
Boost your productivity in writing
parallel code!

DtCraft: A Distributed Execution
Engine for Compute-intensive
Applications

Tsung-Wei Huang, Chun-Xun Lin, and Martin D. F. Wong
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, IL, USA

1	

Agenda

2	

q Express your parallelism in the right way

q Boost your productivity in writing parallel code

q Leverage your time to produce promising results

Distributed timer

3	

Multi-threaded timer

Motivation

q “We need a new parallel/distributed timing analysis
method to deal with the large design complexities,”
IBM Timing Group, Fishkill, NY, 2015
q Explore a feasible framework
q Prototype a distributed timer
q Scale to billions of transistors

Method	 Spark	1.4	
(RDD	+	GraphX	Pregel)	

Java	
(SP)	

C++	
(SP)	

Run(me	(s)	 68.45	 9.5	 1.50	

0

20

40

60

80

C++ Python Java Scala Spark
GraphX

Runtime comparison on arrival time propagation

Runtime (s)
1.5s 9.5s 10.68s

68.45s

7.4s

Industrial circuit graph
(2.5M nodes and 3.5M edges)

(4 cores)(1 core) (1 core) (1 core) (1 core)

4	

Big data is NOT an easy fit in EDA!

A “hard-coded” distributed timer

q General design partitions
q Logical, physical, or hierarchical partitions
q Design data are stored in a shared storage (e.g., NFS, GPFS)

q Single-server multiple-client model
q Server is the centralized coordinator
q Clients exchange boundary timing with server

TOP level
M1

Hierarchy M2

PI1

PI2

PI3
Hierarchy M1

PO1

M1:PI1

M1:PI2

M1:PO1

M2:PI1

M2:PI2

M2:PO1

M2

I1
G1

H1

Three partitions, top-level, M1, and M2
(given by design teams)

5	

q  Non-blocking	IO	
q  Event-driven	programming	
q  Serializa(on/Deserializa(on	

Observations

q Big-data is not an easy fit in EDA
q  IO-bound vs CPU-bound
q Unstructured vs Structured
q JVM vs C/C++

q Hard-coded method is error-prone and not scalable
q Expose to the low-level socket message passing
q Move data between compute nodes’ memories
q Manage the cluster resource by yourselves
q Difficult to maintain between software generations
q Cause you a significant amount of coding efforts

q Want parallel programming at scale far more productive
q Better productivity means better performance for most people

6	

q  Programming language
q “I use Python/Matlab/Scala to prototype my project”

q  Transparency
q “I use Hadoop/Spark to express my parallel computations

without understanding architecture-specific details”

q  Performance
q “I use C/C++/Fortran/MPI to ensure full control over resources

to achieve the best CPU and memory performance”

q  DtCraft project
q “We let less-experienced users express their parallel

computing workload without taking away the control over
system details to achieve high performance, using our groovy
API written in modern C++17”

7	

What does “Productivity” mean to you?

q Code costs are more than machine costs
q Hardware is a commodity resource
q Coding takes people and time

q  I hate writing boilerplate code
q Redundant steps to write parallel code

q Code becomes massy when data dependencies exist

q We want computationally productive code
q The cloud businesses reduce the hardware factor
q Everything must be parallel moving forward

8	

Why is being “Productive” important?

2016	average	soLware	engineer	
salary	>	100K	USD	

DtCraft – A distributed execution engine

q Modernize yourself with C++17
q Express your workload in our groovy API
q Stay away from difficult concurrency controls
q Make the most use of cluster resources
q Gain security and reliability with Linux container

9	

Stream graph programming model

q  Graph
q Vertex and stream creation
q Resource assignment

q  Vertex
q One-time callback
q Access adjacent streams

q  Stream
q Level-triggered I/O callback
q Close stream on return

q  Executor
q Submit your graph
q Debug your graph
q Execute your graph

10	

Only a single executable is required to
enable distributed execution!

A concurrent ping-pong example

A B

‘1’ or ‘0’ (random)

‘1’ or ‘0’ (random)

ostream
A

istream
B

istream
A

Break at
counter ≥ 100

ostream
B

eAèB

eAçB

eAèB

eAçB

thdi

thdj

thdk

thdl

A

B

B

A

A

B

B B

A

A

B

t

A

…	

…	
ostream
begins at first

11	

q A representative workload in parallel computing
q Message passing back and forth concurrently
q A fundamental building block of incremental flow

Method Parallelism

C++17 thread Local/
Distributed

MPI Distributed

Method to be compared with
DtCraft

C++ thread on a local machine

12	

q Standard C++ thread coding doesn’t scale easily

Amount of code grows with thread
count and problem size!

C++ thread on distributed machines

13	

q Things become massy going distributed …

Branch your code to server and client for
distributed computation!
simple.cpp à server.cpp + client.cpp
(explicit and manual message passing)

server.cpp	

client.cpp	

Uh… you wonder how they look?

14	

q  make_socket_server_fd and make_socket_client_fd

Actually more than the
parallel code you need…

Massage Passing Interface (MPI)

15	

q Explicitly move EVERYTHING between compute nodes

It’s user’s fault to
introduce deadlock

Hard-coded message
passing

Concurrent ping-pong with DtCraft

16	

Ø  Fewer lines of code overall
Ø  Less boilerplate code
Ø  Single program
Ø  No explicit data management
Ø  Easy-to-use streaming interface
Ø  Asynchronous by default
Ø  Scalable to many threads
Ø  Scalable to many machines
Ø  In-context resource controls
Ø  Scale out to heterogeneous devices
Ø  Transparent concurrency controls
Ø  Robust runtime via Linux container
… and more

q No one can claim their system general
q  If yes, I understand it’s for business purpose J

q Big-data tools
ü Good for data-driven and MapReduce workload
x  Bad for CPU/memory-intensive applications

q High-performance computing (HPC) language
ü  Enabled the vast majority of HPC results for 20 years
x  Suffer from too many distinct notations for parallel programming
x  Analogous to assembly language (bottom-up design)

q DtCraft
ü  A higher-level alternative to higher-level technologies
ü  Transparent concurrency without taking away low-level controls
x  Currently best suitable for compute-intensive applications

17	

Be gentle to existing systems

System implementation of DtCraft

q Kernel – Master, Agent, and Executor
q Master: global scheduling, deployment, and front-end
q Agent: local scheduling, containerization
q Executor: task execution (local, distributed, submitted modes)

q Event-driven programming environment
q Redesign the reactor library
q Thread-safe, lock-free, non-blocking IO

q Streaming interface
q Redesign the serialization/deserialization library
q Thread-safe, strongly typed, memory efficient

q  Linux container
q A thin layer of fine-grained resource control
q Secure, safe, and robust

18	

A modern reactor library for event-driven programming

19	

q The key component to our system kernel
Ø  Written in C++17
Ø  Thread-safe
Ø  Lock-free
Ø  Flattened event type
Ø  Task-based parallelism
Ø  Single producer (promise)
Ø  Multiple consumers (future)
Ø  Smart pointer
Ø  Non-blocking IO controls
Ø  Support multiple back-ends
Ø  Shared thread pool
Ø  Callback in a critical section

A memory-efficient serialization/deserialization library

20	

q The key component to our message passing

Ø  Written in C++17
Ø  Heavy meta-programming
Ø  Thread-safe
Ø  Strongly-typed
Ø  Convenient to use
Ø  Integrated with our IO buffer
Ø  Binary data format
Ø  No extra parsing/unpacking
Ø  No secondary representation
Ø  Memory-efficient
Ø  STL ready-to-use

Concurrent input/output stream buffer

q  In charge of reading/writing operations on devices
q Work directly with our serialization/deserialization interface
q Zero copy in user space

21	

Derived stream buffer

beg endnext

@ # * … - - - - -

I/O Device DB

In-memory
char buffer

AgentDatabase

overflowSynchronization

Thread-safe stream buffer object: read, write, copy, etc.

Executor
Key/Value

store

Executor

In-memory database

Integration with our serialization/deserialization interface

rdbuf

Ø  Written in C++17
Ø  Thread-safe
Ø  Recursive lock
Ø  In-memory buffer
Ø  Shared memory
Ø  Network socket
Ø  FIFO
Ø  Domain socket

A Linux container-based resource control

22	

q Namespace isolation & resource control

Ø  Safe and robust runtime
Ø  Minimize intruder’s effect
Ø  Network isolation
Ø  UTS isolation
Ø  IPC isolation
Ø  PID isolation
Ø  User/Group isolation
Ø  Cgroup isolation
Ø  Mount point isolation
Ø  In-context resource controls
Ø  Give scheduler hints
Ø  Maximize cluster performance

Graph deployment and workload distribution

q Global scheduler – master
q Manage users’ graph submissions
q Partition graph through bin-packing optimization

q  Local schedulers – agents
q Fork-exec an executor for each topology
q Containerize the executor under resource constraints

A B C D

A B C D

A B

C D

Agent1

Agent2

Graph (4 vertices/4 edges)

Topology1 Topology2

Container 1: A, B
Container 2: C, D

Deploy
(packing)

<Task2: 2 vertices, 2 edges>

<Task1: 2 vertices, 3 edges>

Cut(Agent1) (Agent2)

Control message: ostream from B

Control message: istream to C

Global scheduler (Master) Local scheduler (Agent)

Intra-stream and inter-stream talk through shared memory and TCP socket, respectively
23	

Executor

Dispatch

A B

Topology

Frontier

ostream

istream

ostream (TCP)

Reactor

ErrorHandle

Master
Asynchronous
event

Execution event Socket events

Pending events
Thread pool

Agent

Clone
executor

Topology
1 CPU
1 KB RAM

A BTopology
Intra-edge Inter-edge (to the remote end)

A ostream B istream B ostream
C

Container runtime (isolated resource and namespace)

Experiments on machine learning

q Logistic regression and k-means algorithms
q Mimic the MapReduce-based flow with ten iterations

q Compared with Spark 2.0 MLib
q More than an order of magnitude faster
q No extra overhead on the first iteration to cache data
q Explicit resource controls outperform blind RDD partitions

(b) Logistic regression

Distributed storage

V1 V2 Vn

V0

(a) Stream graph

…
Points

Update weight

(c) k-means

Iteration0

50

100

150

200

1 2 3 4 5 6 7 8 9 10

R
un

tim
e

(s
)

Number of machines (4 CPUs / 16GB each)

Runtime comparison of machine learning applications

Spark (LR)
DtCraft (LR)
Spark (KM)
DtCraft (KM)

40M points (dimension=10)

4-11× speedup on logistic regression (LR)
5-14× speedup on k-means (KM)

Stream graph
24	

Experiments on graph algorithms

q Shortest path algorithm
q Circuit graph with 10M nodes and 14M edges
q Higher connectivity than many of big data graphs
q Mimic the Pregel-based algorithm (Bellman-Ford style)

q Compared with Spark 2.0 GraphX
q Less synchronization overhead
q An order of magnitude faster
q Scale up as the graph size increases

303

202
111 96 96 98 105 102 108 110

15 14 11 8 9 9 8 10 10 9
0

100

200

300

400

1 2 3 4 5 6 7 8 9 10

R
un

tim
e

(s
)

Number of machines (4 CPUs / 8GB each)

Runtime comparison of shortest path finding

Spark
DtCraft

Circuit graph with 10M nodes and 14M edges
10-20× speedup by DtCraft

303 520 674 856 1K 1.2K 1.4K 1.8K
2.2K

3.5K

18 39 52 70 88 108 131 155 176 201
0

1000

2000

3000

4000

24 28 72 96 120 124 168 192 216 240

R
un

tim
e

(s
)

Graph size (# edges + # nodes) in million (M)

Performance scalability (runtime vs graph size)

Spark
DtCraft

All on 10 machines (4 CPUs / 16GB each)
10-17× speedup by DtCraft

(a) Circuit (1.01mm2) (b) Graph (3M gates) (c) A signal path

Distributed timing analysis using DtCraft

q Two-level hierarchical design (three partitions)

Timer Timer

Timer

API
report_at
report_slew
report_rat
remove_gate
insert_gate
power_gate
insert_net
connect_pin
...

Optimization
program

26	

TOP level
M1

Hierarchy M2

PI1

PI2

PI3
Hierarchy M1

PO1

M1:PI1

M1:PI2

M1:PO1

M2:PI1

M2:PI2

M2:PO1

M2

I1
G1

H1

Userq  Three timer vertices
q  One user vertex
q  Four Linux containers
q  Six input/output streams

Boundary	
(ming	

Timing	
commands	

u  Top-level
u  M1
u  M2

Each container has one OpenTimer
operating on one design hierarchy

Exchange timing data – delay, slew, etc.

27	

DtCraft Existing framework

In-context streaming
with < 30 lines

Extra.pb.h	
Extra.pb.cpp	
…	
Source.cpp	

Out-of-context
streaming takes
> 300 lines

Many extra stuff L

Deploy the distributed timer in one line

28	

~$./submit –master=127.0.0.1 binary

Existing framework DtCraft

Top.cpp	 M1.cpp	 M2.cpp	
Duplicate the code for each partition

Container 1 Container 2 Container 3

Wrap up with submission scripts

Only three lines for
resource control in
Linux container

Comparison with the hard-coded method

29	

q  ×17 fewer lines of code
q 33% from message passing
q 67% from boilerplate code

q  7-11% performance loss
q Transparent concurrency
q API cost

0	
2000	
4000	
6000	

Small	 Medium	 Large	

RunEme	(40	AWS	nodes)	

DtCraL	 Hard-coded	

“With DtCraft, it took me only three
weeks, precisely, the SPARE time out
of my summer internship at Citadel, to
build a distributed timer that otherwise
took my whole summer internship with
IBM”.

0	
5	

10	
15	

#	weeks	

Development	Eme	

DtCraL	 Hard-coded	

Experiments on EDA tool Integration

q  Electronic design automation (EDA)

Partition Floorplan Placement Routing Timing

Users (service)Interactive query,
incremental update

Multiple scenarios
(100 vertices)

Circuit design

Partition

Floorplan

Placement

CTS

Routing

Function, logic

Physical design

Signoff

Module(a, b)
Input a;
Output b;

Manufacturing

System Spec.

Architecture

Timing

Final chip

Testing

DRC, LVS

Disk, legacy C codes
(Linux LSF cluster)

Graph

Graph

Analytical

Tree

Graph

NFS
22nm 10B+
transistors

q  Goal
q  New EDA methodology
q  distributed integration
q  Reduce tool-to-tool

overhead

q  Open-source tools
q OpenTimer, placer, etc.

Stream graph for physical design

30	

Experiments on EDA tool integration
(cont’d)
q Physical design and timing analysis

65

11
0

20
40
60
80

40 machinesD
isk

 I/
O

 (G
B)

(4 CPUs / 16GB each)

Physical design (1B transistors)

Baseline
DtCraft

14.8

1.8
0
5

10
15
20

40 machinesR
un

tim
e

(h
r)

(4 CPUs / 16GB each)

Runtime comparison

Baseline
DtCraft

4.7
5.9

7
8.1

3.9
5

6.2 6.4

0
2
4
6
8

10

10 20 30 40

Sp
ee

du
p

Number of machines (4 CPUs / 16GB each)

Runtime scalability (physical design flow)

DtCraft

DtCraft*

Up to 8× speedup relative to
baseline

*: Random fault

8.2
13

19

30.1

8.7
14.2

21.7

32

0

10

20

30

40

10 20 30 40

Sp
ee

du
p

Number of machines (4 CPUs / 16GB each)

Runtime scalability (timing analysis)

DtCraft
Ad hoc*

Up to 30× speedup over baseline
15× fewer lines of codes than ad hoc

*: Hard-coded

7 minutes

65

11
0

20
40
60
80

40 machinesD
isk

 I/
O

 (G
B)

(4 CPUs / 16GB each)

Physical design (1B transistors)

Baseline
DtCraft

14.8

1.8
0
5

10
15
20

40 machinesR
un

tim
e

(h
r)

(4 CPUs / 16GB each)

Runtime comparison

Baseline
DtCraft

Less disk IO translates to
faster runtime

31	

Conclusion

q DtCraft: A distributed execution engine
q Creation of new parallel/distributed algorithms
q Tool-to-tool integration at cloud scale

q Tentative first release on 12/1
q Github repository

q Acknowledgment
q UIUC CAD group

Boost your productivity in writing
parallel code!

Thank you!

33	

Tsung-Wei Huang
twh760812@gmail.com

(512) 815-9195

