotte, “Min–max
heaps and generalized priority queues,” Commun. ACM, vol. 29, no. 10,
pp. 996–1000, 1986.

[12] T.-W. Huang, Y. Lin, C.-X. Lin, G. Guo, and M. D. F. Wong, “CPP-
taskflow: A general-purpose parallel task programming system at scale,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 8,
pp. 1687–1700, Aug. 2021.

[13] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, “Taskflow: A lightweight
parallel and heterogeneous task graph computing system,” IEEE Trans.
Parallel Distrib. Syst., vol. 33, no. 6, pp. 1303–1320, Jun. 2022.

[14] Z. Guo, T.-W. Huang, and Y. Lin, “A provably good and practically effi-
cient algorithm for common path pessimism removal in large designs,”
in Proc. ACM/IEEE Design Autom. Conf. (DAC), 2021, pp. 1–6.

Authorized licensed use limited to: The University of Utah. Downloaded on June 12,2023 at 10:10:41 UTC from IEEE Xplore. Restrictions apply.

3478 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 10, OCTOBER 2022

[15] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “GPU-accelerated critical
path generation with path constraints,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), 2021, pp. 1–9.

[16] Z. Guo, T.-W. Huang, and Y. Lin, “GPU-accelerated static timing anal-
ysis,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD),
2020, pp. 1–9.

[17] Z. Guo, T.-W. Huang, and Y. Lin, “Heterocppr: Accelerating common
path pessimism removal with heterogeneous CPU-GPU parallelism,”
in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), 2021,
pp. 1–9.

[18] Y. Meng, W. Li, Y. Lin, and D. Z. Pan, “elfPlace: Electrostatics-
based placement for large-scale heterogeneous FPGAs,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., early access, Jan. 21, 2021,
doi: 10.1109/TCAD.2021.3053191.

[19] Y. Lin et al., “DREAMPlace: Deep learning toolkit-enabled GPU
acceleration for modern VLSI placement,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 40, no. 4, pp. 748–761, Apr. 2021.

[20] Y. Lin, W. Li, J. Gu, H. Ren, B. Khailany, and D. Z. Pan, “ABCDPlace:
Accelerated batch-based concurrent detailed placement on multithreaded
CPUs and GPUs,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 39, no. 12, pp. 5083–5096, Dec. 2020.

Zizheng Guo is currently pursuing the B.S. degree
in computer science with the Center for Energy-
Efficient Computing and Applications, Peking
University, Beijing, China.

He is currently working on Static Timing Analysis
in VLSI CAD. His research interests include data
structures, algorithm design, and GPU acceleration
for combinatorial optimization problems.

Mr. Guo has received the National Scholarship in
2020 and 2021, the Peking University Exceptional
Award for Academic Innovation in 2020, and the

POSCO Asia Fellowship in 2019.

Mingwei Yang is currently pursuing the B.S. degree
with the Computer Science Department, Center
for Energy-Efficient Computing and Applications,
Peking University, Beijing, China.

His research interests include algorithm design
and GPU acceleration.

Tsung-Wei Huang (Member, IEEE) received the
B.S. and M.S. degrees from the Department of
Computer Science, National Cheng Kung University,
Tainan, Taiwan, in 2010 and 2011, respectively, and
the Ph.D. degree from the Electrical and Computer
Engineering (ECE) Department, University of
Illinois at Urbana–Champaign, Champaign, IL,
USA, in 2017.

He is currently an Assistant Professor with ECE
department, the University of Utah, Salt Lake City,
UT, USA. He has been building software systems

for parallel computing and timing analysis.
Dr. Huang’s Ph.D. thesis won the prestigious 2019 ACM SIGDA

Outstanding Ph.D. Dissertation Award for his contributions to distributed and
parallel VLSI timing analysis.

Yibo Lin (Member, IEEE) received the B.S.
degree in microelectronics from Shanghai Jiaotong
University, Shanghai, China, in 2013, and the
Ph.D. degree from the Electrical and Computer
Engineering Department, University of Texas at
Austin, Austin, TX, USA, in 2018.

He is currently an Assistant Professor with
the Computer Science Department, Center for
Energy-Efficient Computing and Applications,
Peking University, Beijing, China. His research
interests include physical design, machine learning

applications, GPU acceleration, and hardware security.

Authorized licensed use limited to: The University of Utah. Downloaded on June 12,2023 at 10:10:41 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCAD.2021.3053191

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

