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Agenda 
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q Express your parallelism in the right way 

q Boost your productivity in writing parallel code 

q Leverage your time to produce promising results 



Distributed timer 
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Multi-threaded timer 

Motivation 

q “We need a new parallel/distributed timing analysis 
method to deal with the large design complexities,” 
IBM Timing Group, Fishkill, NY, 2015 
q Explore a feasible framework 
q Prototype a distributed timer 
q Scale to billions of transistors 
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Big data is NOT an easy fit in EDA! 



A “hard-coded” distributed timer 

q General design partitions 
q Logical, physical, or hierarchical partitions 
q Design data are stored in a shared storage (e.g., NFS, GPFS) 

q Single-server multiple-client model 
q Server is the centralized coordinator 
q Clients exchange boundary timing with server  
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q  Non-blocking	IO	
q  Event-driven	programming	
q  Serializa(on/Deserializa(on	



Observations 

q Big-data is not an easy fit in EDA 
q  IO-bound vs CPU-bound 
q Unstructured vs Structured 
q JVM vs C/C++ 

q Hard-coded method is error-prone and not scalable 
q Expose to the low-level socket message passing 
q Move data between compute nodes’ memories 
q Manage the cluster resource by yourselves 
q Difficult to maintain between software generations  
q Cause you a significant amount of coding efforts 

q Want parallel programming at scale far more productive 
q Better productivity means better performance for most people 
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q  Programming language 
q “I use Python/Matlab/Scala to prototype my project” 

q  Transparency 
q “I use Hadoop/Spark to express my parallel computations 

without understanding architecture-specific details” 

q  Performance 
q “I use C/C++/Fortran/MPI to ensure full control over resources 

to achieve the best CPU and memory performance” 

q  DtCraft project 
q “We let less-experienced users express their parallel 

computing workload without taking away the control over 
system details to achieve high performance, using our groovy 
API written in modern C++17” 
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What does “Productivity” mean to you? 



q Code costs are more than machine costs 
q Hardware is a commodity resource 
q Coding takes people and time 

q  I hate writing boilerplate code 
q Redundant steps to write parallel code 

q Code becomes massy when data dependencies exist 

q We want computationally productive code 
q The cloud businesses reduce the hardware factor 
q Everything must be parallel moving forward 
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Why is being “Productive” important? 

2016	average	soLware	engineer	
salary	>	100K	USD	



DtCraft – A distributed execution engine 

q Modernize yourself with C++17 
q Express your workload in our groovy API 
q Stay away from difficult concurrency controls 
q Make the most use of cluster resources 
q Gain security and reliability with Linux container  
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Stream graph programming model 

q  Graph 
q Vertex and stream creation 
q Resource assignment 

q  Vertex 
q One-time callback 
q Access adjacent streams 

q  Stream 
q Level-triggered I/O callback 
q Close stream on return 

q  Executor 
q Submit your graph 
q Debug your graph 
q Execute your graph 
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Only a single executable is required to 
enable distributed execution! 



A concurrent ping-pong example 
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q A representative workload in parallel computing 
q Message passing back and forth concurrently 
q A fundamental building block of incremental flow 

Method Parallelism 

C++17 thread Local/
Distributed 

MPI Distributed 

Method to be compared with 
DtCraft 



C++ thread on a local machine 
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q Standard C++ thread coding doesn’t scale easily 

Amount of code grows with thread 
count and problem size! 



C++ thread on distributed machines 
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q Things become massy going distributed … 

Branch your code to server and client for 
distributed computation! 
simple.cpp à server.cpp + client.cpp 
(explicit and manual message passing) 

server.cpp	

client.cpp	



Uh… you wonder how they look? 
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q  make_socket_server_fd and make_socket_client_fd 

Actually more than the 
parallel code you need… 



Massage Passing Interface (MPI) 

15	

q Explicitly move EVERYTHING between compute nodes 

It’s user’s fault to 
introduce deadlock 

Hard-coded message 
passing 



Concurrent ping-pong with DtCraft 
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Ø  Fewer lines of code overall 
Ø  Less boilerplate code 
Ø  Single program 
Ø  No explicit data management 
Ø  Easy-to-use streaming interface 
Ø  Asynchronous by default 
Ø  Scalable to many threads 
Ø  Scalable to many machines 
Ø  In-context resource controls 
Ø  Scale out to heterogeneous devices 
Ø  Transparent concurrency controls 
Ø  Robust runtime via Linux container 
… and more 



q No one can claim their system general 
q  If yes, I understand it’s for business purpose J 

q Big-data tools 
ü Good for data-driven and MapReduce workload 
x  Bad for CPU/memory-intensive applications 

q High-performance computing (HPC) language 
ü  Enabled the vast majority of HPC results for 20 years 
x  Suffer from too many distinct notations for parallel programming 
x  Analogous to assembly language (bottom-up design) 

q DtCraft 
ü  A higher-level alternative to higher-level technologies 
ü  Transparent concurrency without taking away low-level controls 
x  Currently best suitable for compute-intensive applications 
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Be gentle to existing systems 



System implementation of DtCraft 

q Kernel – Master, Agent, and Executor 
q Master: global scheduling, deployment, and front-end 
q Agent: local scheduling, containerization 
q Executor: task execution (local, distributed, submitted modes)  

q Event-driven programming environment 
q Redesign the reactor library 
q Thread-safe, lock-free, non-blocking IO 

q Streaming interface 
q Redesign the serialization/deserialization library 
q Thread-safe, strongly typed, memory efficient 

q  Linux container 
q A thin layer of fine-grained resource control  
q Secure, safe, and robust 
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A modern reactor library for event-driven programming 
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q The key component to our system kernel 
Ø  Written in C++17 
Ø  Thread-safe  
Ø  Lock-free 
Ø  Flattened event type 
Ø  Task-based parallelism 
Ø  Single producer (promise) 
Ø  Multiple consumers (future) 
Ø  Smart pointer 
Ø  Non-blocking IO controls 
Ø  Support multiple back-ends 
Ø  Shared thread pool 
Ø  Callback in a critical section 



A memory-efficient serialization/deserialization library 
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q The key component to our message passing 

Ø  Written in C++17 
Ø  Heavy meta-programming 
Ø  Thread-safe  
Ø  Strongly-typed 
Ø  Convenient to use 
Ø  Integrated with our IO buffer 
Ø  Binary data format 
Ø  No extra parsing/unpacking 
Ø  No secondary representation 
Ø  Memory-efficient 
Ø  STL ready-to-use 



Concurrent input/output stream buffer 

q  In charge of reading/writing operations on devices
q Work directly with our serialization/deserialization interface 
q Zero copy in user space 
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Derived stream buffer

beg endnext

@ # * … - - - - -

I/O Device DB

In-memory 
char buffer

AgentDatabase

overflowSynchronization

Thread-safe stream buffer object: read, write, copy, etc.

Executor
Key/Value 

store

Executor

In-memory database

Integration with our serialization/deserialization interface

rdbuf

Ø  Written in C++17 
Ø  Thread-safe 
Ø  Recursive lock 
Ø  In-memory buffer 
Ø  Shared memory 
Ø  Network socket 
Ø  FIFO 
Ø  Domain socket 



A Linux container-based resource control 
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q Namespace isolation & resource control  

Ø  Safe and robust runtime 
Ø  Minimize intruder’s effect 
Ø  Network isolation 
Ø  UTS isolation 
Ø  IPC isolation 
Ø  PID isolation 
Ø  User/Group isolation 
Ø  Cgroup isolation 
Ø  Mount point isolation 
Ø  In-context resource controls 
Ø  Give scheduler hints 
Ø  Maximize cluster performance 



Graph deployment and workload distribution 

q Global scheduler – master 
q Manage users’ graph submissions
q Partition graph through bin-packing optimization 

q  Local schedulers – agents 
q Fork-exec an executor for each topology  
q Containerize the executor under resource constraints 

A B C D

A B C D

A B

C D

Agent1

Agent2

Graph (4 vertices/4 edges)

Topology1 Topology2

Container 1: A, B
Container 2: C, D

Deploy
(packing)

<Task2: 2 vertices, 2 edges>

<Task1:  2 vertices, 3 edges> 

Cut(Agent1) (Agent2)

Control message: ostream from B 

Control message: istream to C 

Global scheduler (Master) Local scheduler (Agent)

Intra-stream and inter-stream talk through shared memory and TCP socket, respectively 
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Experiments on machine learning 

q Logistic regression and k-means algorithms 
q Mimic the MapReduce-based flow with ten iterations 

q Compared with Spark 2.0 MLib 
q More than an order of magnitude faster 
q No extra overhead on the first iteration to cache data 
q Explicit resource controls outperform blind RDD partitions 
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Stream graph 
24	



Experiments on graph algorithms 

q Shortest path algorithm 
q Circuit graph with 10M nodes and 14M edges 
q Higher connectivity than many of big data graphs 
q Mimic the Pregel-based algorithm (Bellman-Ford style) 

q Compared with Spark 2.0 GraphX 
q Less synchronization overhead 
q An order of magnitude faster 
q Scale up as the graph size increases 
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Distributed timing analysis using DtCraft  

q Two-level hierarchical design (three partitions) 

Timer Timer

Timer

API
report_at
report_slew
report_rat
remove_gate
insert_gate
power_gate
insert_net
connect_pin
...

Optimization 
program
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TOP level
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Userq  Three timer vertices 
q  One user vertex 
q  Four Linux containers 
q  Six input/output streams 

Boundary	
(ming	

Timing	
commands	

u  Top-level 
u  M1 
u  M2 

Each container has one OpenTimer 
operating on one design hierarchy 



Exchange timing data – delay, slew, etc. 
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DtCraft Existing framework 

In-context streaming 
with < 30  lines 

Extra.pb.h	
Extra.pb.cpp	
…	
Source.cpp	

Out-of-context 
streaming takes 
> 300 lines 

Many extra stuff L 



Deploy the distributed timer in one line 
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~$ ./submit –master=127.0.0.1 binary  

Existing framework DtCraft 

Top.cpp	 M1.cpp	 M2.cpp	
Duplicate the code for each partition 

Container 1 Container 2 Container 3 

Wrap up with submission scripts 

Only three lines for 
resource control in 
Linux container 



Comparison with the hard-coded method 

29	

q  ×17 fewer lines of code 
q 33% from message passing 
q 67% from boilerplate code 

q  7-11% performance loss 
q Transparent concurrency 
q API cost 
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“With DtCraft, it took me only three 
weeks, precisely, the SPARE time out 
of my summer internship at Citadel, to 
build a distributed timer that otherwise 
took my whole summer internship with 
IBM”. 
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Experiments on EDA tool Integration 

q  Electronic design automation (EDA) 

Partition Floorplan Placement Routing Timing

Users (service)Interactive query, 
incremental update

Multiple scenarios 
(100 vertices) 

Circuit design
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q  Goal 
q  New EDA methodology 
q  distributed integration 
q  Reduce tool-to-tool 

overhead 

q  Open-source tools 
q OpenTimer, placer, etc. 

Stream graph for physical design 
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Experiments on EDA tool integration 
(cont’d) 
q Physical design and timing analysis 
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Conclusion 

q DtCraft: A distributed execution engine 
q Creation of new parallel/distributed algorithms 
q Tool-to-tool integration at cloud scale 

q Tentative first release on 12/1 
q Github repository 

q Acknowledgment 
q UIUC CAD group 



Boost your productivity in writing 
parallel code! 

Thank you! 
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