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Abstract—Common-path-pessimism removal (CPPR) is a pivotal step

to achieve accurate timing signoff. Unnecessary pessimism might arise

quality-of-result (QoR) concerns such as reporting worse violations than

the true timing properties owned by the physical circuit. In other words,
signoff timing report will conclude a lower clock frequency at which

circuits can operate than actual silicon implementations. Therefore, we

introduce in this paper a fast path-based timing analysis for CPPR.

Unlike existing approaches which are dominated by explicit path search,
we perform implicit path representation which yields significantly smaller

search space and faster runtime. Specifically, our algorithm is superior

in both space and time saving, from which the memory storage and
important timing quantities are available in constant space and constant

time per path during the search. Experimental results on industrial

benchmarks released from TAU 2014 timing analysis contest have shown

that our algorithm won the first place and achieved the best result in
terms of accuracy and runtime over all participating teams.

I. INTRODUCTION

Static-timing analysis (STA) is a pivotal step of the integrated-

circuit (IC) design flow in order to verify the timing behaviors.

Conventional STA tools rely on conservative dual-mode operations

to estimate early-late and late-early path slacks [7]. This mechanism,

however, imposes unnecessary pessimism due to the consideration of

delay variation along common segments of clock paths, as illustrated

in Figure 1. Unnecessary pessimism may lead to tests being marked

as failing whereas in actuality they should be passing. Thus designers

and optimization tools might be misled into an over-pessimistic

timing report [17]. Therefore, the recent 2014 TAU computer-aided

design (CAD) contest has aimed to seek novel ideas for accurate and

fast common-path-pessimism removal (CPPR), so as to prevent the

true timing properties of circuits from being skewed [12].
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Figure 1. Clock network pessimism incurs in the common path between the
launching clock path and the capturing clock path.

Unfortunately, it has been reported that CPPR is a tough task in

current STA tools [3]. The real challenge is the amount of pessimism

that needs to be removed is path-specific. The most critical path

prior to pessimism removal is not necessarily reflective of the true

counterpart [19]. Traditional graph-based timing analysis (GBA) is

no longer suitable for CPPR because it deals only with the worst

timing quantities on each endpoint other than path-by-path timing

update [8], [9]. Therefore, path-based timing analysis (PBA) has

been alternatively employed during STA in order to configure path-

specific or less-pessimistic features such as CPPR and advanced-on-

chip-variation (AOCV) derating into the timer [14]. It is obvious an

optimal solution to CPPR may require analysis of all paths in the

design or explore an exponential number of paths which could be

computationally impractical. An intelligent algorithm that can quickly

peel out a set of true critical paths is relatively desirable.

Our contributions are summarized as follows. 1) We have devel-

oped a new path ranking algorithm that can exactly and quickly peel

out a set of true critical paths with CPPR. 2) The proposed algorithm

is extremely fast. It performs implicit path representation along with

two efficient data structures, namely suffix tree and prefix tree, and

yields significant savings in both memory usage and cpu runtime.

3) Our algorithm has been verified and received the first place in

2014 TAU CAD contest. The final contest results have demonstrated

the superior performance of our algorithm in terms of accuracy and

runtime. Last but not least, we believe our algorithm can be beneficial

to accelerate the signoff timing closure, on which up to 40% of the

design flow are typically spent [16].

II. 2014 TAU CAD CONTEST PROBLEM

The flow of 2014 TAU CAD contest on CPPR is shown in Figure 2.

Given a set of input files, participants are requested to develop their

own timers that report post-CPPR (i.e., slacks after CPPR) critical

tests and paths. The number of tests and paths to be reported is

controlled via a set of pre-defined inputs to the tool.
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Figure 2. Guidelines of 2014 TAU CAD contest on CPPR.

Each design consists of a delay input file and a timing input file.

The former describes the timing behavior and topology of the circuit

while the later defines the initial operating condition. The timer is fed

by a command line that allows the following user-defined parameters:

1) the type of test (-hold or -setup), being either hold or setup; 2)

the number of test (-numTest) to be output; 3) the number of paths

(-numPath) to be printed per output test. The output file contains

the a set of paths for each test type specified in accordance with

the input commands. The timer needs to identify the top “-numTest”

critical test according to the respective worst post-CPPR slack and

then print the top “-numPath” critical paths per identified test. The

more negative the post-CPPR of a path is, the higher criticality the

path has. For more details, we refer readers to the contest education

file, which can be reached on the contest website [3].
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III. ALGORITHM

The overall of our algorithm is presented in Algorithm 1. It consists

of of two stages: lookup table preprocessing and pessimism-free path

search. The goal of the first stage is to tabulate the common path

information for quick lookup of common-path pessimism. The goal

in the second stage is to identify the top-k (i.e., -numPath) critical

paths in a pessimism-free graph derived from each test.

Algorithm 1: CPPR(t, k)

Input: test t, path count k

Output: solution set Ψ of the top-k critical paths

1 BuildCreditLookupTable();

2 Gp ← pessimism-free graph for the test t;

3 Ψ← GetCriticalPath(Gp .source, Gp.destination, k);

4 return Ψ;

A. Lookup Table Preprocessing

The pessimism between a source-target pair of flip-flops (FFs)

incurs in the common path from the clock tree root to the clock

tree node to which they reconverge along the upstream traversal. In

graph theory, the clock reconverging node of a node pair in the clock

tree is equivalent to the lowest common ancestor (LCA) of the node

pair. The arrival time information of each node in the clock tree can

be precomputed and therefore the pessimism of two nodes can be

obtained immediately once their LCA is known. Many state-of-the-

art LCA algorithms have been invented over the last decades. The

table-lookup algorithm by [6] is employed as our LCA engine due

to its simplicity and efficiency.

B. Formulation of Pessimism-Free Graph

When performing the hold or setup test, the required arrival time of

the testing FF and the amount of pessimism between each source FF

and the testing FF remain fixed regardless of which data path is being

considered. Precisely speaking, the way a data path passing through

plays the most vital role in determining the final slack values. In

order to facilitate the path search without interleaving between slack

computation and pessimism retrieval, we construct a pessimism-free

graph for a given test. An example pessimism-free graph derived

from a test is shown in Figure 3.
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Figure 3. Derivation of the pessimism-free graph from a given test.

The intuition is to separate out the constant portion of the post-

CPPR slack by an artificial edge such that the search procedure can

focus on the rest portion which totally depends on the way data paths

passing through. Each artificial edge comes with an offset weight

which consists of the amount of pessimism between each lunching

FF and the capturing FF as well as the value of the required arrival

time at the capturing FF [13]. It is clear that the cost of any source-

destination path (i.e., sum of all edge weights) in the pessimism-free

graph is equivalent to the post-CPPR slack of the corresponding data

path which is obtained by removing the artificial edge.

C. Generation of Top-k Critical Paths

The problem of identifying the top-k critical paths for a given test

is equivalent to the path ranking problem applied to the pessimism-

free graph. A number of state-of-the-art algorithms for path ranking

have been proposed over the past years [5], [10], [15], [18]. The

best time complexity acquired to date is O(m + nlogn + k) from

the well-know Eppstein’s algorithm [10]. However, it relies on

sophisticated implementations of heap trees which results in little

practical interests. Moreover, most existing approaches are developed

for general graphs and lack a compact and efficient specialization to

certain graphs such as the directed-acyclic circuit network. The key

contribution of this work is the new path ranking algorithm we have

developed for this contest. In a high-level sketch, we propose two

complementary data structures, namely suffix tree and prefix tree, to

represent the search space of the path ranking. Figure 4 shows the

concept of our implicit path representation. The suffix tree represents

the shortest path tree rooted at the destination node of the pessimism-

free graph. The prefix tree is a tree order of non-suffix-tree edges

such that each tree node represents the path being deviated on the

corresponding edge from its ordinary trace of the shortest route. As

a result, each data path can be implicitly stored by the two data

structures, such that the memory usage and the search time can be

significantly reduced to constant time per path during the search.

More algorithmic details can be referred to [13].
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Figure 4. Implicit path representation using suffix tree and prefix tree.

IV. CONTEST EVALUATION

The evaluation of 2014 TAU CAD contest is based on 1) relative

accuracy to a “golden” reference from an industrial timer and 2)

relative runtime of each participating timer. During the contest, timers

are encouraged to employ multi-threaded programming interface [1].

Up to eight concurrent threads are supported by the contest machine

which is configured with 8X Intel(R) Xeon CPU E7-8837 @2.67GHz.

The benchmarks are well-known industrial circuits (e.g., s27, s510,

systemcdes, wb dma, pci bridge32, vga lcd, etc.) that have been

released to the public domain for research purpose. Statistics of

these benchmarks are listed in Table I. Each output file is uniquely

identified by the benchmark. The overall score of a timer is the

average across each output’s weighted accuracy. For each benchmark,

multiple output files that emphasize both the importance of finding

the most critical tests and the set of paths that cause timing violations

of each test are generated [3].
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TABLE I
CONTEST BENCHMARKS AND STATISTICS [3].

Circuit |V | |E| |I| |O| # Tests # Paths

s27 109 112 6 1 6 9

s344 574 658 11 11 30 71

s349 598 682 11 11 30 71

s386 570 701 9 7 12 27

s400 708 813 5 6 42 77

s510 891 1091 21 7 12 99

s526 933 1097 5 6 42 44

s1196 1928 2400 16 14 36 478

s1494 2334 2961 10 19 12 105

systemcdes 10826 13327 132 65 380 41436

wb dma 14647 17428 217 215 1374 158

tv80 18080 23710 14 32 838 19227963

systemcaes 23909 29673 260 129 2500 13069928

mem ctrl 36493 45090 115 152 3754 62938

ac97 ctrl 49276 55712 84 48 9370 148

usb funct 53745 66183 128 121 4392 129854

pci bridge32 70051 78282 162 207 16450 17296

aes core 68327 86758 260 129 2528 21064

des perf 330538 404257 235 64 19764 1682

vga lcd 449651 525615 89 109 50182 5281

Combo2 260636 284091 170 218 29574 62938

Combo3 181831 284091 353 215 8294 129854

Combo4 778638 866099 260 169 53520 19227963

Combo5 2051804 2228611 432 164 79050 19227963

Combo6 3577926 3843033 486 174 128266 19227963

Combo7 2817561 3011233 459 148 109568 19227963

|V |: # of nodes. |E|: # of edges. |I|/|O|: # of primary inputs/outputs.

# Tests: # of setup tests and hold tests. # Paths: max # of data paths per test.

A. Contest Result

Our program is named as “UI-Timer” and it is the first place

winner of 2014 TAU CAD contest. “Lightspeed” and “iTimerC” are

the team names of the timers which received the second place and

the third place, respectively. Due to the similar score with the third

place timer, a special award of honorable mention is given to the four

place timer “TimeKeepers”. The overall comparison results in terms

of raw accuracy, runtime value, and final average score are listed in

Figure 5, Figure 6, and Figure 7. The raw accuracy is interpreted by

a numerical value ranging from 0.0 to 1.0 such that the value 1.0

denotes that a timer obtains the full accuracy while the value 0.0

shows that the result of a timer is far from correctness. The runtime

is measured by the minutes and total hours that are spent by a timer

on finishing the input benchmarks. The final score is a weighted

score combining raw accuracy and runtime into a numerical value.

In general, the larger the value of the final score a timer has, the

better the result it obtained [3].

It can be observed that our timer, UI-Timer, outperformed all

participating timers in terms of accuracy and runtime. Our pro-

gram is very reliable in accomplishing all benchmarks while the

timer “LightSpeed” crashed in Combo6 and Combo7 and failed to

generate any interpretable data. Although the timers “iTimerC” and

“TimeKeeprs” successfully finish all benchmarks, they turn out to be

less promising in either accuracy or runtime. We can see that from

Figure 5 “iTimerC” loses the accuracy in Combo6 and Combo7 which

might be a result of program errors or algorithmic shortcomings. On

the other hand, “TimeKeeprs” demands an extremely high runtime

complexity in order to achieve reliable and accurate results. The

largest difference can be discovered in Combo4v2.setup.25000.1

where our timer is ×5.7 faster than “TimeKeeprs”.

Benchmark.testType.numTests.numPaths iTimerC LightSpeed TimeKeepers UI Timer

Combo2v2.hold.10000.15 1.00 0.85 1.00 1.00

Combo2v2.setup.10000.15 1.00 0.85 1.00 1.00

Combo2v2.setup.20000.1 1.00 0.85 1.00 1.00

Combo3v2.setup.6000.20 1.00 1.00 1.00 1.00

Combo4v2.hold.15000.15 1.00 1.00 1.00 1.00

Combo4v2.hold.25000.1 1.00 1.00 1.00 1.00

Combo4v2.setup.15000.15 1.00 1.00 1.00 1.00

Combo4v2.setup.25000.1 1.00 1.00 1.00 1.00

Combo5v2.hold.20000.15 1.00 1.00 1.00 1.00

Combo5v2.hold.35000.1 1.00 1.00 1.00 1.00

Combo5v2.setup.20000.15 1.00 1.00 1.00 1.00

Combo5v2.setup.35000.1 1.00 1.00 1.00 1.00

Combo6v2.hold.35000.15 1.00 0.00 1.00 1.00

Combo6v2.hold.50000.1 1.00 0.00 1.00 1.00

Combo6v2.setup.35000.15 0.80 0.00 1.00 1.00

Combo6v2.setup.50000.1 0.80 0.00 1.00 1.00

Combo7v2.hold.35000.20 1.00 1.00 1.00 1.00

Combo7v2.hold.50000.1 0.79 0.00 1.00 1.00

Combo7v2.setup.35000.20 0.80 1.00 1.00 1.00

Combo7v2.setup.50000.1 0.80 1.00 1.00 1.00

Figure 5. Raw accuracy of the top four timers in 2014 TAU CAD contest [3].

Benchmark.testType.numTests.numPaths iTimerC LightSpeed TimeKeepers UI Timer

Combo2v2.hold.10000.15 1.01 0.18 0.23 0.45

Combo2v2.setup.10000.15 1.34 0.22 0.29 0.56

Combo2v2.setup.20000.1 0.38 0.08 0.15 0.37

Combo3v2.setup.6000.20 0.76 0.12 0.16 0.17

Combo4v2.hold.15000.15 3.56 6.82 7.73 1.59

Combo4v2.hold.25000.1 1.61 3.17 7.47 2.04

Combo4v2.setup.15000.15 13.49 2.70 10.49 1.85

Combo4v2.setup.25000.1 5.27 5.39 9.73 1.70

Combo5v2.hold.20000.15 8.58 2.62 22.47 5.28

Combo5v2.hold.35000.1 3.98 6.53 21.87 6.93

Combo5v2.setup.20000.15 26.43 4.08 24.92 5.86

Combo5v2.setup.35000.1 13.15 4.39 23.33 6.50

Combo6v2.hold.35000.15 13.31 n/a 24.44 12.09

Combo6v2.hold.50000.1 5.15 n/a 26.69 14.00

Combo6v2.setup.35000.15 34.05 n/a 27.66 15.62

Combo6v2.setup.50000.1 9.15 n/a 24.60 13.88

Combo7v2.hold.35000.20 16.87 6.24 58.69 13.25

Combo7v2.hold.50000.1 4.78 n/a 54.93 15.37

Combo7v2.setup.35000.20 61.65 8.80 62.72 13.09

Combo7v2.setup.50000.1 30.64 5.30 59.18 13.72

Total (hours) 4.25 0.94 7.80 2.41

Figure 6. Runtime of the top four timers in 2014 TAU CAD contest [3].

B. Beyond the Contest

In order to demonstrate the scalability of our program, an extra

evaluation on the three largest cases, Combo5, Combo6, and Combo7

was made on a large distributed system. We evenly partitioned the

test sets into groups with respect to the number of parallel cores

being invoked. The application programming interface (API) provided

by OpenMPI 1.6.5 is used as our message passing interface for

Geomean Benchmark.testType.numTests.numPaths iTimerC LightSpeed TimeKeepers UI Timer

Combo2v2.hold.10000.15 0.81 1.90 1.87 1.20

Combo2v2.setup.10000.15 0.80 1.95 1.89 1.22

Combo2v2.setup.20000.1 0.98 2.31 1.73 0.99

Combo3v2.setup.6000.20 0.75 2.02 1.71 1.63

Combo4v2.hold.15000.15 1.23 0.88 0.83 2.13

Combo4v2.hold.25000.1 1.77 1.14 0.77 1.50

Combo4v2.setup.15000.15 0.75 1.77 0.83 2.36

Combo4v2.setup.25000.1 1.03 1.02 0.79 2.15

Combo5v2.hold.20000.15 1.01 2.17 0.69 1.33

Combo5v2.hold.35000.1 1.63 1.19 0.71 1.15

Combo5v2.setup.20000.15 0.77 2.22 0.78 1.70

Combo5v2.setup.35000.1 0.90 1.70 0.73 1.31

Combo6v2.hold.35000.15 1.17 0.00 0.87 1.24

Combo6v2.hold.50000.1 1.77 0.00 0.74 0.97

Combo6v2.setup.35000.15 0.76 0.00 1.06 1.49

Combo6v2.setup.50000.1 1.06 0.00 0.81 1.04

Combo7v2.hold.35000.20 1.12 2.17 0.68 1.29

Combo7v2.hold.50000.1 1.76 0.00 0.65 1.04

Combo7v2.setup.35000.20 0.62 2.45 0.77 1.81

Combo7v2.setup.50000.1 0.65 2.32 0.66 1.20

Sum 21.34 27.20 19.57 28.74

Figure 7. Final scores of the top four timers in 2014 TAU CAD contest [3].
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distributed computing [2]. The evaluation is taken on a computer

cluster having over 500 compute nodes with each configured with

16 Intel E5-2670 2.60GHz cores and 128GB RAM. The network

infrastructure is 384-port Mellanox MSX6518-NR FDR InfiniBand

for high speed cluster interconnect [4]. Access to compute nodes for

running a program is achieved via a script submission specifying the

number of process cores to be used.
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Figure 8. Runtime and speedup curves of hold tests and setup tests from
benchmarks Combo5, Combo6, and Combo7.

We begin by demonstrating the runtime performance versus the the

number of cores that is invoked for running our program. The quantity

is varied from 1 core to 400 cores and the runtime is measured by a

synchronized moment at which all process cores complete their jobs

(i.e., reading the file, passing message, and handling all algorithmic

procedures). The performance is interpreted in terms of the runtime

and its relative speedup to a baseline which was run in single-core

execution. Figure 8 shows the performance plot of this evaluation.

It can be clearly seen that the runtime is reduced drastically as the

number of cores increases. The largest difference is observed in hold

tests of Combo6, where all timing tests are accomplished by 17.09

seconds using 384 cores. The speedup compared with single-core run

reaches up to ×88 (1500.55 seconds over 17.09 seconds). Similar

trends can also be found in the other two testcases, where the largest

speedup is ×72 for setup tests of Combo5 using 400 cores and ×85

for setup tests of Combo7 using 400 cores. In a single minute, hold

tests and setup tests of all testcases are solvable using 80 cores and

272 cores.

V. CONCLUSION

In this paper we have presented an exact and extremely fast

algorithm for handling the CPPR problem during static timing

analysis. Unlike existing approaches which are predominated by

exhaustive path search along with case-by-case speedup heuristics,

our timer maps the CPPR problem to a graph-theoretic formulation

and applies an efficient search routine using a highly compact and

efficient data structure to obtain an exact solution. Our timer has

several merits such as simplicity, coding ease, and most importantly

the theoretically-proven completeness and optimality [13]. These

advantages confer our timer a high degree of differential over existing

methods. Comparatively, experimental results have demonstrated the

superior performance of our timer in terms of accuracy and runtime

over top-ranked timers from TAU 2014 CAD contest.

Future works shall focus on the development of even more efficient

algorithm for path-based CPPR. Studies in fast CPPR algorithms are

still eagerly in demand especially when we move to multi-core or

many-core era [16]. As signoff timing still takes a significant portion

of the entire design cycle, any developments that contribute to a

substantial speedup will be beneficial to shorten the timing closure.

Algorithms that are featured by massively-parallel accelerations in a

large distributed system are in particular of our interests.
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