
1

DtCraft: A High-performance Distributed

Execution Engine at Scale

Tsung-Wei Huang, Chun-Xun Lin, and Martin D. F. Wong

Abstract—Recent years have seen rapid growth in data-
driven distributed systems such as Hadoop MapReduce, Spark,
and Dryad. However, the counterparts for high-performance
or compute-intensive applications including large-scale optimiza-
tions, modeling, and simulations are still nascent. In this paper,
we introduce DtCraft, a modern C++-based distributed execution
engine to streamline the development of high-performance paral-
lel applications. Users need no understanding of distributed com-
puting and can focus on high-level developments, leaving difficult
details such as concurrency controls, workload distribution, and
fault tolerance handled by our system transparently. We have
evaluated DtCraft on both micro-benchmarks and large-scale

optimization problems, and shown the promising performance
from single multi-core machines to clusters of computers. In
a particular semiconductor design problem, we achieved 30×

speedup with 40 nodes and 15× less development efforts over
hand-crafted implementation.

I. INTRODUCTION

C
LUSTER computing frameworks such as MapReduce,

Spark, and Dryad have been widely used for big data

processing [2], [3], [4], [5]. The availability of allowing users

without any experience of distributed systems to develop

applications that access large cluster resources has demon-

strated great success in many big data analytics. Existing

platforms, however, mainly focus on big data processing.

Research for high-performance or compute-driven counterparts

such as large-scale optimizations and engineering simulations

has failed to garner the same attention. As horizontal scaling

has proven to be the most cost-efficient way to increase

compute capacity, the need to efficiently deal with numerous

computations is quickly becoming the next challenge [6], [7].

Compute-intensive applications have many different char-

acteristics from big data. First, developers are obsessed about

performance. Striving for high performance typically requires

intensive CPU computations and efficient memory manage-

ments, while big data computing is more data-intensive and

I/O-bound. Second, performance-critical data are more con-

nected and structured than that of big data. Design files

cannot be easily partitioned into independent pieces, making it

difficult to fit into MapReduce paradigm [2]. Also, it is fair to

Copyright (c) 2018 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

Preliminary version of this paper is presented at the 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD’17), Irvine,
CA, November 2017 [1].

Tsung-Wei Huang, Chun-Xun Lin, and Martin D. F. Wong are with the
Department of Electrical and Computer Engineering, University of Illinois
at Urbana-Champaign (UIUC), IL, USA (email: twh760812@gmail.com;
clin99@illinois.edu; mdfwong@illinois.edu);

claim most compute-driven data are medium-size as they must

be kept in memory for performance purpose [6]. The benefit

of MapReduce may not be fully utilized in this domain. Third,

performance-optimized programs are normally hard-coded in

C/C++, whereas the mainstream big data languages are Java,

Scala, and Python. Rewriting these ad-hoc programs that have

been robustly present in the tool chain for decades is not a

practical solution.

0

20

40

60

80

C++ Python Java Scala Spark

GraphX

Graph-based timing analysis in VLSI design

Runtime (s)

1.5s
9.5s 10.68s

68.45s

7.4s

Industry circuit design

(2.5M nodes and 3.5M edges)

(4 cores)
(1 core) (1 core) (1 core) (1 core)

Compute-intensive Big data

Computation CPU-bound I/O-bound

Data traits Structured, monolithic Unstructured, sharded

Storage NFS, GPFS, Ceph HDFS, GFS

Programming Ad-hoc, C/C++ MapReduce, Java, Scala

Example
EDA, optimization,

simulation

Log mining, database,

analytic

Fig. 1. An example of VLSI timing analysis and the comparison between
compute-intensive applications and big data [8], [9].

To prove the concept, we have conducted an experiment

comparing different programming languages and systems on

a VLSI timing analysis workload [9]. As shown in Figure 1,

the hand-crafted C/C++ program is much faster than many

of mainstream big data languages such as Python, Java,

and Scala. It outperforms one of the best big data cluster

computing frameworks, the distributed Spark/GraphX-based

implementation, by 45× faster. The reason to this slow runtime

is twofold. First, the Scala programming language of Spark

decides the performance barrier to C++. Second, Spark spent

about 80% of its runtime on partitioning data and the resulting

communication cost during MapReduce overwhelms the entire

performance. Many industry experts have realized that big data

is not an easy fit to their domains, for example, semiconductor

design optimizations and engineering simulations. Unfortu-

nately, the ever-increasing design complexity will far exceed

what many old ad-hoc methods have been able to accomplish.

In addition to having researchers and practitioners acquire new

2

domain knowledge, we must rethink the approaches of devel-

oping software to enable the proliferation of new algorithms

combined with readily reusable toolboxes. To this end, the key

challenge is to discover an elastic programming paradigm that

lets developers place computations at customizable granularity

wherever the data is – which is believed to deliver the next leap

of engineering productivity and unleash new business model

opportunities [6].

One of the main challenges to achieve this goal is to define

a suitable programming model that abstracts the data compu-

tation and process communication effectively. The success of

big data analytics in allowing users without any experience

of distributed computing to easily deploy jobs that access

large cluster resources is a key inspiration to our system

design [2], [4], [5]. We are also motivated by the fact that

existing big data systems such as Hadoop and Spark are

facing the bottleneck in support for compute-optimized codes

and general dataflow programming [7]. For many compute-

driven or resource-intensive problems, the most effective way

to achieve scalable performance is to force developers to

exploit the parallelism. Prior efforts have been made to either

breaking data dependencies based on domain-specific knowl-

edge of physical traits or discovering independent components

across multiple application hierarchies [9]. Our primary focus

is instead on the generality of a programming model and,

more importantly, the simplicity and efficiency of building

distributed applications on top of our system.

While this project was initially launched to address a ques-

tion from our industry partners, “How can we deal with the

numerous computations of semiconductor designs to improve

the engineering productivity?”, our design philosophy is a gen-

eral system that is useful for compute-intensive applications

such as graph algorithms and machine learning. As a conse-

quence, we propose in this paper DtCraft, a general-purpose

distributed execution engine for building high-performance

parallel applications. DtCraft is built on Linux machines with

modern C++17, enabling end users to utilize the robust C++

standard library along with our parallel framework. A DtCraft

application is described in the form of a stream graph, in

which vertices and edges are associated with each other to

represent generic computations and real-time data streams.

Given an application in this framework, the DtCraft runtime

automatically takes care of all concurrency controls including

partitioning, scheduling, and work distribution over the cluster.

Users do not need to worry about system details and can focus

on high-level development toward appropriate granularity. We

summarize three major contributions of DtCraft as follows:

• New programming paradigm. We introduce a powerful

and flexible new programming model for building dis-

tributed applications from sequential stream graphs. Our

programming model is very simple yet general enough to

support generic dataflow including feedback loops, persis-

tent jobs, and real-time streaming. Stream graph components

are highly customizable with meta-programming. Data can

exist in arbitrary forms, and computations are autonomously

invoked wherever data is available. Compared to existing

cluster computing systems, our framework is more elastic

in gaining scalable performance.

• Software-defined infrastructure. Our system enables fine-

grained resource controls by leveraging modern OS con-

tainer technologies. Applications live inside secure and

robust Linux containers as work units which aggregate the

application code with runtime dependencies on different

OS distributions. With a container layer of resource man-

agement, users can tailor their application runtime toward

tremendous performance gain.

• Unified framework. We introduce the first integration of

user-space dataflow programming with resource container.

For this purpose, many network programming components

are re-devised to fuse with our system architecture. The

unified framework empowers users to utilize rich APIs

of our system to build highly optimized applications. Our

framework is also extensible to hybrid clusters. Users can

submit applications that embed off-chip accelerators such as

FPGAs and GPUs to broaden the performance gain.

We believe DtCraft stands out as a unique system con-

sidering the ensemble of software tradeoffs and architecture

decisions we have made. With these features, DtCraft is

suited for various applications both on systems that search

for transparent concurrency to run compute-optimized codes,

and on those that prefer distributed integration of existing

developments with vast expanse of legacy codes in order to

bridge the performance gap. We have evaluated DtCraft on

micro-benchmarks including machine learning, graph algo-

rithms, and large-scale semiconductor engineering problems.

We have shown DtCraft outperforms one of the best cluster

computing systems in big data community by more than an

order of magnitude. Also, we have demonstrated DtCraft can

be applied to wider domains that are known difficult to fit into

existing big data ecosystems.

II. THE DTCRAFT SYSTEM

The overview of the DtCraft system architecture is shown

in Figure 2. The system kernel contains a master daemon that

manages agent daemons running on each cluster node. Each

job is coordinated by an executor process that is either invoked

upon job submission or launched on an agent node to run the

tasks. A job or an application is described in a stream graph

formulation. Users can specify resource requirements (e.g.

CPU, memory, disk usage) and define computation callbacks

for each vertex and edge, while the whole detailed concurrency

controls and data transfers are automatically operated by the

system kernel. A job is submitted to the cluster via a script

that sets up the environment variables and the executable path

with arguments passed to its main method. When a new

job is submitted to the master, the scheduler partitions the

graph into several topologies depending on current hardware

resources and CPU loads. Each topology is then sent to the

corresponding agent and is executed in an executor process

forked by the agent. For those edges within the same topology,

data is exchanged via efficient shared memory. Edges between

different topologies are communicated through TCP sockets.

Stream overflow is resolved by per-process key-value store,

and users are perceived with virtually infinite data sets without

deadlock.

3

Program1

Program2

Master

Agent Agent Agent

User

Executor

(container)

Executor

(container)

Executor

(container)

Executor

(container)

A B C D

TCP socket

(inter-edge)

TCP socket

(inter-edge)

E F

Agent Executor

1. Topology

2. Frontier message

Master Agent

1. Topology

2. Resource info

Master User

1. Graph

2. Status update

Scheduler
Web UI

(front end)

Inspector
./submit.sh –master=IP executable <args>

Node1: A, B

Node2: C

Node3: D, E, F

Shared memory

(intra-edge)

Shared memory

(intra-edge)
Distributed storage

System status

Job status

User command

Database Database Database

Stream

overflow

Stream

overflow

Frontier message

Passing

socket

Lazy initialization

(partial graph only)

A B C D

Executor

E F

Executor

(Non-intrusive)

Light-weight

database

Stream

overflow

B C

Linux container

Fig. 2. The system architecture of DtCraft. The kernel consists of a master daemon and one agent daemon per working machine. User describes an application
in terms of a sequential stream graph and submits the executable to the master through our submission script. The kernel automatically deals with concurrency
controls including scheduling, process communication, and work distribution that are known difficult to program correctly. Data is transferred through either
TCP socket streams on inter-edges or shared memory on intra-edges, depending on the deployment by the scheduler. Application and workload are isolated
in secure and robust Linux containers.

A. Stream Graph Programming Model

DtCraft is strongly tight to modern C++ features, in particu-

lar the concurrency libraries, lambda functions, and templates.

We have struck a balance between the ease of the programma-

bility at user level and the modularity of the underlying system

that needs to be extensible with the advance of software tech-

nology. The main programming interface including gateway

classes is sketched in Listing 1 and Listing 2.

c l a s s Ver tex {
c o n s t key type key ;
f u n c t i o n <vo id ()> on ;
any type any ; / / u ser−space s t o r a g e .

o n c e f l a g f l a g ;
s h a r e d p t r <Outpu tS t ream> o s t r e a m (key type) ;
s h a r e d p t r <Inpu tS t rea m > i s t r e a m (key type) ;

} ;

c l a s s Stream {
c o n s t key type key ;
weak ptr<Outpu tS t ream> o s t r e a m ;
weak ptr<Inpu tS t rea m > i s t r e a m ;
f u n c t i o n <S i g n a l (Ver tex &, Outpu tS t ream &)> on os ;
f u n c t i o n <S i g n a l (Ver tex &, I n p u t S t r e a m &)> o n i s ;

} ;

c l a s s Graph {
TaskID t a s k i d ;
V e r t e x B u i l d e r v e r t e x () ;
S t r e a m B u i l d e r s t r e a m (key type , key type) ;
C o n t a i n e r B u i l d e r c o n t a i n e r () ;

} ;

c l a s s E x e c u t o r : p u b l i c R e a c t o r {
E x e c u t o r (Graph &);
vo id run () ;

}

Listing 1. Gateway classes to create stream graph components.

Programmers formulate an application into a stream graph

and define computation callbacks in the format of standard

function object for each vertex and stream (edge). Vertices and

edges are highly customizable subject to the inheritance from

classes Vertex and Stream that interact with our back-

c l a s s V e r t e x B u i l d e r {
V e r t e x B u i l d e r (Graph ∗ , key type) ;
o p e r a t o r key type () c o n s t ;

t e m p l a t e<typename C>
V e r t e x B u i l d e r& on (C&&); / / Computa t ion c a l l b a c k .

} ;

c l a s s S t r e a m B u i l d e r {
S t r e a m B u i l d e r (Graph ∗ , key type) ;
o p e r a t o r key type () c o n s t ;

t e m p l a t e<typename C>
S t r e a m B u i l d e r & on (C&&); / / Computa t ion c a l l b a c k .

} ;

c l a s s C o n t a i n e r B u i l d e r {
C o n t a i n e r B u i l d e r (Graph ∗ , key type) ;
C o n t a i n e r B u i l d e r & add (key type) ;
C o n t a i n e r B u i l d e r & cpu (u n s i g n e d) ;
C o n t a i n e r B u i l d e r & memory (u i n t m a x t) ;

} ;

Listing 2. Builder design pattern to assign graph component attributes.

end. The vertex callback is a constructor-like call-once barrier

that is used to synchronize all adjacent edge streams at the

beginning. Each stream is associated with two callbacks, one

for output stream at the tail vertex and another one for input

stream at the head vertex. Our stream interface follows the

idea of standard C++ iostream library but enhances it to

be thread-safe. We have developed specialized stream buffer

classes in charge of performing reading and writing operations

on stream objects. The stream buffer class hides from users

a great deal of work such as non-blocking communication,

stream overflow and synchronization, and error handling. Ver-

tices and streams are explicitly connected together through the

Graph and its method stream that takes a pair of vertices.

Users can configure the resource requirements for different

portions of the graph using the method container. Finally,

an executor class forms the graph along with application-

4

specific parameters into a simple closure and dispatches it

to the remote master for execution. Each of the methods

vertex, stream, and container returns an object of

builder design pattern. Users can configure detailed attributes

(callbacks, resources, etc.) of each graph component through

these builders.

B. A Concurrent Ping-pong Example

To understand our programming interface, we describe a

concrete example of a DtCraft application. The example we

have chosen is a representative class in many software libraries

– concurrent ping-pong, as it represents a fundamental build-

ing block of many iterative or incremental algorithms. The

flow diagram of a concurrent ping-pong and its runtime on

our system are illustrated in Figure 3. The ping-pong consists

of two vertices, called “Ball”, which asynchronously sends a

random binary character to each other, and two edges that

are used to capture the data streams. Iteration stops when the

internal counter of a vertex reaches a given threshold.

A B

‘1’ or ‘0’ (random)

‘1’ or ‘0’ (random)

ostream
A

istream
B

istream
A

Break at

counter ! 100

ostream
B

eA!B

eA"B

eA!B

eA"B

thdi

thdj

thdk

thdl

A

B

B

A

A

B

B B

A

A

B

t

A

!"

!"

ostream

begins at first

Fig. 3. Flow diagram of the concurrent ping-pong example. Computation
callbacks on streams are simultaneously invoked by multiple threads.

As presented in Listing 3, we define a function Ball

that writes a binary data through the stream k on vertex v.

We define another function PingPong to retrieve the data

arriving in vertex v followed by Ball if the counter hasn’t

reached the threshold. We next define vertices and streams

using the class method insert from the graph, as well as

their callbacks based on Ball and PingPong. The vertex

first reaching the threshold will close the underlying stream

channels via a return of Event::REMOVE. This is a handy

feature of our system. Users do not need to invoke extra

function call to signal our stream back-end. Closing one end

of a stream will subsequently force the other end to be closed,

which in turn updates the stream ownership on corresponding

vertices. We configure each vertex with 1KB memory and

1 CPU. Finally, an executor instance is created to wrap the

graph into a closure and dispatch it to the remote master for

execution.

C. A Distributed MapReduce Workload Example

We demonstrate how to use DtCraft to design a MapReduce

workload. MapReduce is a popular programming model to

a u t o B a l l (Ver tex& v , a u t o& k) {
(∗ v . o s t r e a m (k)) (r and () % 2) ;
r e t u r n Event : : DEFAULT;

} ;

a u t o PingPong (a u t o& v , a u t o& i s , a u t o& k , a u t o& c) {
i n t d a t a ;
i s (d a t a) ;
i f (i n t d a t a ; i s (d a t a)!=−1 && (c+= d a t a) >= 100) {

r e t u r n Event : : REMOVE;
}
r e t u r n B a l l (v , k)

}

Graph G;
S t r e a m B u i l d e r AB, BA;
a u t o count A {0} , count B {0} ;
a u t o A = G. v e r t e x () . on ([&] (a u t o& v){ B a l l (v , AB) ; }) ;
a u t o B = G. v e r t e x () . on ([&] (a u t o& v){ B a l l (v , BA) ; }) ;

AB = G. s t r e a m (A, B) . on (
[&] (a u t o& v , a u t o& i s) {

r e t u r n PingPong (v , i s , BA, count B) ;
}

) ;
BA = G. s t r e a m (B , A) . on (

[&] (a u t o& v , a u t o& i s) {
r e t u r n PingPong (v , i s , AB, count A) ;

}
) ;

G. c o n t a i n e r () . add (A) . memory (1 KB) . cpu (1) ;
G. c o n t a i n e r () . add (B) . memory (1 KB) . cpu (1) ;
E x e c u t o r (G) . run () ;

Listing 3. A concurrent ping-pong stream graph program.

simplify the data processing on a computer cluster. It is the

fundamental building block of many distributed algorithms

in machine learning and data analytics. In spite of many

variations, the key architecture is simply a master coordinating

multiple slaves to perform “Map” and “Reduce” operations.

Data is sent to slaves and the derived results are collated back

to the master to generate the final report. A common MapRe-

duce workload is reduce sum, reducing a list of numbers with

the sum operator. As shown in Listing 4, we create one master

and three slaves to implement the sum reduction. The result

is stored in a data structure consisting of two atomic integers,

value and count. When the master vertex is invoked, it

broadcasts to each slave a vector of 1024 numbers. Upon

receiving the number list, the slave performs local reduction

to sum up all numbers and sends the result back to the master,

followed by closing the corresponding stream. The master

keeps track of the result and stops the operation until all data

are received from the three slaves. Finally, we containerize

each vertex with 1 CPU and submit the stream graph through

an executor. Although the code snippet here is a special

case of the MapReduce flow, it can be generalized to other

similar operations such as gather, scatter, and scan. A key

advantage of our MapReduce stream graph is the capability

of being iterative or incremental. By default, streams persist

in memory and continue to operate until receiving the close

signal, Event::REMOVE. This is very efficient for users to

implement iterative MapReduce operations that would other-

wise require extra caching overhead in existing frameworks

5

such as Spark [5]. Also, users can flexibly configure resource

requirements for different pieces of the MapReduce graph

to interact with our cluster manager without going through

another layer of negotiators such as Yarn and Mesos [10],

[11].

s t r u c t R e s u l t {
atomic<i n t> v a l u e {0} ;
a tomic<i n t> c o u n t {0} ;

} ;

c o n s t e x p r i n t num s laves = 3 ;

Graph G;
v e c t o r <V e r t e x B u i l d e r > s l a v e s ;
v e c t o r <S t r e a m B u i l d e r> m2s , s2m ;

a u t o m a s t e r = G. v e r t e x () ;

f o r (a u t o i =0 ; i<num s laves ; ++ i) {
a u t o v = G. v e r t e x () ;
a u t o a = G. s t r e a m (m as te r , v) ;
a u t o b = G. s t r e a m (v , m a s t e r) ;
s l a v e s . push back (v) ;
m2s . push back (a) ;
s2m . push back (b) ;

}

m a s t e r . on ([&] (a u t o& v) {
v . any . emplace<R e s u l t > () ;
v e c t o r <i n t> send (1024 , 1) ;
f o r (c o n s t a u t o& s : m2s) {

(∗ v . o s t r e a m (s)) (s end) ;
}

}) ;

f o r (i n t i =0 ; i<num s laves ; ++ i) {
m2s [i] . on ([o t h e r =s2m [i]] (a u t o& s , a u t o& i s) {

i f (v e c t o r <i n t> r ; i s (r) != −1) {
a u t o l = a c c u m u l a t e (r . v e g i n () , r . end () , 0) ;
(∗ s . o s t r e a m (o t h e r)) (l) ;
r e t u r n Event : : REMOVE;

}
r e t u r n Event : : DEFAULT;

}) ;
}

f o r (i n t i =0 ; i<num s laves ; ++ i) {
s2m [i] . on ([] (a u t o& m as te r , a u t o& i s) {

i f (i n t v a l u e = 0 ; i s (v a l u e) != −1) {
a u t o& r e s u l t = a n y c a s t<R e s u l t &>(m a s t e r . any) ;
r e s u l t . v a l u e += v a l u e ;
i f (++ r e s u l t . c o u n t == num s laves) {

c o u t << ” Reduce sum : ” << r e s u l t . v a l u e ;
}
r e t u r n Event : : REMOVE;

}
r e t u r n Event : : DEFAULT;

}) ;
}

G. c o n t a i n e r () . add (m a s t e r) . cpu (1) ;
G . c o n t a i n e r () . add (s l a v e s [0]) . cpu (1) ;
G . c o n t a i n e r () . add (s l a v e s [1]) . cpu (1) ;
G . c o n t a i n e r () . add (s l a v e s [2]) . cpu (1) ;
E x e c u t o r (G) . run () ;

Listing 4. A stream graph program for MapReduce workload.

D. Advantages of the Proposed Model

DtCraft provides a programming interface similar to those

found in C++ standard libraries. Users can learn how to

develop a DtCraft application at a faster pace. The same code

that executes distributively can be also deployed on a local

machine for debugging purpose. No programming changes

are necessary except the options passed to the submission

script. Note that our framework needs only a single entity

of executable from users. The system kernel is not intrusive

to any user-defined entries, for instance, the arguments passed

to the main method. We encourage users to describe stream

graphs with C++ lambda and function objects. This functional

programming style provides a very powerful abstraction that

allows the runtime to bind callable objects and captures

different runtime states.

Although conventional dataflow thinks applications as

“computation vertices” and “dependency edges” [4], [12],

[13], [14], our system model does not impose explicit bound-

ary (e.g., DAG restriction). As shown in previous code snip-

pets, vertices and edges are logically associated with each

other and are combined to represent generic stream compu-

tations including feedback controls, state machines, and asyn-

chronous streaming. Stream computations are by default long-

lived and persist in memory until the end-of-file state is lifted.

In other words, our programming interface enables straightfor-

ward in-memory computing, which is an important factor for

iterative and incremental algorithms. This feature is different

from existing data-driven cluster computing frameworks such

as Dryad, Hadoop, and Spark that rely on either frequent disk

access or expensive extra caching for data reuse [2], [4], [5].

In addition, our system model facilitates the design of real-

time streaming engines. A powerful streaming engine has the

potential to bridge the performance gap caused by application

boundaries or design hierarchies. It is worth noting that many

engineering applications and companies existed “pre-cloud”,

and the most techniques they applied were ad-hoc C/C++ [6].

To improve the engineering turnaround, our system can be

explored as a distributed integration of existing developments

with legacy codes.

Another powerful feature of our system over existing frame-

works is guided scheduling using Linux containers. Users

can specify hard or soft constraints configuring the set of

Linux containers on which application pieces would like

to run. The scheduler can preferentially select the set of

computers to launch application containers for better resource

sharing and data locality. While transparent resource control is

successful in many data-driven cluster computing systems, we

have shown that compute-intensive applications has distinctive

computation patterns and resource management models. With

this feature, users can implement diverse approaches to various

problems in the cluster at any granularity. In fact, we are con-

vinced by our industry partners that the capability of explicit

resource controls is extremely beneficial for domain experts

to optimize the runtime of performance-critical routines. Our

container interface also offers users secure and robust runtime,

in which different application pieces are isolated in indepen-

dent Linux instances. To our best knowledge, DtCraft is the

first distributed execution engine that incorporates the Linux

container into dataflow programming.

In summary, we believe DtCraft stands out as a unique

system given the following attributes: (1) A compute-driven

distributed system completely designed from modern C++17.

6

(2) A new asynchronous stream-based programming model in

support for general dataflow. (3) A container layer integrated

with user-space programming to enable fine-grained resource

controls and performance tunning. In fact, most users can

quickly adopt DtCraft API to build distributed applications

in one week. Developers are encouraged to investigate the

structure of their applications and the properties of propri-

etary systems. Careful graph construction and refinement can

improve the performance substantially.

III. SYSTEM IMPLEMENTATION

DtCraft aims to provide a unified framework that works

seamlessly with the C++ standard library. Like many dis-

tributed systems, network programming is an integral part of

our system kernel. While our initial plan was to adopt third-

party libraries, we have found considerable incompatibility

with our system architecture (discussed in later sections).

Fixing them would require extensive rewrites of library core

components. Thus, we decided to re-design these network

programming components from ground-up, in particular the

event library and serialization interface that are fundamental

to DtCraft. We shall also discuss how we achieve distributed

execution of a given graph, including scheduling and transpar-

ent communication.

A. Event-driven Environment

DtCraft supports event-based programming style to gain

benefits from asynchronous computations. Writing an event

reactor has traditionally been the domain of experts and the

language they obsessed about is C [15]. The biggest issue we

found in widely-used event libraries is the inefficient support

for object-oriented design and modern concurrency. Our goal

is thus to incorporate the power of C++ libraries with low-

level system controls such as non-blocking mechanism and

I/O polling. Due to the space limit, we present only the key

design features of our event reactor in Listing 5.

c l a s s Event : p u b l i c e n a b l e s h a r e d f r o m t h i s<Event> {
enum Type {TIMEOUT, PERIODIC , READ, WRITE} ;
c o n s t f u n c t i o n<S i g n a l (Event&)> on ;

} ;

c l a s s R e a c t o r {
T hreadpoo l t h r e a d p o o l ;
u n o r d e r e d s e t <s h a r e d p t r <Event>> e v e n t s e t ;

t e m p l a t e <typename T , typename . . . U>
f u t u r e <s h a r e d p t r <T>> i n s e r t (U& & . . . u) {

a u t o e = make shared<T>(fo rward<U>(u) . . .) ;
r e t u r n prom ise ([& , e=move (e)] () {

i n s e r t (e) ; / / i n s e r t an e v e n t i n t o r e a c t o r

r e t u r n e ;
}) ;

}
} ;

Listing 5. Our reactor design of event-driven programming.

Unlike existing libraries, our event is a flattened unit of

operations including timeout and I/O. Events can be cus-

tomized given the inheritance from class Event. The event

callback is defined in a function object that can work closely

with lambda and polymorphic function wrapper. Each event

instance is created by the reactor and is only accessible through

C++ smart pointer with shared ownership among those inside

the callback scope. This gives us a number of benefits such

as precise polymorphic memory managements and avoidance

of ABA problems that are typically hard to achieve with

raw pointers. We have implemented the reactor using task-

based parallelism. A significant problem of existing libraries

is the condition handling in multi-threaded environment. For

example, a thread calling to insert or remove an event can get

a nonsense return if the main thread is too busy to handle the

request [15]. To enable proper concurrency controls, we have

adopted C++ future and promise objects to separate the acts

between the provider (reactor) and consumers (threads). Multi-

ple threads can thus safely create or remove events in arbitrary

orders. In fact, our unit test has shown 4–12× improvements

in throughput and latencies over existing libraries [15].

B. Serialization and Deserialization

We have built a dedicated serialization and deserialization

layer called archiver on top of our stream interface. The

archiver has been intensively used in our system kernel

communication. Users are strongly encouraged, though not

necessary, to wrap their data with our archiver as it is highly

optimized to our stream interface. Our archiver is similar to

the modern template-based library Cereal, where data types

can be reversibly transformed into different representations

such as binary encodings, JSON, and XML [16]. However,

the problem we discovered in Cereal is the lack of proper

size controls during serialization and deserialization. This can

easily cause exception or crash when non-blocking stream

resources become partially unavailable. While extracting the

size information in advance requires twofold processing, we

have found such burden can be effectively mitigated using

modern C++ template techniques. A code example of our

binary archiver is given in Listing 6.

c l a s s B i n a r y O u t p u t A r c h i v e r {
o s t r e a m& os ;
t e m p l a t e <typename . . . U>
c o n s t e x p r s t r e a m s i z e o p e r a t o r () (U& & . . . u) {

r e t u r n a r c h i v e (fo rward<U>(u) . . .) ;
}

} ;

c l a s s B i n a r y O u t p u t P a c k a g e r {
B i n a r y O u t p u t A r c h i v e r a r ;
B i n a r y O u t p u t P a c k a g e r (o s t r e a m& os) : a r (os) {}
t e m p l a t e <typename . . . U>
s t r e a m s i z e o p e r a t o r () (U& & . . . u) {

a u t o sz = a r . s i z e (fo rward<U>(u) . . .) ;
s z += s i z e o f (s t r e a m s i z e) ; / / s i z e t a g .

r e t u r n a r (sz , fo rward<U>(u) . . .) ;
}

} ;

Listing 6. Our binary serialization and deserialization interface.

We developed our archiver based on extensive templates to

enable a unified API. Many operations on stack-based objects

and constant values are prescribed at compile time using

constant expression and forwarding reference techniques. The

archiver is a light-weight layer that performs serialization and

deserialization of user-specified data members directly on the

7

stream object passed to the callback. We also offer a packager

interface that wraps data with a size tag for complete message

processing. Both archiver and packager are defined as callable

objects to facilitate dynamic scoping in our multi-threaded

environment.

C. Input and Output Streams

One of the challenges in designing our system is choosing

an abstraction for data processing. We have examined various

options and concluded that developing a dedicated stream

interface is necessary to provide users a simple but robust

layer of I/O services. To facilitate the integration of safe and

portable streaming execution, our stream interface follows the

idea of C++ istream and ostream. Users are perceived

with the API similar to those found in C++ standard library,

while our stream buffer back-end implements the entire details

such as device synchronization and low-level non-blocking

data transfers.

Derived stream buffer

beg endnext

@ # * … - - - - -

I/O Device DB

In-memory

char buffer

AgentDatabase

overflowSynchronization

Thread-safe stream buffer object: read, write, copy, etc.

Executor

Key/Value

store

Executor

In-memory database

Integration with our serialization/deserialization interface

rdbuf

Fig. 4. DtCraft provides a dedicated stream buffer object in control of reading
and writing operations on devices.

Figure 4 illustrates the structure of a stream buffer object

in our system kernel. A stream buffer object is a class similar

to C++ basic_streambuf and consists of three compo-

nents, character sequence, device, and database pointer. The

character sequence is an in-memory linear buffer storing a

particular window of the data stream. The device is an OS-

level entity (e.g. TCP socket, shared memory) that derives

reading and writing methods from an interface class with static

polymorphism. Our stream buffer is thread safe and is directly

integrated with our serialization and deserialization methods.

To properly handle the buffer overflow, each stream buffer

object is associated with a raw pointer to a database owned by

the process. The database is initiated when a master, an agent,

or an executor is created, and is shared among all stream buffer

objects involved in that process. Unless the ultimate disk usage

is full, users are virtually perceived with unbounded stream

capacity in no worry about the deadlock.

D. Kernel: Master, Agent, and Executor

Master, agent, and executor are the three major components

in the system kernel. There are many factors that have led to

the design of our system kernel. Overall regard is the reliability

and efficiency in response to different message types. We have

defined a reliable and extensible message structure of type

variant to manipulate a heterogeneous set of message types in

a uniform manner. Each message type has data members to be

serialized and deserialized by our archiver. The top-level class

can inherit from a visitor base with dynamic polymorphism

and derive dedicated handlers for certain message types.

To efficiently react to each message, we have adopted the

event-based programming style. Master, agent, and executor

are persistent objects derived from our reactor with specialized

events binding to each. While it is expectedly difficult to write

non-sequential codes, we have found a number of benefits

of adopting event-driven interface, for instance, asynchronous

computations, natural task flow controls, and concurrency. We

have defined several master events in charge of graph schedul-

ing and status report. For agent, most events are designated

as a proxy to monitor current machine status and fork an

executor to launch tasks. Executor events are responsible for

the communication with the master and agents as well as

the encapsulation of asynchronous vertex and edge events.

Multiple events are executed efficiently on a shared thread

pool in our reactor.

1) Communication Channels: The communication channels

between different components in DtCraft are listed in Table I.

By default, DtCraft supports three types of communication

channels, TCP socket for network communication between re-

mote hosts, domain socket for process communication on a lo-

cal machine, and shared memory for in-process data exchange.

For each of these three channels, we have implemented a

unique device class that effectively supports non-blocking I/O

and error handling. Individual device classes are pluggable to

our stream buffer object and can be extended to incorporate

device-specific attributes for further I/O optimizations.

TABLE I
COMMUNICATION CHANNELS IN DTCRAFT.

Target Protocol Channel Latency

Master–User TCP socket Network High

Master–Agent TCP socket Network High

Agent–Executor Domain socket Local processes Medium

Intra-edge Shared memory Within a process Low

Inter-edge TCP socket Network High

Since master and agents are coordinated with each other

in distributed environment, the communication channels run

through reliable TCP socket streams. We enable two types of

communication channels for graphs, shared memory and TCP

socket. As we shall see in the next section, the scheduler might

partition a given graph into multiple topologies running on

different agent nodes. Edges crossing the partition boundary

are communicated through TCP sockets, while data within a

topology is exchanged through shared memory with extremely

low latency cost. To prevent our system kernel from being

bottlenecked by data transfers, master and agents are only

responsible for control decisions. All data is sent between

vertices managed by the executor. Nevertheless, achieving

point-to-point communication is non-trivial for inter-edges.

The main reason is that the graph structure is offline unknown

and our system has to be general to different communication

8

patterns deployed by the scheduler. We have managed to solve

this by means of file descriptor passing through environment

variables. The agent exports a list of open file descriptors to

an environment variable which will be in turn inherited by the

corresponding executor under fork.

2) Application Container: DtCraft leverages existing OS

container technologies to enable isolation of application re-

sources from one another. Because these technologies are

platform-dependent, we implemented a pluggable isolation

module to support multiple isolation mechanisms. An isola-

tion module containerizes a process based on user-specified

attributes. By default, we apply the Linux control groups

(cgroups) kernel feature to impose per-resource limits (CPU,

memory, block I/O, and network) on user applications. With

cgroups, we are able to consolidate many workloads on a

single node while guaranteeing the quota assigned to each

application. In order to achieve secure and robust runtime,

our system runs applications in isolated namespaces. We

currently support IPC, network, mount, PID, UTS, and user

namespaces. By essentially separating processes into indepen-

dent namespaces, user applications are ensured to be invisible

from others and will be unable to make connections outside

of the namespaces. External connections such as inter-edge

streaming are managed by agents through device descriptor

passing techniques. Our container implementation also sup-

ports process snapshots, which is beneficial for checkpointing

and live migration.

3) Graph Scheduling: Scheduler is an asynchronous master

event that is invoked when a new graph arrives. Given a

user-submitted graph, the goal of the scheduler is to find a

deployment of each vertex and each edge considering the

machine loads and resource constraints. A graph might be

partitioned into a set of topologies that can be accommodated

by the present resources. A topology is the basic unit of

a task (container) that is launched by an executor process

on an agent node. A topology is not a graph because it

may contain dangling edges along the partition boundary.

Once the scheduler has decided the deployment, each topol-

ogy is marshaled along with graph parameters including the

UUID, resource requirements, and input arguments to form

a closure that can be sent to the corresponding agent for

execution. An example of the scheduling process is shown in

Figure 5. At present, two schedulers persist in our system, a

global scheduler invoked by the master and a local scheduler

managed by the agent. Given user-configured containers, the

global scheduler performs resource-aware partition based on

the assumption that the graph must be completely deployed at

one time. The global scheduling problem is formulated into

a bin packing optimization where we additionally take into

account the number of edge cuts to reduce the latency. An

application is rejected by the global scheduler if its mandatory

resources (must acquire in order to run) exceed the maximum

capability of machines. As a graph can be partitioned into

different topologies, the goal of the local scheduler is to syn-

chronize all inter-edge connections of a topology and dispatch

it to an executor. The local scheduler is also responsible for

various container setups including resource update, namespace

isolation, and fault recovery.

A B C D

A B C D

A B

C D

Agent1

Agent2

Graph (4 vertices/4 edges)

Topology1 Topology2

Container 1: A, B

Container 2: C, D

Deploy

(packing)

<Task2: 2 vertices, 2 edges>

<Task1: 2 vertices, 3 edges>

Cut(Agent1) (Agent2)

Control message: ostream from B

Control message: istream to C

Global scheduler (Master) Local scheduler (Agent)

Fig. 5. An application is partitioned into a set of topologies by the global
scheduler, which are in turn sent to remote agents (local scheduler) for
execution.

Although our scheduler does not force users to explicitly

containerize applications (resort to our default heuristics),

empowering users fine-grained controls over resources can

guide the scheduler toward tremendous performance gain. Due

to the space limitation, we are unable to discuss the entire

details of our schedulers. We believe developing a scheduler

for distributed dataflow under multiple resource constraints

deserves independent research effort. As a result, DtCraft

delegates the scheduler implementation to a pluggable module

that can be customized by organizations for their purposes.

4) Topology Execution: When the agent accepts a new

topology, a special asynchronous event, topology manager, is

created to take over the task. The topology manager spawns

(fork-exec) a new executor process based on the parameters

extracted from the topology, and coordinates with the executor

until the task is finished. Because our kernel requires only a

single entity of executable, the executor is notified by which

execution mode to run via environment variables. In our case,

the topology manager exports a variable to “distributed”,

as opposed to aforementioned “submit” where the executor

submits the graph to the master. Once the process controls are

finished, the topology manager delivers the topology to the

executor. A set of executor events is subsequently triggered to

launch asynchronous vertex and edge events.

Fig. 6. A snapshot of the executor runtime in distributed mode.

A snapshot of the executor runtime upon receiving a topol-

ogy is shown in Figure 6. Roughly speaking, the executor

performs two tasks. First, the executor initializes the graph

from the given topology which contains a key set to describe

9

the graph fragment. Since every executor resides in the same

executable, an intuitive method is to initialize the whole graph

as a parent reference to the topology. However, this can

be cost-inefficient especially when vertices and edges have

expensive constructors. To achieve a generally effective solu-

tion, we have applied lazy lambda technique to suspend the

initialization (see Listing 7). The suspended lambda captures

all required parameters to construct a vertex or an edge, and

is lazily invoked by the executor runtime. By referring to a

topology passed from the “future”, only necessary vertices and

edges will be constructed.

V e r t e x B u i l d e r Graph : : v e r t e x () {
a u t o k = g e n e r a t e k e y () ; / / S t a t i c o r d e r .

t a s k s . em place back (
[G= t h i s , k] (pb : : Topology∗ t p g) {

/ / Case 1: v e r t e x needs t o be i n i t i a t e d .

i f (! t p g | | (tpg−>i d != −1 && tpg−>has (k))) {
G−> v e r t i c e s . t r y e m p l a c e (k , k) ;

}
/ / Case 2: t o p o l o g y needs t o be m o d i f i e d .

e l s e i f (tpg−>i d == −1) {
tpg−>v e r t i c e s . t r y e m p l a c e (k , k) ;

}
}

) ;
r e t u r n V e r t e x B u i l d e r (t h i s , k) ;

}

Listing 7. Efficient creation of graph component through lazy lambda
suspension.

The second task is to initiate a set of events for vertex

and edge callbacks. We have implemented an I/O event for

each device based on our stream buffer object. Because each

vertex callback is invoked only once, it can be absorbed

into any adjacent edge events coordinated by modern C++

threading once_flag and call_once. Given an initialized

graph, the executor iterates over every edge and creates shared

memory I/O events and TCP socket I/O events for intra-edges

and inter-edges, respectively. Notice that the device descriptor

for inter-edges are fetched from the environment variables

inherited from the agent.

IV. FAULT TOLERANCE POLICY

Our system architecture facilitates the design of fault tol-

erance on two fronts. First, master maintains a centralized

mapping between active applications and agents. Every sin-

gle error, which could be either heartbeat timeout on the

executor or unexpected I/O behaviors on the communication

channels, can be properly propagated. In case of a failure,

the scheduler performs a linear search to terminate and re-

deploy the application. Second, our container implementation

can be easily extended to support periodic checkpointing.

Executors are freezed to a stable state and are thawed after

the checkpointing. The solution might not be perfect, but

adding this functionality is already an advantage over our

system framework, where all data transfers are exposed to

our stream buffer interface and can be dumped without lost.

However, depending on application properties and cluster envi-

ronment, periodic checkpointing can be very time-consuming.

For instance, many incremental optimization procedures have

sophisticated memory dumps whereas the subsequent change

between process maps are small. Restarting applications from

the beginning might be faster than checkpoint-based fault

recovery.

V. EXPERIMENTAL RESULTS

We have implemented DtCraft in C++17 on a Linux ma-

chine with GCC 7. Given the huge amount of existing cluster

computing frameworks, we are unable to conduct comprehen-

sive comparison subject to the space limit. Instead, we com-

pare with one of the best cluster computing engines, Apache

Spark 2.0 [5], that has been extensively studied by other

research works as baseline. To further investigate the benefit of

DtCraft, we compared with an application hand-crafted with

domain-specific optimizations [9]. The performance of DtCraft

is evaluated on three sets of experiments. The first two ex-

periments took classic algorithms from machine learning and

graph applications and compared the performance of DtCraft

with Spark. We have analyzed the runtime performance over

different numbers of machines on an academic cluster [17]. In

the third experiment, we demonstrated the power of DtCraft in

speeding up a large simulation problem using both distributed

CPUs and heterogeneous processors. The fourth experiment

applied DtCraft to solve a large-scale semiconductor design

problem. Our goal is to explore DtCraft as a distributed

solution to mitigate the end-to-end engineering efforts along

the design flow. The evaluation has been undertaken on a large

cluster in Amazon EC2 cloud [18]. Overall, we have shown

the performance and scalability of DtCraft on both standalone

applications and cross-domain applications that have been

coupled together in a distributed manner.

A. Machine Learning

We implemented two iterative machine learning algorithms,

logistic regression and k-means clustering, and compared our

performance with Spark. One key difference between the two

applications is the amount of computation they performed

per byte of data. The iteration time of k-means is dominated

by computations, whereas logistic regression is less compute-

intensive [5]. The source codes we used to run on Spark are

cloned from the official repository of Spark. For the sake

of fairness, the DtCraft counterparts are implemented based

on the algorithms of these Spark codes. Figure 7 shows the

stream graph of logistic regression and k-means clustering

in DtCraft, and two sample results that are consistent with

Spark’s solutions.

(b) Logistic regression

Distributed storage

V1 V2 Vn

V0

(a) Stream graph

…

Points

Update weight

(c) k-means

Iteration

Fig. 7. Stream graph to represent logistic regression and k-means jobs in
DtCraft.

Figure 8 shows the runtime performance of DtCraft versus

Spark. Unless otherwise noted, the value pair enclosed by

10

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

(s
)

Number of machines (4 CPUs / 16GB each)

Runtime comparison of machine learning applications

Spark (LR)

DtCraft (LR)

Spark (KM)

DtCraft (KM)

40M points (dimension=10)

4-11! speedup on logistic regression (LR)

5-14! speedup on k-means (KM)

Fig. 8. Runtimes of DtCraft versus Spark on logistic regression and k-means.

the parenthesis (CPUs/GB) denotes the number of cores and

the memory size per machine in our cluster. We ran both

logistic regression and k-means for 10 iterations on 40M

sample points. It can be observed that DtCraft outperformed

Spark by 4–11× and 5–14× faster on logistic regression and

k-means, respectively. Although Spark can mitigate the long

runtime by increasing the cluster size, the performance gap

to DtCraft is still remarkable (up to 8× on 10 machines).

In terms of communication cost, we have found hundreds of

Spark RDD partitions shuffling over the network. In order to

avoid disk I/O overhead, Spark imposed a significant burden

on the first iteration to cache data for reusing RDDs in

the subsequent iterations. In contrast, our system architecture

enables straightforward in-memory computing, incurring no

extra overhead of caching data on any iterations. Also, our

scheduler can effectively balance the machine overloads along

with network overhead for higher performance gain.

B. Graph Algorithm

We next examine the effectiveness of DtCraft by running a

graph algorithm. Graph problems are challenging in concurrent

programming due to the iterative, incremental, and irregular

computing patterns. We considered the classic shortest path

problem on a circuit graph with 10M nodes and 14M edges

released by [9]. We implemented the Pregel-style shortest path

finding algorithm in DtCraft, and compared it with Spark-

based Pregel variation downloaded from the official GraphX

repository [14]. As gates are closely connected with each other

to form compact signal paths, finding a shortest (delay-critical)

path can exhibit a wild swing in the evaluation of a value.

Fig. 9. Visualization of our circuit graph benchmarks.

Figure 10 shows the runtime comparison across different

machine counts. In general, DtCraft reached the goal by 10–

20× faster than Spark. Our program can finish all tests within

a minute regardless of the machine usage. We have observed

intensive network traffic among Spark RDD partitions whereas

303

202

111 96 96 98 105 102 108 110

15 14 11 8 9 9 8 10 10 9
0

100

200

300

400

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

(s
)

Number of machines (4 CPUs / 8GB each)

Runtime comparison of shortest path finding

Spark

DtCraft

Circuit graph with 10M nodes and 14M edges

10-20! speedup by DtCraft

Fig. 10. Runtimes of DtCraft versus Spark on finding a shortest path in our
circuit graph benchmark.

303 520 674 856 1K 1.2K 1.4K
1.8K

2.2K

3.5K

18 39 52 70 88 108 131 155 176 201

0

1000

2000

3000

4000

24 28 72 96 120 124 168 192 216 240

R
u

n
ti

m
e

(s
)

Graph size (# edges + # nodes) in million (M)

Performance scalability (runtime vs graph size)

Spark

DtCraft

All on 10 machines (4 CPUs / 16GB each)

10-17! speedup by DtCraft

Fig. 11. Runtime scalability of DtCraft versus Spark on different graph sizes.

in our system most data transfers were effectively scheduled to

shared memory. To further examine the runtime scalability, we

duplicated the circuit graph and created random links to form

larger graphs, and compared the runtimes of both systems on

different graph sizes. As shown in Figure 11, the runtime curve

of DtCraft is far scalable against Spark. The highest speedup is

observed at the graph of size 240M, in which DtCraft is 17×
faster than Spark. To summarize this micro-benchmarking, we

believe the performance gap between Spark and DtCraft is

due to the system architecture and language features we have

chosen. While we compromise with users on explicit dataflow

description, the performance gain in exchange can scale up to

more than an order of magnitude over one of the best cluster

computing systems.

C. Stochastic Simulation

We applied DtCraft to solve a large-scale stochastic simu-

lation problem, Markov Chain Monte Carlo (MCMC) simu-

lation. MCMC is a popular technique for estimating by sim-

ulation the expectation of a complex model. Despite notable

success in domains such as astrophysics and cryptography, the

practical widespread use of MCMC simulation had to await

the invention of computers. The basis of an MCMC algorithm

is the construction of a transition kernel, p(x, y), that has an

invariant density equal to the target density. Given a transition

kernel (a conditional probability), the process can be started at

an initial state x0 to yield a draw x1 from p(x0, x1), x2 from

p(x1, x2), ..., and p(xS−1, xS), where S is the desired number

of simulations. After a transient period, the distribution of x is

approximately equal to the target distribution. The problem is

the size of S can be made very large and the only restriction

comes from computer time and capacity. To speed up the

process while catching the accuracy, the recent industry is

driving the need of distributed simulation [19].

11

Fig. 12. Stream graph (101 vertices and 200 edges) for distributed Markov
Chain Monte Carlo simulation.

7.9

15.4

23.2

33.5

0

10

20

30

40

10 20 30 40

S
p

ee
d

u
p

Number of machines (4 CPUs / 16GB each)

Runtime scalability (MCMC simulation)

DtCraft

MPI

Up to 32! speedup to baseline

Only < 8% gap to MPI

5! fewer codes than MPI

Fig. 13. Runtime of DtCraft versus hard-coded MPI on MCMC simulation.

We consider Gibbs algorithm on 20 variables with 100000

iterations to obtain a final sample of 100000 [20]. The stream

graph of our implementation is shown in Figure 12. Each

Gibbs sampler represents an unique prior and will deliver

the simulation result to the diagnostic vertex. The diagnostic

vertex then performs statistical tests including outlier detection

and convergence check. To measure our solution quality, we

implemented a hard-coded C MPI program as the golden

reference. As shown in Figure 13, the DtCraft-based solution

achieved up to 32× seedup on 40 Amazon EC2 m4.xlarge

machines over the baseline serial simulation, while keeping

the performance margin within 8% to MPI. Nevertheless,

it should be noted that our system enables many features

such as transparent concurrency, application container, and

fault tolerance, which MPI handles insufficiently. We have

observed the majority of runtime is taken by simulation (85%)

while ramp-up time (scheduling) and clean-up time (release

containers, report to users) are 4% and 11%, respectively.

This experiment justified DtCraft as an alternative to MPI,

considering the tradeoff around performance, transparency,

and programmability.

12
20

27
31

40
45 46 49 52

56

0

20

40

60

1 2 3 4 5 6 7 8 9 10

S
p

ee
d

u
p

Number of machines (4 CPUs / 1GPU / 64GB each)

Runtime scalability (GPU-based MCMC simulation)

DtCraft

Up to 56! speedup to baseline with

distributed GPUs

Fig. 14. Accelerated MCMC simulation with distributed GPUs using DtCraft.

There are a number of approaches using GPU to accelerate

Gibbs sampling. Due to memory limitation, large data sets

require either multiple GPUs or iterative streaming to a single

GPU. A powerful feature of DtCraft is the capability of

distributed heterogeneous computing. Recall that our system

offers a container layer of resource abstraction and users can

interact with the scheduler to configure the set of computers

on which their applications would like to run. We modified

the container interface to include GPUs into resource con-

straints and implemented the GPU-accelerated Gibbs sampling

algorithm by [20]. Experiments were run on 10 Amazon

EC2 p2.xlarge instances. As shown in Figure 14, DtCraft

can be extended to a hybrid cluster for higher speedup (56×
faster than serial CPU with only 10 GPU machines). Similar

applications that rely on off-chip acceleration can make use

of DtCraft to broaden the performance gain.

D. Semiconductor Design Optimization

We applied DtCraft to solve a large-scale electronic design

automation (EDA) optimization problem in semiconductor

community. EDA has been an immensely successful field in

assisting designers in implementing VLSI circuits with billions

of transistors. EDA was on the forefront of computing (around

1980) and has fostered many of the largest computational

problems such as graph theory and mathematical optimiza-

tions. The recent semiconductor industry is driving the need of

massively-parallel integration to keep up with the technology

scaling [6]. We applied DtCraft to solve a large-scale EDA

optimization problem, physical design, a pivotal stage that en-

compasses several steps from circuit partition to timing closure

(see Figure 15). Each step has domain-specific solutions and

engages with others through different internal databases. We

used open-source tools and our internal developments for each

step of the physical design [8], [21]. Individual tools have been

developed based on C++ with default I/O on files, which can

fit into DtCraft without significant rewrites of codes. Altering

the I/O channels is unsurprisingly straightforward because

our stream interface is compatible with C++ file streams.

We applied DtCraft to handle a typical physical design cycle

under multiple timing scenarios. As shown in Figure 16, our

implementation ran through each physical design step and

coupled them together in a distributed manner. Generating the

timing report is the most time-consuming step. We captured

each independent timing scenario by one vertex and connected

it to a synchronization barrier to derive the final result. Users

can interactively access the system via a service vertex. The

code snippet of connecting multiple timers to the router is

demonstrated in Listing 8. Workload is distributed through our

container interface. In this experiment we assign each vertex

one container.

We derived a benchmark with two billion transistors from

ICCAD15 and TAU15 contests [21]. The DtCraft-based solu-

tion is evaluated on 40 Amazon EC2 m4.xlarge machines [18].

The baseline we considered is a batch run over all steps

on a single machine that mimicked the normal design flow.

The overall performance is shown in Figure 17. The first

benefit of our solution is the saving of disk I/O (65 GB vs

11 GB). Most data is exchanged on the fly including those

that would otherwise come with redundant auxiliaries through

disk (50 GB parasitics in the timing step). Another benefit

we have observed is the asynchrony of DtCraft. Computations

are placed wherever stream fragments are available rather than

blocking for the entire object to be present. These advantages

have translated to effective engineering turnaround – 13 hours

12

Circuit design

Partition

Floorplan

Placement

CTS

Routing

Function, logic

Physical design

Signoff

Module(a, b)

Input a;

Output b;

Manufacturing

System Spec.

Architecture

Timing

Final chip

Testing

DRC, LVS

Disk, legacy C codes

(Linux LSF cluster)

Graph

Graph

Analytical

Tree

Graph

NFS
22nm 10B+

transistors

Fig. 15. Electronic design automation of VLSI circuits and optimization flow
of the physical design stage.

Partition Floorplan Placement Routing Timing

Users (service)Interactive query,

incremental update
Multiple scenarios

(100 vertices)

Fig. 16. Stream graph (106 vertices and 214 edges) of our DtCraft-based
solution for the physical design flow.

saving over the baseline. From designers’ perspective, this

value convinces not only a faster path to the design closure but

also the chance for breaking cumbersome design hierarchies,

which has the potential to tremendously improve the overall

solution quality [6], [9].

. . .
a u t o r o u t e r = G. v e r t e x () . on ([] (Ver tex& v) {

v . any = I n t e r n a l R o u t e r (” des . l e f ” , ” des . d e f ”) ;
}) ;
a u t o t i m e r 1 = G. v e r t e x () . on ([] (Ver tex& v) {

v . any = OpenTimer (” p a r t i t i o n 1 . v ” , ” t e c h 1 . l i b ”) ;
}) ;
a u t o t i m e r 2 = G. v e r t e x () . on ([] (Ver tex& v) {

v . any = OpenTimer (” p a r t i t i o n 2 . v ” , ” t e c h 2 . l i b ”) ;
}) ;
. . .
a u t o r o u t e r 2 t i m e r 1 = G. s t r e a m (r o u t e r , t i m e r 1) ;
a u t o r o u t e r 2 t i m e r 2 = G. s t r e a m (r o u t e r , t i m e r 2) ;
. . .

G . c o n t a i n e r () . add (r o u t e r) . cpu (4) . memory(8GB) ;
G . c o n t a i n e r () . add (t i m e r 1) . cpu (2) . memory(4GB) ;
. . .

Listing 8. Code snippets of connecting 100 timers to a router.

We next demonstrate the speedup relative to the baseline on

different cluster sizes. In addition, we included the experiment

in presence of a failure to demonstrate the fault tolerance

of DtCraft. One machine is killed at a random time step,

resulting in partial re-execution of the stream graph. As shown

in Figure 18, the speedup of DtCraft scales up as the cluster

size increases. The highest speedup is achieved at 40 machines

65

11

0

20

40

60

80

40 machinesD
is

k
 I

/O
 (

G
B

)

(4 CPUs / 16GB each)

Physical design (1B transistors)

Baseline

DtCraft

14.8

1.8

0

5

10

15

20

40 machinesR
u

n
ti

m
e

(h
r)

(4 CPUs / 16GB each)

Runtime comparison

Baseline

DtCraft

Fig. 17. Performance of DtCraft versus baseline in completing the physical
design flow.

(160 cores and 640 GB memory in total), where DtCraft is

8.1× and 6.4× faster than the baseline. On the other hand,

we have observed approximately 10–20% runtime overhead

on fault recovery. We did not see pronounced difference from

our checkpoint-based fault recovery mechanism. This should

be in general true for most EDA applications since existing

optimization algorithms are designed for “medium-size data”

(million gates per partition) to run in main memory [6], [9]. In

terms of runtime breakdown, computation takes the majority

while about 15% is occupied by system transparency.

Fig. 18. Runtime scalability in terms of speedup relative to the baseline on
different cluster sizes.

Since timing analysis exhibits the most parallelism, we

investigate into the performance gain by using DtCraft. To

discover the system capability, we compare with the distributed

timing analysis algorithm (ad-hoc approach) proposed by [9].

To further demonstrate the programmability of DtCraft, we

compared the code complexity in terms of the number of

lines of codes between our implementation and the ad-hoc

approach. The overall comparison is shown in Figure 19.

Because of the problem nature, the runtime scalability is even

remarkable as the compute power scales out. It is expected

the ad-hoc approach is faster than our DtCraft-based solution.

Nevertheless, the ad-hoc approach embedded many hard codes

and supported neither transparent concurrency nor fault toler-

ance, which is difficult for scalable and robust maintenance.

In terms of programmability, our programming interface can

significantly reduce the amount of the codes by 15×. The real

productivity gain can be even tremendous (months vs days).

To conclude this experiment, we have introduced a platform

innovation to solve a large-scale semiconductor optimization

problem with low integration cost. To our best knowledge, this

is the first work in the literature that achieves a distributed

EDA flow integration. DtCraft opens new opportunities for

improving commercial tools, for example, distributed EDA

algorithms and tool-to-tool integration. From research point

of view, this distributed EDA flow can deliver a more pre-

dictable design flow where researchers can apply higher-level

13

8.2
13

19

30.1

8.7

14.2

21.7

32

0

10

20

30

40

10 20 30 40

S
p

ee
d

u
p

Number of machines (4 CPUs / 16GB each)

Runtime scalability (timing analysis)

DtCraft

Ad hoc*

Up to 30! speedup over baseline

15! fewer lines of codes than ad hoc

*: Hard-coded

7 minutes

Fig. 19. Performance comparison on distributed timing analysis between
DtCraft-based approach and the ad-hoc algorithm by [9].

technology such as machine learning and parameter search

to largely improve the overall solution quality. It can also

facilitate the adoption of cloud computing to extend existing

business models and assets.

VI. DISCUSSION AND RELATED WORK

DtCraft is motivated from our collaboration with IBM

System Group [9]. We aimed to create a new system that can

help streamline the development of distributed EDA programs.

Instead of hard code, we are interested in a general system

to support high-level API and transparent concurrency. As

pointed outed by the vice president of IBM EDA, the major

hurdle to overcome is the platform innovation [6]. Over the

past five years, we have seen a number of such attempts

including using Spark as a middleware to accelerate TCL

parsing [22], applying big data analytics to facilitate circuit

simulations [23], and developing ad-hoc software solutions to

speed up particular design stages [9]. Despite many individuals

claim these tool collections “platforms”, most are short of a

general programming model to facilitate the creation of new

parallel and distributed design automation tools.

Programming model. While the major cause is the dis-

tinctive computing nature, the vast success in big data areas

has motivated several design principles of DtCraft. A direct

inspiration is the transparency of ordinary MapReduce sys-

tems [3], [5]. The simplicity of MapReduce makes it powerful

for many data-driven applications yet arguable to complex

computational problems. On the contrary, we decided to stick

with the dataflow-style programming model. Related works

are Dryad, DryadLINQ, and CIEL [4], [24], [25]. However,

these systems are restricted to acyclic dataflow, excluding

any feedback controls that are instead important for iterative

in-memory computing. Another major limitation of existing

dataflow models is the explicit boundary constraint. Vertex

computations cannot start until all incoming data from adjacent

edges are ready. Our stream graph does not suffer from this

restriction. In fact, our streaming interface is analogous to

manufacturing pipeline. Computations take place in a more

elastic manner whenever the data is available. Another domain

of our attention is the actor framework, for example, CAF and

Akka [13], [26]. In spite of the high availability, we have found

it critical to control the state transitions in both efficient and

predictable manners.

Stream processing. To enable general dataflow program-

ming, we incorporated a stream interface into our system.

Stream processing has been around for decades in many forms

such as RaftLib, Brook, Heron, and Storm [27], [28]. Despite

the common programming modality, a manifest challenge

of using existing stream engines lies in both application-

and system-level integrations. Considering the special archi-

tecture of DtCraft, we re-devised several important stream

processing components including asynchrony, serialization,

and unbounded condition, and combined them into a unified

programming interface based on robust C++ standards.

Concurrency controls. The high-performance community

has long experience in parallel programming. OpenMP is an

API embedded in GCC for programming multiple threads on

a shared-memory machine. On distributed-memory machines,

MPI provides low-level primitives for message passing and

synchronization [29]. A common critique about MPI is the

scalability and fault recovery [25]. MPI programs suffer from

too many distinct notations for distributed computing, and its

bottom-up design principle is somehow analogous to low-level

assembly programming [27]. While OpenMP is sure to live

with DtCraft, our parallel framework favors more on modern

C++ concurrency [30]. OpenMP relies on explicit thread

controls at compile time, whereas thread behaviors can be

both statically and dynamically defined by C++ concurrency

libraries. We have extensively utilized the C++ task-based

parallelism to the design of DtCraft. Our framework is also

compatible with rich multi-threading libraries such as Boost,

JustThread, and TBB [31], [32], [33].

Final thoughts. We believe different systems have their

own pros and cons, and the judgement should be left for

users. We have opened the source of DtCraft as a vehicle

for system research [34]. While DtCraft offers a number of

promises, it is currently best suited for NFS-like storage.

An important take-home message is the performance gap we

have revealed in existing cluster computing systems, from

which up to 20× margin can be improved. According to a

recent visionary speech, the insufficient support for running

compute-optimized codes has become the major bottleneck in

current big data systems [7]. The trend is likely to continue

with the advance of new storage technology (e.g., non-volatile

memory). Researchers should pursue different software archi-

tecture developments along with native programming language

supports to broaden the performance gain.

VII. CONCLUSION

We have presented DtCraft, a distributed execution engine

for high-performance parallel applications. DtCraft is devel-

oped based on modern C++17 on Linux machines. Develop-

ers can fully utilize rich features of C++ standard libraries

along with our parallel framework to build highly-optimized

applications. Experiments on classic machine learning and

graph applications have shown DtCraft outperforms the state-

of-the-art cluster computing system by more than an order

of magnitude. We have also successfully applied DtCraft to

solve large-scale semiconductor optimization problems that are

known difficult to fit into existing big data ecosystems. For

many similar industry applications, DtCraft can be employed

to explore integration and optimization issues, thereby offering

new revenue opportunities for existing company assets.

14

ACKNOWLEDGMENT

This work is partially supported by the National Science

Foundation under Grant CCF-1421563 and CCF-171883. The

authors thank the IBM Timing Analysis Group and the EDA

group in UIUC for their helpful discussion.

REFERENCES

[1] T.-W. Huang, C.-X. Lin, and M. D. F. Wong, “DtCraft: A distributed
execution engine for comput-intensive applications,” in IEEE/ACM IC-

CAD, 2017.
[2] “Apache Hadoop,” http://hadoop.apache.org/.

[3] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,” in
ACM EuroSys, 2007, pp. 59–72.

[5] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in USNIX

NSDI, 2012.
[6] L. Stok, “The next 25 years in EDA: A cloudy future?” IEEE Design

Test, vol. 31, no. 2, pp. 40–46, April 2014.

[7] “The future of big data,” https://www2.eecs.berkeley.edu/patterson2016/.

[8] T.-W. Huang and M. D. F. Wong, “OpenTimer: A high-performance
timing analysis tool,” in IEEE/ACM ICCAD, 2015, pp. 895–902.

[9] T.-W. Huang, M. D. F. Wong, D. Sinha, K. Kalafala, and
N. Venkateswaran, “A distributed timing analysis framework for large
designs,” in ACM/IEEE DAC, 2016, pp. 116:1–116:6.

[10] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” in USENIX NSDI, ser. NSDI’11,
2011, pp. 295–308.

[11] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache Hadoop
YARN: Yet another resource negotiator,” in SOCC, 2013, pp. 5:1–5:16.

[12] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and
J. Dongarra, “DAGuE: A generic distributed DAG engine for high
performance computing,” Parallel Comput., vol. 38, no. 1-2, pp. 37–
51, Jan. 2012.

[13] D. Charousset, R. Hiesgen, and T. C. Schmidt, “CAF - the C++ actor
framework for scalable and resource-efficient applications,” in ACM
AGERE!, 2014, pp. 15–28.

[14] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph processing,”
in ACM SIGMOD, 2010, pp. 135–146.

[15] “Libevent,” http://libevent.ogr/.

[16] “Cereal,” http://uscilab.github.io/cereal/index.html.

[17] “Illinois campus cluster program,” https://campuscluster.illinois.edu/.
[18] “Amazon EC2,” https://aws.amazon.com/ec2/.

[19] T. Kiss, H. Dagdeviren, S. J. E. Taylor, A. Anagnostou, and N. Fantini,
“Business models for cloud computing: Experiences from developing
modeling simulation as a service applications in industry,” in WSC, 2015,
pp. 2656–2667.

[20] A. Terenin, S. Dong, and D. Draper, “GPU-accelerated Gibbs sampling,”
CoRR, vol. abs/1608.04329, 2016.

[21] “TAU contest,” https://sites.google.com/site/taucontest2016/resources.

[22] G. Luo, W. Zhang, J. Zhang, and J. Cong, “Scaling up physical design:
Challenges and opportunities,” in ACM ISPD, 2016, pp. 131–137.

[23] Y. Zhu and J. Xiong, “Modern big data analytics for ”old-fashioned”
semiconductor industry applications,” in IEEE/ACM ICCAD, 2015, pp.
776–780.

[24] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda,
and J. Currey, “DryadLINQ: A system for general-purpose distributed
data-parallel computing using a high-level language,” in USNIX OSDI,
2008, pp. 1–14.

[25] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Mad-
havapeddy, and S. Hand, “CIEL: A universal execution engine for
distributed data-flow computing,” in USENIX NSDI, 2011, pp. 113–126.

[26] D. Wyatt, Akka Concurrency. Artima Incorporation, 2013.
[27] J. C. Beard, P. Li, and R. D. Chamberlain, “RaftLib: A C++ template

library for high performance stream parallel processing,” in ACM

PMAM, 2015, pp. 96–105.

[28] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter Heron: Stream
processing at scale,” in ACM SIGMOD, 2015, pp. 239–250.

[29] N. D. William Gropp, Ewing Lusk and A. Skjellum, “A high-
performance, portable implementation of the MPI message passing
interface standard,” Parallel Computing, vol. 22, no. 6, pp. 789–828,
1996.

[30] A. Williams, Ed., C++ Concurrency in Action: Practical Multithreading.
Manning Publications, 2012.

[31] “Boost,” http://www.boost.org/.
[32] “Intel TBB,” https://www.threadingbuildingblocks.org/.
[33] “JustThread,” http://www.stdthread.co.uk/.
[34] “DtCraft,” http://dtcraft.web.engr.illinois.edu/.

PLACE
PHOTO
HERE

Tsung-Wei Huang received the B.S. and M.S.
degrees from the Department of Computer Science,
National Cheng Kung University (NCKU), Tainan,
Taiwan, in 2010 and 2011, respectively. He obtained
his Ph.D. degree in Electrical and Computer En-
gineering at the University of Illinois at Urbana-
Champaign (UIUC). His current research interests
focus on distributed systems and design automation.

He won several awards including 1st place in the
2010 ACM/SIGDA Student Research Competition
(SRC), 2nd place in the 2011 ACM Student Re-

search Competition Grand Final across all disciplines, 1st, 2nd, and 1st places
in the TAU Timing Analysis Contest from 2014 through 2016, and 1st place
in the 2017 ACM/SIGDA CADathlon Programming Contest. He also received
the 2015 Rambus Computer Engineering Research Fellowship and the 2016
Yi-Min Wang and Pi-Yu Chung Endowed Research Award for outstanding
computer engineering research at the UIUC.

PLACE
PHOTO
HERE

Chun-Xun Lin received the B.S. degree in Elec-
trical Engineering from the National Cheng Kung
University, Tainan, Taiwan, and the M.S. degree in
Electronics Engineering from the Graduate Institute
of Electronics Engineering, National Taiwan Univer-
sity, Taipei, Taiwan, in 2009 and 2011, respectively.
He is currently pursuing the Ph.D. degree in Electri-
cal and Computer Engineering at the University of
Illinois at Urbana-Champaign, Champaign, IL, USA.
His current research interests include distributed
systems, very large scale integration physical design,

combinatorial optimization, and computational geometry. He received the 1st
place in the 2017 ACM/SIGDA CADathlon Programming Contest.

PLACE
PHOTO
HERE

Martin D. F. Wong received his B.S. degree in
Mathematics from the University of Toronto and
M.S. degree in Mathematics from the University of
Illinois at Urbana-Champaign (UIUC). He obtained
his Ph.D. degree in Computer Science from UIUC in
1987. From 1987 to 2002, he was a faculty member
in Computer Science at the University of Texas at
Austin. He returned to UIUC in 2002 where he
is currently the Executive Associate Dean for the
College of Engineering and the Edward C. Jordan
Professor in Electrical and Computer Engineering.

He has published over 450 technical papers and graduated more than 48
Ph.D. students in the area of Electronic Design Automation (EDA). He has
won a few best paper awards for his works in EDA and has served on
many technical program committees of leading EDA conferences. He has
also served on the editorial boards of IEEE Transactions on Computers, IEEE
Transactions on Computer-Aided Design (TCAD), and ACM Transactions on
Design Automation of Electronic Systems (TODAES). He is a Fellow of ACM
and IEEE.

