
OpenTimer: A High-Performance Timing Analysis Tool
Special Session Paper: Incremental Timing and CPPR Analysis

Tsung-Wei Huang∗ and Martin D. F. Wong†
∗twh760812@gmail.com, †mdfwong@illinois.edu

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL, USA

Abstract—We introduce in this paper, OpenTimer, an open-source
timing analysis tool that efficiently supports (1) both block-based and
path-based timing propagations, (2) common path pessimism removal
(CPPR), and (3) incremental processing. OpenTimer works on industry
formats (e.g., .v, .spef, .lib, .sdc) and is designed to be parallel and
portable. To further facilitate integration between timing and other
electronic design automation (EDA) applications such as timing-driven
placement and routing, OpenTimer provides user-friendly application
programming interface (API) for inactive analysis. Experimental results
on industry benchmarks released from TAU 2015 timing analysis contest
have demonstrated remarkable results achieved by OpenTimer, especially
in its order-of-magnitude speedup over existing timers.

I. INTRODUCTION

The lack of accurate and fast algorithms for high-performance

timing analysis tool with incremental capability has been recently

pointed out as a major weakness of existing timing optimization

flows [1]. In deep submicron era, timing-driven operations are imper-

ative for the success of optimization flows. Optimization transforms

change the design and therefore have the potential to significantly

affect timing information. The timer must reflect such changes and

update timing information incrementally and accurately in order to

ensure slack integrity as well as reasonable turnaround time and

performance [3]. However, such process requires extremely high

complexity especially when path-based analysis is configured [4], [5],

[6]. A high-quality incremental timer capable of path-based analysis

is definitely advantageous in speeding up the timing closure.

1

Optimization Transforms

R
u
n
ti
m
e
im
p
ro
v
em
en
t
(x
) Impact of incremental timing

on runtime performance

10 100 1000 10000 100000 1000000

2.13

10.58

3.78
4.95

6.41

8.37

9.46

Full timing

Incremental timing

Figure 1. Performance improvement of incremental timing to full timing on
one benchmark from [1].

The significance of incremental timing is demonstrated in Figure

1. It is observed that the runtime improvement keeps growing as the

number of optimization transforms increases. One obvious reason

is that once the critical paths in a design have been reported, the

optimization tool would optimize the logic (e.g., gate sizing, buffer

insertion) so as to overcome the timing violations. This subtle change

can affect up to the majority of a circuit, whereas in reality, depending

on the trace of critical paths, the timing update may only involve a

small portion of the circuit. Since an optimization tool can perform

millions of logic transformations, it is important that the timing profile

is kept up-to-date in an incremental fashion. Otherwise, optimization

tools cannot support fast turnaround for timing-specific improvement,

which dramatically degrades the productivity.

Figure 2. Program flow of OpenTimer.

Besides being incremental, one important feature of a practical

timer is the capability of common path pessimism removal (CPPR).

CPPR is a path-specific timing update that intends to remove redun-

dant pessimism incurred by common segments between data paths

and clock paths. Unwanted pessimism might force designers and

optimization tools to waste a unnecessary yet significant amount of

efforts on fixing paths that meet the intended clock frequency. This

problem becomes even more critical when design comes to deep

submicron era where data paths are shorter, clocks are faster, and

clock networks are longer to accommodate larger and complex chips.

However, the real problem is the amount of pessimism that needs to

be removed is path-specific. Computational complexity and space

requirements for CPPR typically grows exponentially as the design

size increases, not to mention the challenge in conjunction with

incremental timing analysis. Consequently, in this paper we introduce

OpenTimer, an open-source high-performance timing analysis tool.

An overview of OpenTimer is shown in Figure 2. We highlight three

key features of OpenTimer as follows:

• Parallel framework. OpenTimer applies a pipeline task sched-

uler as the central engine. Critical tasks such as timing prop-

agation and endpoint slack calculation are scheduled into the

pipeline so as to overlap their runtimes.

• Incremental capability. OpenTimer precisely and minimally

captures the features that are key to incremental timing. With

lazy evaluation, we are able to keep computation as minimum

as necessary.

• Path-based analysis. OpenTimer represents the path implicitly

using efficient and compact data structure, yielding a significant

saving in both search space and search time for CPPR.

The effectiveness and efficiency of our timer have been evaluated

on a set of industry benchmarks released from TAU 2015 CAD

contest. Compared to the top performers in TAU 2015 CAD contest,

OpenTimer confers a high degree of differential in nearly all aspects.

The source code of OpenTimer has been released to the public domain

for promoting further research [2].

978-1-4673-8388-2/15/$31.00 ©2015 IEEE 895

II. INCREMENTAL TIMING ANALYSIS AND CPPR

Various stages of the design flow such as logic synthesis, place-

ment, routing, physical synthesis, and optimization facilitate a need

for incremental timing analysis [1]. During these stages, local opera-

tions such as gate sizing, buffer insertion, or net rerouting can modify

small fractions of the design and significantly change both local and

global timing landscape. As the example shown in Figure 3, a change

on gate B3 has the potential to affect up to the majority of the circuit

(downstream timing). Nevertheless, depending on the trace of critical

paths, only a small portion of the timing would need to be updated.

For instance, if such a change does not affect the arrival time at I1:o,

then every downstream timing after I1:o is unaffected.

B3

CLK

B1

B2

B4

D
Q

FF2

IN2

IN1
D

Q

FF1

D

FF3

Q

OUT

(20, 25)
(10, 45)

(10, 30)

(50, 50)

(50, 50)

(4
0,
40
)

(4
0,
40
)

Data path 1 Data path 2

Capturing clock path

(10, 30)(0, 0)

(0, 0)

(0, 0)

CK

CK

CK
(4
0,
40
)

Affected area for

change on B3

(downstream cone)

Incremental timing

I1

Figure 3. An example of sequential circuit network.

In addition to incremental processing, the capability of CPPR

is another important component for modern timing analysis tools.

Optimization transforms on the data network have no impact on

CPPR credit (or CPPR adjustment) for any given launch-capture

flip-flop (FF) pairs. Because the clock paths are not changed, any

cached value for CPPR credit can be reused. However, in reality

many optimization transforms are applied to the clock network, such

as resizing a buffer or adding or deleting buffers on the clock tree in

order to meet slack or skew targets. These changes can potentially

affect a large number of data paths and slacks, and these data points

must be recomputed with updated CPPR credits. Further, in some

cases, changes on the clock network may not even impact CPPR for

any data paths at all. As the example shown in Figure 3, the change

on B3 can impact the CPPR credit for the launch-capture FF pair

FF2 and FF3, while a change on B4 does not affect the CPPR credit

for any FF pair. Therefore, the challenge of incremental CPPR is

correctly identifying what data points are affected by which changes

in an incremental manner.

III. TOOL CONFIGURATION

The industry-standard format for timing analysis requests the

following input files.

• Two liberty (.lib) files that defines the early and late charac-

teristics of available cells in a given design, including pin ca-

pacitance, delay and slew look-up tables (LUTs), and setup/hold

timing guard for sequential elements.

• A verilog (.v) file that defines the net list and circuit topology

in gate level for a given design, including primary input/output

ports and connections among gates.

• A parasitics (.spef) file that defines the design parasitics of

a set of nets as a resistive-capacitive (RC) network, including

the capacitance of internal nodes and wire resistance between

internal nodes.

• A Synopsys design constraint (.sdc) file that defines the design

operating conditions, including the clock port, clock period,

initial timing on primary input ports, and load capacitance of

primary output ports.

Given these input files, develop a CPPR-aware incremental timer

that supports incremental timing update subject to a set of design

modifiers and reports the timing with CPPR of any queried data path

or timing point. In this paper, the slack prior to and after CPPR is

referred to as pre-CPPR slack and post-CPPR slack, respectively.

Particularly, the timer adheres to the following operations.

• insert gate: adds an unconnected gate.

• repower gate: changes the size of a gate.

• remove gate: removes a disconnected gate.

• insert net: creates an empty net.

• remove net: removes a net from the design.

• read spef: asserts parasitics on existing nets.

• disconnect pin: disconnects a pin from its net.

• connect pin: connects a pin to a net.

• report at: reports the arrival time at a pin for any rise/fall

transition and early/late split.

• report rat: reports the required arrival time at a pin for any

rise/fall transition and early/late split.

• report slack: reports the worst post-CPPR slack at a pin for

any rise/fall transition and early/late split.

• report worst paths: reports the worst post-CPPR path either

in the design or through a specified pin.

The first eight operations describe the gate-level, net-level, and pin-

level modifications on the design topology. The last four operations

probe the design to report timing information. In order to collaborate

with optimization tools, the timer should process these operations in

an interactive or online manner. That is, advanced input disclosure

or offline preprocessing is prohibited.

IV. ALGORITHM

The overall framework of OpenTimer is presented in Algorithm 1.

It first initializes the circuit based on input liberty, verilog, parasitic,

and Synopsys design constraint files. Then it enters the interactive

while loop, reading the operation commands and processing each

command accordingly.

Algorithm 1: OpenTimer(.lib, .v, .spef, .sdc)

Input: .lib, .v, .spef, .sdc files

1 initialize the circuit from input .lib, .v, .spef, and .sdc files;

2 while op ← GetOperationCommand do
3 process the operation command op accordingly;

4 end

A. State of the Art: UI-Timer

OpenTimer is built upon the state-of-the-art timer, UI-Timer (the

winner of TAU 2014 CAD contest), which targets on one-time full

timing update with CPPR [5]. OpenTimer succeeds the merits of

UI-Timer, in particular its efficient data structures for pessimism

retrieval and path search, and enhances it to be capable of incremental

processing. For pessimism retrieval, we have implemented the LUT-

based method by UI-Timer. Several LUTs are first built through the

clock tree. Based on these LUTs, the amount of pessimism can be

quickly retrieved by referring to the lowest-common ancestor (LCA)

between tree nodes.

896

The second idea we borrowed from UI-Timer is the implicit

representation of path. UI-Timer proposed two complementary data

structures, namely suffix tree and prefix tree, to represent the search

space of the path ranking. The suffix tree represents the shortest path

tree rooted at a referenced node. The prefix tree is a tree order of

non-suffix-tree edges such that each tree node represents the path

being deviated on the corresponding edge from its ordinary trace

in the suffix tree. Each path can be implicitly stored by the two

data structures and the memory usage and the search time can be

significantly reduced to constant time per path during the search. In

the following sections, we shall focus on the major contributions of

OpenTimer, while algorithmic details of pessimism retrieval and path

ranking can be referred to [5].

B. Topological Ordering and Incremental Levelization

In timing analysis, the circuit is interpreted as a set of pin-to-

pin connections or a directed acyclic graph (DAG) G = {P,E},

where P is the pin set and E is the edge set. Because of this special

property, every pin p in the circuit graph can be levelized by a level

index “level[p]” such that the topological order among different pins

are maintained. The timing can thus be propagated level by level

without destroying the circuit topology. In fact, we observe three

major advantages of the topological levelization:

• Incremental timing can be achieved via the insertion of frontier

pins from which the timing propagation originates.

• Using the level indices, timing can be propagated in a pipeline

fashion as dependencies can be scheduled into different levels.

• Multi-threading is highly scalable since the timing in a given

level can be propagated simultaneously.

As a result, we construct a bucket list as the core data structure

for timing propagation. Each bucket is associated with a level index

l and has a list storing those pins with level indices equal to l. The

bucket list also records the minimum and maximum level indices of

non-empty pin lists. Starting from the pin list in the lowest level, the

function of incremental levelization is presented in Algorithm 2. In

a rough view, Algorithm 2 iteratively levelizes a pin from the lowest

level to the highest level (line 2:16). Once the pin is levelized, all its

fanout pins are inserted to the bucket list (line 8:13).

Algorithm 2: IncrementalLevelization(B)

Input: bucket list B

Output: level indices of pins

1 l← B.min nonempty level;

2 while l ≤ B.max nonempty level do
3 for p ∈B.pinlist(l) do

4 for p− ∈ p.fanin pins do

5 level[p] ← max(level[p−] + 1, level[p]);
6 end

7 B.insert(p);

8 for p+ ∈ p.fanout pins do

9 if level[p] + 1 > level[p+] then

10 level[p+] = level[p] + 1;

11 end

12 B.insert(p+);
13 end
14 end

15 l← l+ 1;
16 end

Lemma 1: Denoting the downstream pin set of a pin as D+
p , for

every pin p in the bucket list B, we have {p′ ∈ B | p′ ∈ D+
p } after

Algorithm 2.

C. Forward Timing Propagation

Using the levelized bucket list, we develop the procedure of for-

ward timing propagation. The forward timing propagation performs

six tasks, RC propagation, slew propagation, delay propagation,

arrival time propagation, jump point propagation, and CPPR credit

propagation, for every pin in the bucket list level by level. RC

propagation updates the RC parameters that are required for slew

and delay propagations through a net. Slew propagation propagates

the slew from an input cell pin to the output cell pin through a cell

or an output cell pin to multiple input cell pins through a net. Delay

propagation computes the edge delay through cells and nets. Similar

to slew propagation, arrival time propagation propagates the arrival

time through delay values on cell edges or net edges. In jump point

propagation, we contract the graph in order to reduce the search

space. CPPR credit propagation computes the amount of pessimism

to be removed for a timing test.

1) RC Propagation: In this paper, we adopt the parasitic protocol

by [1], where the output slew and delay through the RC network of

a net are approximated by the symmetric of the value of the first

and second moments of the impulse response. The approximation

can be parameterized in a way such that the output slew and delay

are functions of these RC parameters. Therefore, the goal of the

RC propagation is to compute these RC parameters for any RC

network. While the details are referred to [1], Algorithm 3 presents

the procedure of RC propagation on the RC networks in a given level.

Algorithm 3: PropagateRC(l)

Input: level index l

1 B ← bucket list of the timer;

2 for p ∈ B.pinlist(l) do
3 if p.is rc network root = true then
4 n← p.net;

5 if n.is rc up to date = false then
6 update RC parameters for net n;

7 end
8 end
9 end

2) Slew and Delay Propagation: The propagations of slew and

delay are carried out by Algorithm 4 and Algorithm 5, respectively.

For each pin from a given level, the slew and delay to this pin are

propagated from its fanin through either the RC network using pre-

computed RC parameters (line 7:8 in Algorithm 4 and line 4:5 in

Algorithm 5) or the cell timing arc where the values are obtained via

extrapolation or interpolation on the corresponding slew and delay

LUTs (line 10:12 in Algorithm 4 and line 7:9 in Algorithm 5).

3) Arrival Time Propagation: The propagation of arrival time is

trivial once the delay value on each edge is ready. It has been shown

that finding the earliest and latest arrival time in the circuit graph is

equivalent to finding the shortest and longest paths in a DAG, which

can be fulfilled using levelized propagation [3]. Algorithm 6 presents

such propagation at a given level.

4) Jump Point Propagation: Reducing the size of timing graph is

an effective way to speed up the path search. Because of intrinsic

properties of cells, many paths are present in a tree form. To be

more specific, for some pin pairs at certain transitions, the paths in

between are uniquely defined. For instance, the AND gate in Figure

4 is unate-definite (i.e., either positive unate or negative unate), and

hence any paths passing through are not diverged. Starting from pin

FF3:D at any transition, there exists only one path back to pin FF1:Q

897

Algorithm 4: PropagateSlew(l)

Input: level index l

1 B ← bucket list of the timer;

2 for p ∈ B.pinlist(l) do
3 if p.num fanins = NULL then
4 assign slew to p from the primary input;

5 else
6 for e ∈ p.fanin edges do
7 if e.is net edge = true then
8 propagate slew to p through rc-timing on e.net;

9 else
10 if e.is constraint edge = false then
11 propagate slew to p through LUT on e;

12 end
13 end
14 end
15 end
16 end

Algorithm 5: PropagateDelay(l)

Input: level index l

1 B ← bucket list of the timer;

2 for p ∈ B.pinlist(l) do
3 for e ∈ p.fanin edges do
4 if e.is net edge = true then
5 update delay of e through rc-timing on e.net;

6 else
7 if e.is constraint edge = false then
8 update delay of e through LUT on e;

9 end
10 end
11 end
12 end

or pin FF2:Q. Consequently, we can construct a shortcut that allows

the path search to jump over the subcircuit from FF2:Q or FF1:Q

to FF3:D. In this case, the pin FF3:D is named as “jump head” and

pins FF2:Q and FF1:Q are named as “jump tail”.

The examination of whether a pin is a jump head or a jump tail

is presented in Algorithm 7–8. It can be analogized to a tree where

the jump head is the root and the jump tail is the leave. As shown in

Algorithm 7, a pin at any transition and timing split is referred to as a

jump head only if its output signal is not branched. On the other hand,

the jump tail is determined by whether its input signal is uniquely

defined. Using Algorithms 7–8, the construction and propagation

of jump points are given by Algorithms 9–10. In a rough view,

Algorithm 9 induces the jump point connection through a recursive

traversal to discover any tree-structured subcircuit. Algorithm 10

applies Algorithm 9 to each pin in a give level. Notice that jump

point connections are only considered among data network.

Algorithm 6: PropagateArrivalTime(l)

Input: level index l

1 B ← bucket list of the timer;

2 for p ∈ B.pinlist(l) do
3 if p.num fanins = 0 then
4 assign arrival time to p from the primary input;

5 else
6 for e ∈ p.fanin edges do
7 propagate arrival time to p through delay on e;

8 end
9 end

10 end

Algorithm 7: is jump head(p)

Input: an existing pin p

1 if p.num fanouts = 0 or p.num fanouts > 1 or p.is in clock tree then
2 return true;

3 end

4 e← p.fanout edges;

5 return e.timing sense = non unate;

Algorithm 8: is jump tail(p)

Input: an existing pin p

1 if p.num fanins = 0 then
2 return true;

3 end

4 for e ∈ p.fanin edges do
5 if e.is constraint edge = false then
6 head ← is jump head(e.from pin);

7 if head = true then
8 return true;

9 end
10 end
11 end

12 return false;

Algorithm 9: induce jump point(p, p′, d)

Input: two pins p and p′ and a delay value d

1 p.jump head ← p′;

2 if is jump tail(p) = true then
3 if p 6= p′ then
4 insert a jump connection from p to p′ with delay d;

5 end

6 return;
7 end

8 for e ∈ p.fanin edges do

9 p− ← e.from pin;

10 if e.is constraint edge = true or p−.is in clock tree = true then
11 continue;

12 end

13 induce jump point(p− , p′, d+ e.delay);
14 end

Algorithm 10: PropagateJumpPoint(l)

Input: level index l

1 B ← bucket list of the timer;

2 for p ∈ B.pinlist(l) do
3 if p.is in clock tree = true or is jump head(p) = false then
4 return;

5 end

6 induce jump point(p, p, 0);
7 end

Algorithm 11: PropagateCPPRCredit(l)

Input: level index l

1 B ← bucket list of the timer;

2 for p ∈ B.pinlist(l) do
3 t← p.timing test;

4 if t = NULL or t.is sequential test = false then
5 continue;

6 end

7 # Fork Thread Task {
8 path ← GetCriticalPath(t, 1) [5];

9 t.cppr credit ←path.cppr credit;

10 };
11 end

898

D
Q

FF2

D
Q

FF1

D

FF3

Q

(50, 50)

(50, 50)

(4
0,
40
)

(4
0,
40
)

CK

CK

CK D
Q

FF2

D
Q

FF1

D

FF3

Q

(4
0,
40
)

(4
0,
40
)

CK

CK

CK

5 pin-to-pin connections
2 jump-to-jump

connections

Pin connection
Jump point

connection

(a) Ordinary circuit graph (b) Contracted circuit graph

Figure 4. Graph contraction using jump-point connections.

5) CPPR Credit Propagation: For each data pin of a FF that is

guarded by setup tests or hold timing tests, we need to discover

the corresponding CPPR credit for slack adjustments [4]. The CPPR

credit is defined as the numeric that is applied to skew the worst

post-CPPR slack of a particular test [1]. As aforementioned, the

state-of-the-art path tracing algorithm by UI-Timer [5] is our default

engine for the investigation of CPPR credits for any timing tests. The

algorithm of CPPR credit propagation is presented in Algorithm 11.

In contrast to UI-Timer where the search graph is induced from the

flattened circuit graph, we are able to reduce the search space with

jump points which can lead to significant speedup. Because of the

independence of timing tests, the path tracing can be performed in a

parallel manner (line 7:10).

D. Backward Timing Propagation

In contrast to forward timing propagation, the backward timing

propagation propagates the timing for every pin in the bucket list

from the highest level to the lowest level by performing two major

tasks, fanin propagation and required arrival time propagation. Fanin

propagation inserts the fanin of each pin from the bucket list in order

to construct the upstream cone. Required arrival time propagation

propagates the timing constraint in a backward manner.

1) Fanin Propagation: In order to perform backward timing

propagation, we need to construct the upstream cone of every pin

in the bucket list. Considering the procedure in Algorithm 12 which

inserts all fanin pins from a pin list in a given level, the upstream

cone for backward timing propagation can be constructed by calling

this procedure level by level.

Algorithm 12: PropagateFanin(l)

Input: level index l

1 B ← bucket list of the timer;

2 for p ∈ B.pinlist(l) do

3 for p− ∈ p.fanin pins do

4 B.insert(p−);

5 end
6 end

2) Required Arrival Time Propagation: The propagation of re-

quired arrival time in a given level is shown in Algorithm 13.

Algorithm 13 exerts similar procedure as Algorithm 6 but in a

reversed direction (line 8:10). For constrained pin, the required arrival

time is assigned by the constraint value from the corresponding timing

test (line 4:5) and is adjusted by the CPPR credit in case of sequential

timing tests (line 6).

Algorithm 13: PropagateRequiredArrivalTime(l)

Input: level index l

1 B ← bucket list of the timer;

2 for p ∈ B.pinlist(l) do
3 if p.num fanouts = 0 then
4 t← p.timing test;

5 assign required arrival time to p from t;

6 adjust required arrival time with CPPR credit from t;
7 else
8 for e ∈ p.fanout edges do
9 propagate required arrival time to p through delay on e;

10 end
11 end
12 end

E. Design Modification

Based on the levelized bucket list, the objective of dealing with

design modifiers is to identify the set of “frontier pins” from which

the incremental timing update originates. Starting at the frontier pins,

Algorithm 2 constructs a downstream cone of affected area which

will be used for incremental timing update. We consider the design

modifiers at gate level, net level, and pin level.

1) Gate-Level Modifications: The operations that modify the

design at gate level are 1) insert gate, 2) remove gate, and 3)

repower gate. Recall that the operation insert gate creates a new gate

in the design and the operation remove gate removes a disconnected

gate from the design. It is obvious that the two operations introduce

no frontier pins as the gate being inserted or removed is not connected

to the current circuit. Therefore, for gate-level design modifiers we

only deal with the operation repower gate.

D
Q

FF2

D
Q

FF1

D

FF3

Q

ANDX1(4
0,
40
)

(4
0,
40
)

CK

CK

CK

(a) A circuit fragment

Pin connection

D
Q

FF2

D
Q

FF1

D

FF3

Q

ANDX2(4
0,
40
)

(4
0,
40
)

CK

CK

CK

(b) Repower gate (X1→X2)

Frontier pins

(FF1:Q and FF2:Q)

AND gate with size X1 AND gate with size X2

Downstream

Figure 5. A design modification by repowering the gate with another size
(repower gate).

An example of the operation repower gate is shown in Figure

5. The AND gate in the data network is repowered from size X1

(cell ANDX1) to size X2 (cell ANDX2). Repowering a gate changes

the cell timing and the pin capacitance. The affected area should be

traced back by one level where the pins connecting the gate originate

the incremental timing. In this example, the incremental timing

propagation is captured by two frontier pins FF1:Q and FF2:Q. Using

this fact, our solution to the operation repower gate is presented in

Algorithm 14. Algorithm 14 first replaces the cell that was attached

to the gate with the new cell (line 1). Afterward the frontier pins,

which are fanin pins of each input pin of the gate, are inserted into

the bucket list (line 3:9) for incremental timing update.

2) Net-Level Modifications: There are three operations that modify

the design at net level: 1) insert net, 2) remove net, and 3) read spef.

Similar to gate-level modifications, the operation insert net creates an

empty (disconnected) net for the design and the operation remove net

899

Algorithm 14: repower gate(g, c)

Input: an existing gate g, a new cell c

1 remap the gate g to the new cell c;

2 B ← bucket list of the timer;

3 for p ∈ g.input pins do

4 for p− ∈ p.fanin pins do

5 B.insert(p−);

6 n← p−.net;

7 n.is rc up to date ← false;
8 end
9 end

deletes an empty net from the design. Due to the isolation, both

operations have no impact on current timing profile. The net-level

design modifier read spef is the only operation that could affect

the timing. Our solution to read spef is presented in Algorithm 15.

Algorithm 15 first parses the given .spef file into an object (line 1).

Then it iterates each net that was parsed from the .spef file and asserts

the new parasitics to it (line 3:4). Whenever the parasitics of a net

change, the incremental timing update is captured by the root of the

corresponding RC network (line 5:7).

Algorithm 15: read spef(.spef)

Input: a .spef file

1 O ← parse .spef file into an object;

2 B ← bucket list of the timer;

3 for net n ∈ O do
4 update the parasitics of net n through O;

5 n.is rc up to date ← false;

6 pr ← n.rc network root pin;

7 B.insert(pr);
8 end

3) Pin-Level Modifications: The pin-level design modifiers are the

most crucial operations since they directly alter the connectivity in the

design. There are two operations that modify the design at pin level:

1) disconnect pin and 2) connect pin. The operation disconnect pin

disconnects the pin from the net it is connected to and the operation

connect pin connects the pin to a given net. Both operations alter the

structure of the design and directly affect the timing. Consequently,

we need to identify the frontier pins that capture the incremental

timing update for such changes.

(b) Connect pin FF3:D to net n1

Frontier pins (I1:o)

D
Q

FF2

D
Q

FF1

D

FF3

Q

I1
(4
0,
40
)

(4
0,
40
)

CK

CK

CK

Net n1 (I1:o and FF3:D)

Downstream

D
Q

FF2

D
Q

FF1

I1
(4
0,
40
)

(4
0,
40
)

CK

CK

(a) Disconnect pin FF3:D from net n1

Frontier pins

(I1:o and FF3:D)

Net n1 (I1:o)

Downstream

D

FF3

Q

CK

Figure 6. A design modification by disconnecting/connecting a pin from/to
a net (disconnect pin/connect pin).

An example for operations disconnect pin and connect pin are

given in Figure 6. It can be seen from (a) disconnecting the pin

I1:o from its net cuts off the connection from I1:o to FF3:D. This

change affects the timing at the pins I1:o and FF3:D as well as

the downstream cone of the pin FF3:D. Therefore, disconnecting a

pin introduces two frontier pins that are the two end points at the

connection to or from which the pin is connected. On the other hand,

connecting a pin to a given net establishes a new connection. In (b),

connecting the pin I1:o to the net n1 produces a new connection

from the pin I1:o to the pin FF3:D. This change has impact on

the timing profile in the downstream cone of pin I1:o. As a result,

connecting a pin introduces one frontier pin which is the tail of

this connection. Algorithms 16–17 present our solutions to pin-level

operations. Notice that a pin is considered either a root of the RC

network where we need to remove or insert all possible connections,

including the jump point connection that covers such a change (line

4:8 in Algorithm 16 and line 2:7 in Algorithm 17), or the terminal of

the RC network in which case we deal with the only one connection

(line 10 in Algorithm 16 and line 9:11 in Algorithm 17).

Algorithm 16: disconnect pin(p)

Input: an existing pin p

1 n← p.net ;

2 pr ← n.rc network root pin ;

3 B ← bucket list of the timer;

4 if p = pr then
5 for p′ ∈ n.pinlist −{pr} do
6 B.insert(p′);

7 disconnect pin p′ from the net n;
8 end
9 else

10 B.insert(pr);

11 end

12 B.insert(p);

13 disconnect all jump point connections to p.jump head;

14 disconnect the pin p from the net n;

Algorithm 17: connect pin(p, n)

Input: an existing pin p and an existing net n

1 B ← bucket list of the timer;

2 if p.is rc network root pin = true then
3 for p′ ∈ n.pinlist do
4 establish the connection from p to p′;

5 disconnect all jump point connections to p′.jump head;
6 end

7 B.insert(p);
8 else
9 pr ← n.rc network root pin ;

10 establish the connection from pr to p;

11 B.insert(pr);
12 end

13 disconnect all jump point connections to p.jump head;

14 connect the pin p to the net n;

F. Incremental Timing Update

Based on Algorithms 2–17, we are able to deliver the key procedure

for incremental timing update. In order to guarantee correct timing

results, the task dependency among different timing propagations

needs to be carefully addressed. For backward timing propagation in

a given level, the procedures of fanin propagation and required arrival

time propagation are apparently independent to each other. However,

for forward timing propagation in a given level, the following

dependency should be satisfied: 1) RC propagation (RCP) precedes

the slew propagation (SLP) and delay propagation (DLP); 2) DLP

precedes the arrival time propagation (ATP); 3) ATP precedes the

jump point propagation (JMP); 4) JMP precedes the CPPR credit

900

propagation (CRP). As the timing propagation is conducted level

by level, the task dependency can be efficiently encapsulated by a

parallel pipeline. Figure 7 illustrates this concept (subscript delineates

the level index).

RCPl

CRPl

Stage 1 Stage 2

ATPl

JMPl

Stage 3 Stage 4 Stage 5 Stage 6

RCPl+1 RCPl+2 RCPl+3 RCPl+4 RCPl+5

SLPl

DLPl

SLPl+1

DLPl+1

ATPl+1

SLPl+2

DLPl+2

JMPl+1

ATPl+2

SLPl+3

DLPl+3

CRPl+1

JMPl+2

ATPl+3

SLPl+4

DLPl+4

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Time

Thread ID

Barrier Barrier Barrier Barrier Barrier
...

Parallel Parallel Parallel Parallel Parallel Parallel

Figure 7. Parallel forward timing propagation using pipeline.

Algorithm 18: update timing()

1 B ← bucket list of the timer;

2 if B.num pins = 0 then
3 return;

4 end

5 IncrementalLevelization(B);

6 lmin ← B.min nonempty level;

7 lmax ← B.max nonempty level;

8 # Parallel Region {
9 # Master Thread do for l = lmin to lmax + 4 do

10 # Fork Thread Task PropagateRC(l);

11 # Fork Thread Task PropagateSlew(l − 1);

12 # Fork Thread Task PropagateDelay(l − 1);

13 # Fork Thread Task PropagateArrivalTime(l − 2);

14 # Fork Thread Task PropagateJumpPoint(l − 3);

15 # Fork Thread Task PropagateCPPRCredit(l − 4);

16 # Synchronize Thread Tasks;
17 end

18 };
19 # Parallel Region {
20 # Master Thread do for l = lmax to B.min non empty level do
21 # Fork Thread Task PropagateFanin(l);

22 # Fork Thread Task PropagateRequiredArrivalTime(l);

23 # Synchronize Thread Tasks;
24 end

25 };
26 remove all pins from the bucket list B;

Algorithm 18 presents our solution to incremental timing update.

It first calls Algorithm 2 to construct the downstream cone of all

frontier pins in the bucket list (line 5). The timing propagation is

then performed level by level in a parallel pipeline fashion (line 8:18

for forward timing propagation and line 19:25 for backward timing

propagation). By the end of each pipeline stage, a barrier is imposed

to synchronize all forked threads (line 16 and line 23). The bucket

list is reset after the timing propagation is accomplished (line 26).

G. Timing Query

Using Algorithm 18 as the infrastructure, the value-based timing

queries, for example, reporting the arrival time, can be implemented

as Algorithm 19. Queries for required arrival time and slack can be

mimicked in a similar manner. The path-based query is presented in

Algorithm 20. Algorithm 20 takes two arguments, one pin p and a

path count K, and reports the top K post-CPPR critical paths through

p. If p is nil, the paths are searched across the entire circuit graph

G (line 2). Otherwise, the search graph is limited to the region of

downstream cone D+
p and upstream cone D−

p of p such that every

path discovered in the search graph passes through p (line 3:5). Then

we apply the path ranking algorithm by [5] to peel out the top K

critical tests (line 6). Finally we iteratively extract the top K critical

paths from each of the top K critical tests and maintain the globally

top K critical paths using a priority queue (line 7:15).

Algorithm 19: report at(p, s, m)

Input: an existing pin p and targeted transition s and timing split m

Output: arrival time at p for s and m

1 update timing();

2 return p.arrival time(s, m);

Algorithm 20: report worst path(p, K)

Input: an existing pin p and a path count K

Output: top K critical paths through p in the design

1 update timing();

2 G′ ← G;

3 if p 6= NULL then

4 G′ ← D−

p ∪D+
p ;

5 end

6 extract a sorted set T of the top K post-CPPR critical tests from G′ [5];

7 Q← priority queue keyed on post-CPPR slack values;

8 for t ∈ T do
9 if Q.size = K and t.slack ≥ Q.top max then

10 break;

11 end

12 Q← Q∪ GetCriticalPath(t, K) [5];

13 Q.maintain top k min(K);
14 end

15 return Q;

V. EXPERIMENTAL RESULTS

OpenTimer is implemented in C++ language on a 2.20 GHz 64-bit

Linux machine with 128 GB memory. The application programming

interface (API) provided by OpenMP 3.1 is used for our multi-

threaded programming. Our machine can execute a maximum of

8 threads concurrently. Experiments are undertaken on a set of

industry benchmarks released from TAU 2015 CAD contest [1]. The

golden reference is generated from an industry timer and the design

modifiers are wrapped in a .ops file which contains tens of millions of

operations. Table I lists the benchmark statistics and the performance

of OpenTimer compared to the top performers, “iTimerC 2.0” and

“iitRACE,” from TAU 2015 CAD contest [1].

We begin by comparing OpenTimer with iitRACE. The strength

of OpenTimer is clearly demonstrated in the accuracy and runtime

values. We have seen a significant performance gap where our timer

is much more accurate and far faster than iitRACE. Even though

iitRACE achieves better memory usage, such data are less meaningful

when accuracy is considered the top priority. Next we compare

OpenTimer with iTimerC 2.0. In general, OpenTimer outperforms

iTimerC 2.0 across nearly all circuit benchmarks in any aspects. We

reach the goal by ×2.3 (edit dist) to ×9.7 (cordic core) faster and

consume less memory for most benchmarks. In addition, our accuracy

is higher than iTimerC 2.0 by 7% in average. Unfortunately, we are

unable to compare the data on the benchmark softusb navre because

iTimerC 2.0 encountered execution fault.

901

TABLE I
PERFORMANCE COMPARISON BETWEEN OPENTIMER AND TOP-RANKED TIMERS IITRACE AND ITIMERC 2.0 FROM TAU 2015 CAD CONTEST [1].

Circuit #Gates #Nets #OPs
iitRACE iTimerC 2.0 OpenTimer

accuracy runtime memory accuracy runtime memory accuracy runtime memory

b19 255.3K 255.3K 5641.5K 63.03 % 629 s 3.0 GB 99.95 % 215 s 5.8 GB 99.95 % 52 s 4.6 GB

cordic 45.4K 45.4K 1607.6K 61.83 % 100 s 0.9 GB 98.88 % 80 s 1.3 GB 98.88 % 18 s 1.3 GB

des perf 138.9K 139.1K 4326.7K 67.43 % 299 s 4.2 GB 97.02 % 92 s 3.1 GB 99.73 % 30 s 3.0 GB

edit dist 147.6K 150.2K 3368.3K 64.83 % 857 s 2.0 GB 98.29 % 98 s 3.8 GB 98.30 % 42 s 3.8 GB

fft 38.2K 39.2K 1751.7K 89.66 % 70 s 0.5 GB 98.45 % 49 s 1.2 GB 99.77 % 11 s 1.2 GB

leon2 1616.4K 1517.0K 8438.5K 72.34 % 16832 s 9.9 GB 100.00 % 787 s 27.2 GB 100.00 % 282 s 22.8 GB

leon3mp 1247.7K 1248.0K 8405.9K 62.99 % 4960 s 8.2 GB 100.00 % 609 s 19.8 GB 100.00 % 163 s 17.9 GB

mgc edit dist 161.7K 164.2K 3403.4K 64.29 % 1578 s 1.9 GB 100.00 % 135 s 4.1 GB 100.00 % 41 s 3.1 GB

mgc matrix mult 171.3K 174.5K 3717.5K 67.93 % 1363 s 2.0 GB 100.00 % 157 s 4.3 GB 100.00 % 31 s 3.1 GB

netcard 1496.0K 1497.8K 11594.6K 87.63 % 6662 s 9.4 GB 99.99 % 691 s 22.9 GB 99.99 % 192 s 20.8 GB

cordic core 3.6K 3.6K 226.0K 59.42 % 21 s 0.3 GB 95.19 % 29 s 0.2 GB 95.19 % 3 s 0.1 GB

crc32d16N 478 495 28.9K 57.15 % 3 s 0.1 GB 100.00 % 5 s 0.1 GB 100.00 % 1 s 0.1 GB

softusb navre 6.9K 7.0K 427.8K 40.17 % 21 s 0.1 GB 0.00 % - - 99.97 % 4 s 0.5 GB

tip master 37.7K 38.5K 1300.4K 82.95 % 64 s 0.6 GB 96.42 % 47 s 1.0 GB 97.04 % 9 s 0.8 GB

vga lcd 1 139.5K 139.6K 2961.5K 99.65 % 260 s 1.6 GB 100.00 % 94 s 2.2 GB 100.00 % 31 s 2.9 GB

vga lcd 2 259.1K 259.1K 12674.7K 98.57 % 1132 s 13.3 GB 100.00 % 156 s 5.0 GB 100.00 % 65 s 3.9 GB

#Gates: number of gates. #Nets: number of nets. #OPs: number of operations. accuracy: average of path accuracy and value accuracy (%). -: program crash.

incremental processing stages
1 400 800 1200 1600

T
o

ta
l
ru

n
ti
m

e
 (

s
)

0

5000

10000

15000
Scalability (vga_lcd_2)

OpenTimer
iTimerC 2.0

incremental processing stages
1 400 800 1200 1600

R
u

n
ti
m

e
 s

p
e

e
d

u
 (

x
)

0

20

40

60

80

100

120

140
Scalability (vga_lcd_2)

Speedup by OpenTimer

Figure 8. Scalability comparison between OpenTimer and iTimerC 2.0.

Time axis
0 100 200 300 400 500

C
P

U
 u

s
a
g
e
 (

%
)

0

200

400

600

800
Performance (OpenTimer)

Time axis
0 100 200 300 400 500

C
P

U
 u

s
a
g
e
 (

%
)

0

20

40

60

80

100
Performance (iTimerC 2.0)

Figure 9. Parallelism comparison between OpenTimer and iTimerC 2.0.

Finally we investigate the scalability of our timer and iTimerC 2.0

on accommodating the depth of incremental processing. We omit the

comparison with iitRACE because its low accuracy might result in

unfairness. In this experiment, we refer to a set of design modifiers

followed by at least one timing query as “one stage” of incremental

processing. We have divulged, unfortunately, all benchmarks from

TAU 2015 contest have less than 10 incremental processing stages,

which is not sufficient to reveal the performance bottleneck. There-

fore, we modified the benchmark vga lcd 2 by inserting a path-

based timing query after each complete design modification. The

comparison of runtime scalability between OpenTimer and iTimerC

2.0 is demonstrated in Figure 8. It can be clearly seen that our runtime

scales extremely well as the number of incremental processing stages

increases. For instance, OpenTimer accomplished the goal by ×95.8
faster (66 seconds vs 6324 seconds) than iTimerC 2.0 at the 800th

stage. Similar trends can be observed on other stage numbers. We

further reveals the cpu usage for both programs in Figure 9. It is

observed OpenTimer is highly parallel, using up to the hardware-

limited thread number, while iTimerC 2.0 does not support any multi-

threaded feature. To sum up, these experiments have justified the

practical viability of OpenTimer.

VI. CONCLUSION

In this paper we have presented OpenTimer, a high-quality in-

cremental timing analysis algorithm with CPPR. We have not only

captured the key features that achieve incremental capability, but also

parallelized the incremental timing update in a pipeline fashion. Our

framework is very flexible and scalable as many critical tasks such

as timing propagation and CPPR are scheduled into the pipeline so

as to overlap their runtimes. These advantages confer OpenTimer

a high degree of differential over existing methods. Comparatively,

experimental results have demonstrated the superior performance of

OpenTimer in terms of accuracy, runtime, and memory over the top

performers from TAU 2015 CAD contest.

ACKNOWLEDGMENT

This work is partially supported by the National Science Foun-

dation under Grant CCF-1320585 and CCF-1421563. The authors

acknowledge Jin Hu, Myung-Chul Kim, and Pei-Yu Lee for helpful

discussions and program debugging, and teams iitRACE and iTimerC

2.0 for sharing their binary in TAU 2015 CAD contest.

REFERENCES

[1] TAU 2015 Contest: Incremental Timing Analysis and Incremental
CPPR, http://sites.google.com/site/taucontest2015

[2] OpenTimer: http://web.engr.illinois.edu/∼thuang19/index.html

[3] J. Bhasker and R. Chadha, “Static Timing Analysis for Nanometer
Designs: A Practical Approach,” Springer, 2009.

[4] J. Hu, D. Sinha, and I. Keller, “TAU 2014 Contest on Removing
Common Path Pessimism during Timing Analysis,” Proc. ACM ISPD,
pp. 153–160, 2014.

[5] T.-W. Huang, P.-C. Wu, and Martin D. F. Wong, “UI-Timer: An Ultra-
Fast Clock Network Pessimism Removal Algorithm,” Proc. IEEE/ACM
ICCAD, pp. 758–765, 2014.

[6] Y.-M. Yang, Y.-W. Chang, and Iris H.-R. Jiang, “iTimerC: Common
Path Pessimism Removal Using Effective Reduction Methods,” Proc.

IEEE/ACM ICCAD, pp 600–605, 2014.

902

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 10.80 points
 Normalise (advanced option): 'original'

 32

 D:20150727081745
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 10.8000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

